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New Bounds for the L(h, k) Number of Regular
Grids

Tiziana Calamoneri, Saverio Caminiti, Guillaume Fertin

calamo@di.uniroma1.it, caminiti@di.uniroma1.it, fertin@lina.univ-nantes.fr

Abstract

For any non negative real values h and k, an L(h, k)-labeling of a graph G = (V, E) is a function L : V → R

such that |L(u) − L(v)| ≥ h if (u, v) ∈ E and |L(u) − L(v)| ≥ k if there exists w ∈ V such that (u, w) ∈ E

and (w, v) ∈ E. The span of an L(h, k)-labeling is the difference between the largest and the smallest value of
L. We denote by λh,k(G) the smallest real λ such that graph G has an L(h, k)-labeling of span λ. The aim of the
L(h, k)-labeling problem is to satisfy the distance constraints using the minimum span.
In this paper, we study the L(h, k)-labeling problem on regular grids of degree 3, 4, 6 and 8, solving several open
problems left in the literature.

Additional Key Words and Phrases: L(h, k)-labeling, triangular grids, hexagonal grids, squared grids, octagonal
grids





1 Introduction

For any non negative real values h and k, an L(h, k)-labeling of a graph G = (V, E) is a function L : V → R

such that |L(u) − L(v)| ≥ h if (u, v) ∈ E and |L(u) − L(v)| ≥ k if there exists w ∈ V such that (u, w) ∈ E

and (w, v) ∈ E. The span of an L(h, k)-labeling is the difference between the largest and the smallest value of
L. Hence, it is not restrictive to assume 0 as the smallest value of L, something which will be assumed throughout
this paper. We denote by λh,k(G) the smallest real λ such that graph G has an L(h, k)-labeling of span λ ; we
call L(h, k) number of G this value. The aim of the L(h, k)-labeling problem is to satisfy the distance constraints
using the minimum span.

Since its definition [11] as a specialization of the frequency assignment problem in wireless networks [12, 16],
the L(h, k)-labeling problem has been intensively studied. Note that the L(h, k)-labeling problem is a general-
ization of some standard graph colorings, such as the usual (or proper) coloring when k = 0, or the 2-distance
coloring (equivalent to the proper coloring of the square of the graph) when h = k. We also note that the case
h = 2 and k = 1 (or, more generally h = 2k), called radio-coloring or λ-coloring, is the most widely studied (see
for instance [7, 9, 13, 14]).

The decision version of the L(h, k)-labeling problem is NP-complete even for small values of h and k [2].
This motivates seeking optimal solutions on particular classes of graphs (see for instance [3, 4, 8, 11, 17, 18,
19] and [6] for a complete survey). Concerning the more specific grid topologies, a large number of papers
has been published on the subject. For instance, Makansi [15] provided an optimal L(0, 1)-labeling for squared
grids. Battiti, Bertossi and Bonuccelli [1] found an optimal L(1, 1)-labeling for hexagonal, squared and triangular
grids. The L(2, 1)-labeling problem of regular grids of degree ∆, denoted G∆, has been studied independently by
different authors [3, 7] proving that λ2,1(G∆) = ∆ + 2 by means of optimal coloring algorithms. More recently,
Fertin and Raspaud [10] determined several bounds on λh,k for d-dimensional squared grids.

In [5] some values of λh,k for regular grids of degree 3, 4, and 6 are exactly computed, while in some intervals
different upper and lower bounds are given ; the case h < k is not considered at all.

In this paper, we study the L(h, k)-labeling problem on regular grids of degree 3, 4, and 6 for those values of
h and k whose λh,k is either not known or not tight. Moreover, for the first time in the literature, we investigate
on the problem for grids of degree 8. For all considered grids, in some cases we provide exact results, while in
the other ones we give very close upper and lower bounds. A graphical representation of the four types of grids
studied in this paper is given in Figure 1, while a summary of our results is depicted in Figure 2.

(a) (c)(b) (d)

Figure 1: Grids studied in this paper: (a) G3, (b) G4, (c) G6 and (d) G8

2 Preliminaries

In this section, we show four different lemmas, which will prove to be useful in the rest of the paper. Lemmas 1
and 2 are concerned with lower bounds for the L(h, k) number, while Lemmas 3 and 4 deal with upper bounds.

Lemma 1 λh,k(G∆) ≥ h + (∆ − 1)k when h ≤ k, for ∆ = 3, 4.

Proof : Consider an optimal L(h, k)-labeling of G∆, h ≤ k, ∆ = 3, 4, and let x be a node labeled 0. The smallest
label among those of their neighbors must be at least h. Furthermore, the ∆ neighbors of x are all connected by a
2-length path and hence their labels must differ at least k from each other. It follows that the greatest label must be
at least h + (∆ − 1)k. �

exgrids.eps
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Figure 2: Summary of the results achieved in this paper: bold lines are results from this paper, while gray lines are
previously known lower and upper bounds.

Lemma 2 λh,k(G∆) ≥ ∆k when h ≤ k, for ∆ = 6, 8.

Proof : Observe that G6 and G8 are characterized by the property that each pair of adjacent nodes is also connected
by a 2-length path. This implies that, given an optimal L(h, k)-labeling of G∆, h ≤ k, ∆ = 6, 8, starting from a
node x labeled 0, the smallest label, among those of their neighbors must be at least k. With reasonings analogous
to those of the previous proof, the claim follows. �

Lemma 3 For any graph G and any 0 ≤ h ≤ k, λh,k(G) ≤ k · λ1,1(G).

Proof : Consider an optimal L(1, 1)-labeling, sayL, of G. Consider the labelingL′ obtained fromL by substituting
every label i with label ik (i = 0, 1, . . . , λ1,1(G)). We claim that L′ is an L(h, k)-labeling of G with span
k · λ1,1(G), provided h ≤ k. Indeed, any two neighbors, which differ by at least 1 in L, differ by at least k ≥ h in
L′ ; moreover, any two nodes connected by a 2-length path, which differ by at least 2 in L differ by at least 2k ≥ k

in L′. �

Lemma 4 For any graph G and any h ≥ k
2

, λh,k(G) ≤ h · λ1,2(G).

plot.eps
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Proof : Analogously to proof of Lemma 3, consider an L(1, 2) labeling, say L, of G. Consider the labeling L′

obtained from L by substituting every label i with label ih (i = 0, 1, . . . , λ1,2(G)). Since h ≥ k
2

, L′ is an L(h, k)-
labeling of G with span h · λ1,2(G). Indeed, any two neighbors, which differ by at least 1 in L, differ by at least
h in L′ ; moreover, any two nodes connected by a 2-length path, which differ by at least 2 in L differ by at least
2h ≥ k in L′. �

If no confusion arises, we will speak interchangeably, in the rest of this paper, of a node and its label.

3 Regular Grids of Degree 3

3.1 Upper Bounds

Proposition 1 λh,k(G3) ≤ h + 2k when h ≤ k
2

.

Proof : Consider an optimal L(1, 2)-labeling of G3 over the set of colors {0, 1, . . . , 5}, as shown in Figure 3(a).
The idea is to substitute h to 1, k to 2, h+k to 3, 2k to 4, and h+2k to 5. In that case, the labeling that is produced
is a feasible L(h, k)-labeling. Indeed, each pair of consecutive labels differ by either h or k − h, but since we
supposed h ≤ k

2
, we have k − h ≥ h and thus any two consecutive labels differ by at least h. Similarly, any other

pair of distinct labels differ by at least k. Moreover, the largest label used is h + 2k, hence the result. �
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Figure 3: L(h, k)-labeling of G3: (a) L(1, 2)-labeling ; (b) L(1, 1)-labeling

Proposition 2 λh,k(G3) ≤ min {5h, 3k} when k
2
≤ h ≤ k.

Proof : By Lemma 4, since k
2
≤ h and since there exists an L(1, 2)-labeling of G3 that is of span 5 (as shown in

Figure 3(a)), we know there exists an L(h, k)-labeling of G3 of span 5h.
Analogously, since h ≤ k, we obtain an L(h, k)-labeling of span 3k by Lemma 3 ; indeed, there exists an L(1, 1)-
labeling of G3 that is of span 3 (as shown in Figure 3(b)). �

3.2 Lower Bounds

Proposition 3 λh,k(G3) ≥ h + 2k when h ≤ k.

Proof : This bound directly comes from Lemma 1. �

Proposition 4 λh,k(G3) ≥ 3k when 2

3
k ≤ h ≤ k.

Proof : Consider an optimal L(h, k)-labeling of G3. Suppose, by contradiction, that λh,k(G3) < 3k. Let us
consider a node labeled 0, and let x, y, and z be its 3 neighbors. Without loss of generality, suppose x < y < z. In
view of the L(h, k)-constraints, we must have x ≥ h, y ≥ x + k ≥ h + k, and z ≥ y + k ≥ h + 2k. Furthermore,
from the hypothesis λh,k(G3) < 3k, we have that z < 3k, hence y ≤ z − k < 2k, and x ≤ y − k < k. Let x1 and
x2, y1 and y2, z1 and z2 be the not 0 neighbors of x, y, and z, respectively (see Figure 4).
Let us first prove that if ym = min{y1, y2} and yM = max{y1, y2}, then ym < y < yM . Indeed, if y < ym,
then ym ≥ y + h ≥ 2h + k, and consequently yM ≥ 2h + 2k. However, 2h + 2k ≥ 3k (because we supposed
h ≤ 2k

3
≥ k

2
), a contradiction to the fact that λ < 3k. On the other hand, if yM < y, then y ≥ yM + h. And

upper3.eps
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Figure 4: Neighborhood of a node labeled 0 in G3

since yM ≥ ym + k ≥ 2k, we end up with y ≥ h + 2k. However, by hypothesis we know that y < 2k, a
contradiction since 3h − k ≤ h + 2k, because we supposed h ≤ 3k

2
. Thus we conclude that in all the cases, we

have ym < y < yM .
Now, in order to prove the statement, we will show that under the hypothesis λh,k(G3) < 3k, both cases x1 < x2

and x1 > x2 lead to a contradiction.

Case 1: x1 < x2. This implies x1 ≥ k, as x1 is connected by a 2-length path to node 0 (via x) and x2 ≥
x1 + k ≥ 2k. If x1 < x, then x ≥ x1 + h ≥ k + h, a contradiction since x < k. Hence, x < x1 < x2. It follows
that x1 ≥ x + h ≥ 2h and x2 ≥ x1 + k ≥ 2h + k. Let us now consider y1 and y2.

Case 1.1: y1 < y2. Hence we know that y1 < y < y2. In such a case y1 ≥ k and y1 ≤ y − h < 2k − h. Note
that y1 < x2 as y1 < 2k − h and x2 ≥ 2k. Let us consider the common neighbor of x2 and y1, α, and let us study
the relative position of its label with respect to x2 and y1.

• α < y1 < x2. Then α ≤ y − k < k: if x < α we have α ≥ x + k ≥ h + k, a contradiction ; on the other
hand, if α < x then α ≤ x − k < 0, a contradiction too.

• y1 < x2 < α. Then x2 ≤ α − h < 3k − h ; from previous hypotheses we also have x2 ≥ 2h + k, and this
leads to a contradiction as 3k − h ≤ 2h + k when h ≥ 2

3
k.

• y1 < α < x2. We have again two cases. If y1 < α < y then α ≤ y − k < k and y1 ≤ α − h < k − h

that is a contradiction as y1 ≥ k. If y1 < y < α then α ≤ x2 − h ≤ 3k − h, y ≤ α − k < 2k − h, and
y1 ≤ y − h < 2k − 2h that is a contradiction as y1 ≥ k and k < 2k − 2h when h > 2

3
k.

Case 1.2: y1 > y2. Thus we have y1 > y > y2. This implies that y1 ≥ y + h ≥ 2h + k. Hence, y1 lies in
the interval [2h + k; 3k[. However, we also know that x2 lies in the interval [2h + k; 3k[. Since this interval is of
width w < 2k − 2h, we conclude that w < k (because we supposed h ≥ 2k

3
and hence h ≥ k

2
). This leads to a

contradiction because y1 and x2 must be at least k away from each other.

Case 2: x1 > x2. With considerations analogous to those done for case x1 < x2, we can derive x < x2 < x1 and
2h + k ≤ x1 < 3k and 2h ≤ x2 < 2k. Now, let us look at y1 and y2.

Case 2.1: y1 < y2. We thus have y1 < y < y2. However, this leads to a contradiction. Indeed, y1 > k as it is
connected by a 2-length path to node 0, then x2 ≥ y1 + k > 2k and x1 ≥ x2 + k > 3k.

Case 2.2: y1 > y2. We then have y2 < y < y1. This implies that y1 ≥ y + h ≥ 2h + k and hence y1 < x2 as
x2 < 2k. Now consider α, the common neighbor of x2 and y1.

• x2 < y1 < α. Then α ≥ y1 + h ≥ 3h + k ≥ 3k, a contradiction since we supposed λ < 3k.

• α < x2 < y1. Then α ≤ x2 − h < 2k− h. If α > y then α ≥ y + k ≥ h + 2k that is absurd ; if α < y then
α ≤ y − k ≤ k. However, we know that x < k ; moreover, because α < k and α must lie at least k away
from x, this leads to a contradiction.

G3.eps
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• x2 < α < y1. Then α ≤ y1 − h < 3k − h. If α > y then α ≥ y + k ≥ h + 2k that is greater than 3k − h

under the hypothesis h ≥ 2

3
k ; if α < y then α ≤ y − k ≤ k that again contradicts the fact that α must lie at

least k away from x.

Altogether, we see that every possible case leads to a contradiction. This proves that the initial assumption,
λ < 3k, is false, and consequently the proposition is proved. �

Proposition 5 λh,k(G3) ≥ 3h when k ≤ h ≤ 3

2
k.

Proof : The proof is analogous to the previous one, i.e. by contradiction we assume that there exists a L(h, k)-
labeling with span λ < 3h, we start from node labeled 0, we look at its neighbors and prove that neither x1 < x2

nor x1 > x2 can occur. Wlog, let us assume x < y < z. Hence, x ≥ h, y ≥ h + k and z ≥ h + 2k. From the
other hand, z < 3h, y < 3h − k and x < 3h − 2k. Let x1 and x2, y1 and y2, z1 and z2 be the not 0 neighbors of
x, y, and z, respectively (see Figure 4).
We first prove that if ym = min{y1, y2} and yM = max{y1, y2}, then ym < y < yM . Indeed, if y < ym, then
ym ≥ y + h ≥ 2h + k, and consequently yM ≥ 2h + 2k. However, 2h + 2k ≥ 3h (because we supposed
h ≤ 3k

2
), a contradiction to the fact that λ < 3h. On the other hand, if yM < y, then y ≥ yM + h. And since

yM ≥ ym + k ≥ 2k, we end up with y ≥ h + 2k. However, by hypothesis we know that y < 3h − k, a contra-
diction since 3h − k ≤ h + 2k, because we supposed h ≤ 3k

2
. Thus we conclude that in all the cases, we have

ym < y < yM . Now, as in the previous proof, let us consider x1 and x2 (see Figure 4), and show that, under the
hypothesis λ < 3h, none of the cases x1 < x2 and x1 > x2 can occur.

Case 1: x1 < x2. This implies x1 ≥ k, as x1 is connected by a 2-length path to node 0 (via x). If x1 < x,
then x ≥ x1 + h ≥ h + k, that is a contradiction as x < 3h − 2k ≤ h + k under the hypothesis h ≤ 3

2
k. Hence,

x < x1 < x2. It follows that x1 ≥ x + h ≥ 2h and x2 ≥ x1 + k ≥ 2h + k. Let us consider now y1 and y2.
Case 1.1: y1 < y2. Then we know that y1 < y < y2. Note that y1 < x2 as x2 ≥ 2h + k and y1 ≤ y − h ≤

y2 − 2h < 3h− 2h = h. Now, let us consider α, common neighbor of y1 and x2.

• y1 < x2 < α. The contradiction comes from the inequality α ≥ x2 + h ≥ 3h + k.

• α < y1 < x2. Then y1 ≥ α + h ≥ h, y ≥ y1 + h ≥ 2h and y2 ≥ y + h ≥ 3h, a contradiction.

• y1 < α < x2. Since we have y1 ≥ k, this implies α ≥ y1 + h ≥ h + k and α ≤ x2 − h < 2h. It is
easy to see that the same bounds hold also for y. Hence y and α both lie in the interval [h + k; 2h[, of width
w < h− k, that is w ≤ k. The contradiction comes from the fact that α and y being connected by a 2-length
path, they must lie at least k away from each other.

Case 1.2: y1 > y2. Thus, we know that y1 > y > y2. We know that x2 and y1 must be at least k away from
each other. Moreover, 2h+ k ≤ x2 < 3h and 2h+ k ≤ y1 < 3h. Hence, both x2 and y1 lie in an interval of width
w < h − k. Since we supposed h ≤ 3k

2
, we conclude w < k, a contradiction.

Case 2: x1 > x2. We can easily see that in that case we must have x1 > x2 > x. Indeed, x2 ≥ k, since it
is connected by a 2-length path to node 0. Hence, if x > x2, then x ≥ h+k. However, we know that x < 3h−2k,
a contradiction since h ≤ 3k

2
. Hence we conclude that x1 > x2 > x, which implies x2 ≥ x + h ≥ 2h and

x1 ≥ x2 + k ≥ 2h + k. Now let us consider y1 and y2.
Case 2.1: y1 > y2. Let us then consider α, the common neighbor of y1 and x2, and let us look at its relative

position compared to x and y. There are three possible cases.

• α > y > x. We recall that we are in the case x1 > x2 > x, that is x2 ≥ x + h ≥ 2h. If α > x2

then α ≥ x2 + h ≥ 3h, a contradiction to the hypothesis λ < 3h. Now, if α < x2, α ≤ x2 − h. Since
x2 ≤ x1 − k < 3h − k, we conclude α ≤ 2h − k. But y ≥ h + k and α ≥ y + k, that is α ≥ h + 2k. This
is a contradiction since 2h− k ≤ h + 2k, by the hypothesis that h ≤ 3k

2
.

• y > α > x. We then conclude that α ≤ y − k < 3h− 2k. On the other hand, we have α ≥ x + k ≥ h + k.
This is a contradiction since h + k ≥ 3h − 2k due to the fact that we supposed h ≤ 3k

2
.
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• y > x > α. In that case, if α < y1, then y1 ≥ α + h ≥ h, which implies y ≥ 2h and y2 ≥ 3h, a
contradiction to the hypothesis λ < 3h. Now, if α > y1, then α ≥ h, which in turns means that x ≥ h + k

and y ≥ h + 2k. However, we know that y < 3h− k, a contradiction since 3h− k ≤ h + 2k due to the fact
that we supposed h ≤ 3k

2
.

Case 2.2: y1 > y2. Here, we consider the three nodes z, z1 and z2. We first show that if zm = min{z1, z2} and
zM = max{z1, z2}, then zm < zM < z. Indeed, if zM > z then zM ≥ z + h, and since we know z ≥ h + 2k,
we conclude zM ≥ 2h + 2k, a contradiction to the fact that λ < 3h since 2h + 2k ≥ 3h. Now let us look at the
relative positions of z1 and z2. There are two cases to consider.

• z1 > z2. In that case, we have z > z1 > z2. Now let us look at β, common neighbor of z1 and y2, and let
us consider the relative positions of β and y.

– β < y. First, we note that β < z1. Indeed, z2 ≥ k (it is connected by a 2-length path to node 0), thus
z1 ≥ 2k. However, β < y by hypothesis, hence β ≤ y−k, that is β < 2h−k. Moreover, 2h−k ≤ 2k

since we are in the case h ≤ 3k
2

, and thus we conclude that β < z1. This implies β ≤ z1 − h, that is
β ≤ z − 2h ; and since z ≤ λ < 3h, we get β < h. On the other hand, y2 < y, thus y2 ≤ y − h. But
since y < 2h, we then have y2 < h. Hence, both β and y2 lie in the interval [0; h[. However, they are
neighbors and thus should have labels that are at least h away, a contradiction.

– β > y. Then we have β ≥ y+k, that is β ≥ h+2k. However, we know that z ≥ h+2k as well. Thus,
β and z lie in the interval [h + 2k; λ[, where λ < 3h by hypothesis. Thus the width of this interval w

satisfies w < 2h−2k, and thus w < k because we supposed h ≤ 3k
2

. However, β and z are neighbors,
and thus should have labels at least differing by h, a contradiction with the fact that w < h.

• z2 > z1. In that case, we know that z > z2 > z1. In particular, this means that z2 < 2h, and z1 < 2h − k.
However, z1 ≥ k since it is connected by a 2-length path to node 0. We also have y ≤ z − h < 2h, and thus
y2 ≤ y − h < h ; and since h ≥ k, we conclude that y2 ≤ 2h − k. Moreover, y2 ≥ k since it is connected
by a 2-length path to node 0. Hence, both z1 and y2 lie in the interval [0; 2h − k[, of width w < 2h − 2k,
that is w < k since we supposed h ≤ 3k

2
. However, z1 and y2 are connected by a 2-length path, and thus

should have labels at least differing from k, a contradiction.

Altogether, we see that every possible case leads to a contradiction. This proves that the initial assumption,
λ < 3h, is false, and consequently the proposition is proved. �

Proposition 6 λh,k(G3) ≥ h + 3k when 3

2
k ≤ h ≤ 2k.

Proof : Consider an optimal L(h, k)-labeling of G3 with span λ. By contradiction, suppose λ < h + 3k. Let us
consider a node labeled 0, and let x, y, and z be its 3 neighbors. Without loss of generality, suppose x < y < z. In
view of the L(h, k)-constraints, we must have x ≥ h, y ≥ x + k ≥ h + k, and z ≥ y + k ≥ h + 2k. Furthermore,
for the hypothesis λ < h + 3k, z < h + 3k, hence y ≤ z − k < h + 2k, and x ≤ y − k < h + k. Let x1 and x2,
y1 and y2, z1 and z2 be the not 0 neighbors of x, y, and z, respectively (see Figure 4).
Let us first prove the following, which will be useful in the rest of the proof: if ym = min{y1, y2} and yM =
max{y1, y2}, then ym < y < yM . Indeed, if y < ym < yM , we have ym ≥ y + h ≥ 2h + k, and
yM ≥ ym + k ≥ 2h + 2k. However, this contradicts the fact that λ < h + 3k, because 2h + 2k ≥ h + 3k

(since we supposed h ≥ 3k
2

). Now suppose ym < yM < y. Then ym ≥ k, because it is connected by a 2-length
path to node 0. Thus yM ≥ ym + k ≥ 2k, and y ≥ yM + h ≥ h + 2k, which contradicts the fact that y < h + 2k.
Altogether, we conclude that the only possible case is ym < y < yM (1).
In the following we show that, under the hypothesis λ < h + 3k, both casesx1 < x2 and x1 > x2 lead to a
contradiction, which will prove the statement.

Case 1: x1 < x2. This implies x1 ≥ k, as x1 is connected by a 2-length path to node 0 (via x) and x2 ≥
x1 + k ≥ 2k. If x1 < x, then x ≥ x1 + h ≥ k + h, that is a contradiction as x < k. Hence, we have x < x1 < x2.
It follows that x1 ≥ x+h ≥ 2h and x2 ≥ x1+k ≥ 2h+k. Moreover, x1 ≤ x2−k < h+2k and x ≤ x1−h < 2k.
Let us now consider y1 and y2.
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Case 1.1: y1 < y2. By (1) above, we have y1 < y < y2. Let us now consider α (common neighbor of y1 and
x2), and let us study its relative position compared to x and y (we recall that x < y by hypothesis).

• α > y > x. Hence we have α ≥ y + k ≥ h+2k. But x2 ≥ 2h+h ≥ h+2k as well. Hence, both α and x2

lie in the interval [h + 2k; h + 3k[, of width w < k ≤ h. However, x2 and α are neighbors, thus they must
be at least h away, a contradiction.

• y > α > x. In that case, α ≤ y − k < 2k. But we also have α ≥ x + k ≥ h + k, a contradiction.

• y > x > α. Since x < 2k, we conclude that α ≤ x − k < k. However, we know y1 ≥ k (because it is
connected by a 2-length path to node 0). Thus α < y1, hence y1 ≥ α + h ≥ h. But we know y1 < y < y2,
thus y1 ≤ y − h, and y ≤ y2 − h < 3k, thus y1 < 3k − h. But we cannot have y1 ≥ h and y1 < 3k − h,
since h ≥ 3k

2
.

Case 1.2: y2 < y1. By (1) above, we have y2 < y < y1. Hence y1 ≥ y + h ≥ 2h + k. We also know
that x2 ≥ 2h + k, since x < x1 < x2. Thus y1 and x2 share the same interval [2h + k; h + 3k[, of width
w < 2k − h ≤ k. But y1 and x2 are connected by a 2-length path, and thus must be at least k away, which is
impossible.

Hence, at this point we conclude that necessarily x1 > x2. Thus let us consider this case.

Case 2: x2 < x1. In that case, it is easily seen that actually x1 > x2 > x, since x > x2 would imply x ≥ x2 + h ;
and since x2 ≥ k (it is connected by a 2-length path to node 0), we would have x ≥ h + k, a contradiction to the
fact that x < h + k. Now let us look again at the relative positions of y1 and y2.

Case 2.1: y1 < y2. By (1) above, we have y1 < y < y2. This implies that y ≤ y2 − h < 3k. And since we
know by hypothesis that x < y, we conclude that x ≤ y − k < 2k.

• α > y > x. Then α ≤ x − k < k. However, y1 ≥ k (it is connected by a 2-length path to node 0). Thus
y1 > α, which means y1 ≥ α + h ≥ h. But we know that y1 < y, that is y1 ≤ y − h < 3k − h. This is a
contradiction since h ≥ 3k − h by hypothesis.

• y > α > x. Then α ≥ x + k ≥ h + k, and α ≤ y − k < 2k. This is a contradiction since h + k ≥ 2k by
hypothesis.

• y > x > α. Then α ≥ y + k ≥ h + 2k. However, we know x2 < x1, that is x2 ≤ x1 − k < h + 2k, hence
we conclude α > x2. Thus α ≥ x2 + h, and since x2 > x we have x2 ≥ x + h ≥ 2h, we conclude α ≥ 3h,
a contradiction to the fact that λ < h + 3k, since we supposed h ≥ 3k

2
.

Case 2.2: y1 > y2. By (1) above, we have y2 < y < y1. Let us now look at the relative positions of z, z1 and
z2. We first note that if zm = min{z1, z2} and zM = max{z1, z2}, then zm < zM < z. Indeed, if zM > z then
zM ≥ z + h, and since we know z ≥ h + 2k, we conclude zM ≥ h + 3k, a contradiction.

• z1 > z2. Hence z > z1 > z2, by the argument above. Let us derive here some inequalities that will be
useful in the following. Since z < h + 3k and z1 ≤ z − h, we conclude z1 < 3k. Moreover, we know that
z2 ≥ k and z1 > z2, thus we conclude z1 ≥ z2 + k ≥ 2k. Finally, we recall that h + 2k ≤ z < h + 3k.
Now let us look at the relative positions of β and y.

– β < y. Then β ≤ y − k < 2k. Since z1 ≥ 2k, we conclude β < z1. Thus β ≤ z1 − h ≤ 3k − h. We
also know that y2 ≤ 3k − h because y2 < y ≤ y − h, and because y < 3k. Hence, both β and y2 are
contained in the interval [0; 3k − h[, of width w < 3k − h. But 3k − h ≤ h by hypothesis, and since
β and y2 must be at least h away, this is impossible.

– β > y. Then β ≥ y + k ≥ h + 2k. This implies that both β and z lie in the interval [h + 2k; h + 3k[,
of width w < k. However, β and z must be at least k away from each other, a contradiction.

• z2 > z1. Hence z > z2 > z1. In particular, we have k ≤ z1 < 2k. But we also know that k ≤ y2 <

3k − h ≤ 2k. Thus y2 and z1 both lie in the interval [k; 2k[, of width w < k. But they must be at least k

away, a contradiction.
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Altogether, we have shown that every possible case leads to a contradiction. This proves that the initial as-
sumption, λ < h + 3k, is false. This proves the proposition. �

4 Regular Grids of Degree 4

4.1 Upper Bounds

Proposition 7 λh,k(G4) ≤ h + 3k when h ≤ k
2

.

Proof : Consider the L(1, 2)-labeling depicted in Figure 5(a). This labeling has span 7. If we now substitute labels
0, h, k, h+ k, 2k, h+ 2k, 3k, h+ 3k to labels 0, 1, . . . , 7, the new labeling we obtain is an L(h, k)-labeling of G4.
Indeed, it is easy to see that when h ≤ k

2
, each pair of consecutive labels differ by at least h, while each other pair

of distinct labels differ by at least k. Moreover, the largest label used is h + 3k, hence the result. �
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(a) (b) (c)

Figure 5: L(h, k)-labeling of G4: (a) L(1, 2) ; (b) L(1, 1) ; (c) L(3, 2)

Proposition 8 λh,k(G4) ≤ min {7h, 4k} when k
2
≤ h ≤ k.

Proof : By Lemma 4, since k
2
≤ h and since there exists an L(1, 2)-labeling of G4 that is of span 7 (as shown in

Figure 5(a)), we know there exists an L(h, k)-labeling of G4 of span 7h.
Analogously, since h ≤ k, we obtain an L(h, k)-labeling of span 4k by Lemma 3 ; indeed, there exists an L(1, 1)-
labeling of G4 that is of span 4 (as shown in Figure 5(b)). �

Proposition 9 λh,k(G4) ≤ 3h + k when 3

2
k ≤ h ≤ 5

3
k.

Proof : Consider the L(3, 2)-labeling of G4 depicted in Figure 5(c). This labeling has span 11. If we now substitute
labels 0, h− k, k, h, 2h− k, h + k, 2h, 3h− k, 2h + k, 3h, 4h− k, 3h + k to labels 0, 1, . . . , 11, the new labeling
we obtain is an L(h, k)-labeling of G4. By construction, any pair of labels that are at least 3 away in the list differ
by at least h, while any pair of labels that is at least 2 away in the list differ by at least k, because we supposed
3

2
k ≤ h. Moreover, the largest label used is 3h + k, hence the result. �

Proposition 10 λh,k(G4) ≤
11

2
k when 11

8
k ≤ h ≤ 3

2
k.

Proof : It is known that λh,k(G4) ≤ 4h when h ≥ k. Since λh,k is a non decreasing function, Proposition 9
implies that λh,k(G4) ≤

11

2
k when 11

8
k ≤ h ≤ 3

2
k. �

4.2 Lower Bounds

Proposition 11 λh,k(G4) ≥ h + 3k when h ≤ k.

Proof : This bound directly comes from Lemma 1. �

upper4.eps
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5 Regular Grids of Degree 6

Proposition 12 λh,k(G6) = 6k when h ≤ k.

Proof : The upper bound is proved observing that since h ≤ k, we obtain an L(h, k)-labeling of span 6k by
Lemma 3 ; indeed, there exists an L(1, 1)-labeling of G6 of span 6, as shown in Figure 6. The lower bound
directly comes from Lemma 2. �

0 1 2 3 4

3 4 5 62

6 0 154

6

1

0 1 2 3

2 3 4 5

Figure 6: An L(1, 1)-labeling of G6 of span 6

6 Regular Grids of Degree 8

6.1 Upper Bounds

Proposition 13 λh,k(G8) ≤ 8k when h ≤ k.

Proof : Since h ≤ k, we obtain an L(h, k)-labeling of span 8k by Lemma 3 ; indeed, there exists an L(1, 1)-
labeling of G8 of span 8 (as shown in Figure 7(a)). �

(a)
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3 10 13 1 4 7

2 5 8 11 14

9 3012 6

1 4 7 10 13

8 11 14 2 9

8 10 1 3 5

2 4 6 8 10

7 9 0 2 4

3 5 7 9

16

1

8 10 3

(b) (c)

Figure 7: L(h, k)-labeling of G8: (a) L(1, 1) ; (b) L(2, 1) ; (c) L(3, 1)

Proposition 14 λh,k(G8) ≤ min {8h, 10k} when k ≤ h ≤ 2k.

Proof : Once again we exploit the L(1, 1)-labeling of G8 shown in Figure 7(a). If we substitute 0, h, 2h, . . .8h to
labels 0, 1, . . . , 8, the new labeling we obtain is an L(h, k)-labeling of G8. Indeed, it is easy to see that each pair
of consecutive labels differ by at least h, and thus by at least k since k ≤ h. Moreover, the largest label used is 8h,
hence the result.

The upper bound of 10k comes from the L(2, 1)-labeling of G8 shown in Figure 7(b). If we substitute
0, k, 2k, . . .10k to labels 0, 1, . . . , 10, the new labeling we obtain is an L(h, k)-labeling of G8. Indeed, it is
easy to see that when k ≤ h ≤ 2k, each pair of non consecutive labels differ by at least 2k ≥ h, while any pair of
distinct labels differ by at least k. Moreover, the largest label used is 10k, hence the result. �

Proposition 15 λh,k(G8) ≤ min {5h, 14k} when 2k ≤ h ≤ 3k.

upper6.eps
upper8.eps
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Proof : Consider the L(2, 1)-labeling described in Figure 7(b). This labeling has span 10. If we now substitute
0, k, h, h+k, 2h, 2h+k, 3h, 3h+k, 4h, 4h+k, 5h to labels 0, 1, . . . , 10, the new labeling we obtain is an L(h, k)-
labeling of G8. Indeed, it is easy to see that each pair of non consecutive labels differ by at least h. On the other
hand, since 2k ≤ h, any pair of distinct labels differ by at least k. Moreover, the largest label used is 5h.

Analogously, the other bound is given using an L(3, 1)-labeling, such as the one shown in Figure 7(c). This
labeling is of span 14. If we now substitute 0, k, 2k, . . . , 14k to labels 0, 1, . . . , 14, the new labeling we obtain is
an L(h, k)-labeling of G8. Indeed, when h ≤ 3k, each pair of labels that are at least 3 away in the list differ by at
least 3k ≥ h, while any pair of distinct labels differ by at least k. Moreover, the largest label used is 14k, hence
the result. �

Proposition 16 λh,k(G8) ≤ 4h + 2k when 3k ≤ h ≤ 6k.

Proof : Starting from the L(3, 1)-labeling used in the previous proof (cf. also Figure 7(c)) of span 14, we substitute
labels 0, k, 2k, h, h + k, h + 2k, 2h, 2h + k, . . . , 4h, 4h + k, 4h + 2k to labels 0, 1, . . . , 14. This new labeling is
also an L(h, k)-labeling of G8. Indeed, each pair of labels that are at least 3 away in the list differ by at least h by
construction, while any pair of distinct labels differ by at least k because h ≥ 3k. Moreover, the largest label used
is 4h + 2k, hence the result. �

Proposition 17 λh,k(G8) ≤ 3h + 8k when h ≥ 6k.

Proof : Consider the labeling depicted in Figure 8(a). This labeling is an L(1, 1)-labeling of span 11, with the
additional property that the only consecutive labels that can appear on neighboring nodes are of the form 3i+2 and
3(i + 1). We now replace any label l of this labeling by a new label, thanks to the following rule (cf. Figure8 (b)):
any label of the form l = 3i+ j (i = 0, 1, 2, 3, j = 0, 1, 2) is replaced by l′ = (h+2k)i+ jk. In this new labeling,
any pair of labels of the form 3i + 2 and 3(i + 1) are now separated by h. Moreover, the labeling we started from
is an L(1, 1)-labeling, and any two differing labels in the new labeling are at least k away. Thus, this new labeling
is an L(h, k)-labeling, of span 3h + 8k. �

0 3 6 9 0

7
10 1 4 7

2

6

1
4 7 10

1

9 0 3 6

25 8 11

0
 0h+2k 2h+4k 3h+6k

2h+5k

3h+6k 0

k k

k h+3k

h+3k

2k 2k

3h+7k

3h+7k

2h+6kh+4k 3h+8k

h+2k
2h+4k

2h+5k 2h+5k

2h+4k

Figure 8: (a) An L(1, 1)-labeling of G8 ; (b) the L(h, k)-labeling we derive

6.2 Lower Bounds

Proposition 18 λh,k(G8) ≥ 8k when h ≤ k.

Proof : This bound directly comes from Lemma 2. �

Proposition 19 λh,k(G8) ≥ 2h + 6k when k ≤ h ≤ 3k.

Proof : Consider any optimal L(h, k)-labeling of G8. Let λ be the greatest label. Let us consider a label x which
is neither 0 nor λ (note that there must exist one since G8 contains K3 as an induced subgraph), and consider its 8
neighbors, say v1 . . . v8. Then no other label than x can be used in the interval ]x−h; x + h[ for the vis. However,
all the vis are pairwise connected by 2-length paths, so they must be at least k away from each other. If there are α

(resp. β) labels for the vis in the interval [0; x−h] (resp. [x+h; λ]), then we must have (x−h)−(α−1)k ≥ 0 and
λ ≥ (x + h) + (β − 1)k, with α + β = 8. Since λh,k(G8) = λ, we conclude that λh,k(G8) ≥ 2h + (α + β − 2)k,
hence the result. �

another8.eps
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Proposition 20 λh,k(G8) ≥ 3h + 3k when h ≥ 3k.

Proof : First, observe that we have λh,k(G8) ≥ 3h + k. Indeed, consider an optimal L(h, k)-labeling of G8, a
node labeled 0, and the set of its neighbors (see Figure 9). Wlog, suppose min{a, b, c} ≤ min{e, f, g}. Since a,
b and c are neighbors of 0, then we have min{a, b, c} ≥ h. And since any node among f , g and h are connected
by a 2-length path to any node among a, b and c, we conclude that min{e, f, g} ≥ h + k. Finally, since e, f and g

induce a K3, we have max{e, f, g} ≥ 3h + k.

0 cg

a bh

e df

Figure 9: Neighborhood of a node labeled 0 in G8.

However, we can derive an even better lower bound, taking into account nodes d and h as well. The result
comes from an exhaustive search on the grid restricted to those nine nodes, run by computer (code available at the
following URL:
http://www.sciences.univ-nantes.fr/info/perso/permanents/fertin/Lhk/Lhk.c). �

7 Concluding Remarks

In this paper, we have studied the L(h, k)-labeling problem on regular grids of degree 3, 4, 6 and 8. We observe
that the definition we used imposes a condition on labels of nodes connected by a 2-length path instead of using the
concept of distance 2, that is very common in the literature. The present formulation (supported by applications)
imposes a triangle to be always labeled with three colors at least max{h, k} apart from each other, although its
nodes are at mutual distance 1 ; when h ≥ k, the two definitions coincide.

An open problem arising from this paper consists in closing all the gaps between upper and lower bounds (grey
zones in Figure 2).
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For any non negative real values h and k, an L(h, k)-labeling of a graph G = (V, E) is a function L : V → R
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2, rue de la Houssinière

B.P. 92208 — F-44322 NANTES CEDEX 3


	Introduction
	Preliminaries
	Regular Grids of Degree 3
	Upper Bounds
	Lower Bounds

	Regular Grids of Degree 4
	Upper Bounds
	Lower Bounds

	Regular Grids of Degree 6
	Regular Grids of Degree 8
	Upper Bounds
	Lower Bounds

	Concluding Remarks

