New bounds for the $L(h, k)$ number of regular grids

Tiziana Calamoneri and Saverio Caminiti
Dipartimento di Informatica, Università degli Studi di Roma 'La Sapienza', Via Salaria 113, Roma 00198, Italy
E-mail: calamo@di.uniroma1.it E-mail: caminiti@di.uniroma1.it
Guillaume Fertin*
Laboratoire d'Informatique de Nantes-Atlantique, FRE CNRS 2729, Université de Nantes, 2 rue de la Houssinière, BP 92208-44322
Nantes Cedex 3, France
E-mail: fertin@lina.univ-nantes.fr
*Corresponding author

Abstract

For any non-negative real values h and k, an $L(h, k)$-labelling of a graph $G=(V, E)$ is a function $L: V \rightarrow \mathbb{R}$ such that $|L(u)-L(v)| \geq h$ if $(u, v) \in E$ and $|L(u)-L(v)| \geq k$ if there exists $w \in V$ such that $(u, w) \in E$ and $(w, v) \in E$. The span of an $L(h, k)$-labelling is the difference between the largest and the smallest value of L. We denote by $\lambda_{h, k}(G)$ the smallest real λ such that graph G has an $L(h, k)$-labelling of span λ. The aim of the $L(h, k)$-labelling problem is to satisfy the distance constraints using the minimum span. In this paper, we study the $L(h, k)$-labelling problem on regular grids of degree 3, 4 and 6 for those values of h and k whose $\lambda_{h, k}$ is either not known or not tight. We also initiate the study of the problem for grids of degree 8 . For all considered grids, in some cases we provide exact results, while in the other ones we give very close upper and lower bounds.

Keywords: $L(h, k)$-labelling; triangular grids; hexagonal grids; squared grids; octagonal grids.
Reference to this paper should be made as follows: Calamoneri, T., Caminiti, S. and Fertin, G. (2006) 'New bounds for the $L(h, k)$ number of regular grids', Int. J. Mobile Network Design and Innovation, Vol. 1, No. 2, pp.92-101.

Biographical notes: Tiziana Calamoneri is an Assistant Professor in the Department of Computer Science, University of Rome 'La Sapienza'. She received her PhD in Computer Science 1997, at University of Rome 'La Sapienza', Italy. Her research interests include parallel and sequential graph algorithms, channel assignment in wireless networks, two- and three-dimensional graph drawing, layout of interconnection networks topologies and optimal routing schemes.

Saverio Caminiti is a PhD in the Department of Computer Science, University of Rome 'La Sapienza', Italy. He received his Master Degree in Computer Science in 2003, at University of Rome 'La Sapienza'. His research interests include compact representation of data structures both in sequential and parallel settings, graph algorithms and graph colouring.

Guillaume Fertin is a Professor at LINA (Laboratoire d'Informatique de Nantes-Atlantique), University of Nantes, France. He completed his PhD from University of Bordeaux, France, in 1999. Since 1996, he has been researching in optimisation, discrete mathematics and algorithmics, with two main applications fields: interconnection networks and bioinformatics.

1 Introduction

In this paper, we are interested in the frequency assignment problem, which arises in wireless communication systems. More precisely, we focus here on minimising the number of frequencies used in the framework where radio transmitters that are geographically close may interfere if they are assigned close frequencies. This problem was originally introduced in Metzger (1970) and was later developed in Hale (1980). It is equivalent to a graph labelling problem, in which the nodes represent the transmitters, and any edge joins two
transmitters that are sufficiently close to potentially interfere. The aim here is to label the nodes of the graph in such a way that:

- any two neighbours (transmitters that are very close) are assigned labels (frequencies) that differ by a parameter at least h
- any two nodes at distance 2 (transmitters that are close) are assigned labels (frequencies) that differ by a parameter at least k
- the gap between the smallest and the greatest value for the labels is minimised.

This problem is usually referred to as the $L(h, k)$-labelling problem. More formally, for any non-negative real values h and k, an $L(h, k)$-labelling of a graph $G=(V, E)$ is a function $L: V \rightarrow \mathbb{R}$ such that $|L(u)-L(v)| \geq h$ if $(u, v) \in E$ and $|L(u)-L(v)| \geq k$ if there exists $w \in V$ such that $(u, w) \in E$ and $(w, v) \in E$. The span of an $L(h, k)$-labelling is the difference between the largest and the smallest value of L. Hence, it is not restrictive to assume 0 as the smallest value of L, something which will be assumed throughout this paper. We denote by $\lambda_{h, k}(G)$ the smallest real λ such that graph G has an $L(h, k)$-labelling of span λ; we call $L(h, k)$ number of G this value. The aim of the $L(h, k)$-labelling problem is to satisfy the distance constraints using the minimum span.

Since its definition (Griggs and Yeh, 1992) as a specialisation of the frequency assignment problem in wireless networks (Hale, 1980; Metzger, 1970), the $L(h, k)$ labelling problem has been intensively studied. Note that the $L(h, k)$-labelling problem is a generalisation of some standard graph colourings, such as the usual (or proper) colouring when $h=1$ and $k=0$, or the 2-distance colouring (equivalent to the proper colouring of the square of the graph) when $h=k=1$. We also note that the case $h=2$ and $k=1$ (or more generally $h=2 k$), called radio-colouring or λ-colouring, is the most widely studied (see for instance Calamoneri and Petreschi, 2004; Chang and Kuo, 1996; Jha, 2000; Jha et al., 2000).

The decision version of the $L(h, k)$-labelling problem is NP-complete even for small values of h and k Bertossi and Bonuccelli (1995). This motivates the search for optimal solutions on particular classes of graphs (see for instance (Bertossi et al., 2003; Bodlaender et al., 2000; Calamoneri, 2004; Chang et al., 2002; Griggs and Yeh, 1992; Korže and Vesel, 2005; Molloy and Salavatipour, 2002; Sakai, 1994; Whittlesey et al., 1995) for a complete survey). Concerning the more specific grid topologies, a large number of papers has been published on the subject. For instance, (Makansi, 1987) provided an optimal $L(0,1)$-labelling for squared grids, that is regular grids of degree 4 (see Figure $1(\mathrm{~b})$). Battiti et al. (1999) found an optimal $L(1,1)$-labelling for hexagonal, squared and triangular grids (that is, respectively, regular grids of degree 3, 4 and 6, see Figure 1(a), (b) and (c)). The $L(2,1)$-labelling problem of regular grids of degree Δ, denoted G_{Δ}, has been studied independently by different authors Bertossi et al. (2003) and Calamoneri and Petreschi (2004) proving that $\lambda_{2,1}\left(G_{\Delta}\right)=\Delta+2$ by means of optimal colouring algorithms. More recently, (Fertin and Raspaud, to appear) determined several bounds on $\lambda_{h, k}$ for d-dimensional squared grids.

In Calamoneri (2003) some values of $\lambda_{h, k}$ for regular grids of degree 3,4 and 6 are exactly computed, while in some intervals different upper and lower bounds are given; moreover, the case $h<k$ is not considered at all. Our goal in this paper is to improve some of those bounds, as well as to consider the case $h<k$. Moreover, we extend this study to a new class of graphs, namely grids of degree 8 . Grids of degree 8 can be defined as the strong product of two infinite paths (Korže and Vesel, 2005) (see also Figure 1
for a graphical representation of the four types of grids we study in this paper). Grids of degree 8 can also be seen as a natural extension of grids of degree 6 , who themselves are an extension of grids of degree 4 (see Figure 1(a), (b) and (c)).

Figure 1 Grids studied in this paper: (a) G_{3}, (b) G_{4}, (c) G_{6} and (d) G_{8}

Before going further, we observe that when $h<k$ (a case that we will consider in this paper), there are actually two ways to define the $L(h, k)$-labelling problem:

- The first one is the distance-based model, which asks that two neighbours in the graph differ by at least h, while two nodes at distance 2 differ by at least k. This means that when two nodes are at the same time connected by a 1-path and a 2 -path (hence when there is a cycle of length 3 in the graph), we consider the distance to be 1 , and thus impose only the condition on h.
- The second one is the max-based model, which asks that two nodes connected at the same time by a 1-path and a 2-path differ by at least $\max \{h, k\}$; in that sense, this model is more restrictive than the distance-based model. In particular, this model imposes that any cycle of length 3 to be always labelled with three labels at least $\max \{h, k\}$ apart from each other.

Note that when $h \geq k$, the two definitions coincide, since $\max \{h, k\}=h$. The same occurs when the considered graph has no triangles, which is the case for G_{3} and G_{4}. In this paper, in the study of G_{6} and G_{8}, when $h<k$, we chose to consider the max-based problem.

As mentioned above, we study in this paper the $L(h, k)$ labelling problem on regular grids of degree 3, 4, and 6 for those values of h and k whose $\lambda_{h, k}$ is either not known or not tight, and we also study the $L(h, k)$ labelling problem in a new class of graphs, namely grids of degree 8 . For all considered grids, in some cases we provide exact results, or we give close upper and lower bounds (see Figure 9 at the end of the paper for a summary of results).

The paper is organised as follows: we first give in Section 2 a few technical lemmas that will help to obtain general lower and upper bounds for the considered types of graphs, while in Sections 3, 4, 5 and 6, we improve bounds on the $L(h, k)$ number of grids for degree $3,4,6$ and 8 , respectively.

Note finally that if no confusion arises, we will speak interchangeably, in the rest of this paper, of a node and its label.

2 Preliminaries

In this section, we show four different lemmas, which will prove to be useful in the rest of the paper. Theorem 1 and Lemma 1 are concerned with lower bounds for the $L(h, k)$ number, while Lemmas 2 and 3 deal with upper bounds.

Theorem 1: $\lambda_{h, k}\left(G_{\Delta}\right) \geq h+(\Delta-1) k$ when $h \leq k$, for $\Delta=3,4$.

Proof: Consider an optimal $L(h, k)$-labelling of $G_{\Delta}, h \leq k$, $\Delta=3,4$ and let x be a node labelled 0 . The smallest label among those of its neighbours must be at least h. Furthermore, the Δ neighbours of x are all connected by a 2-length path and hence their labels must differ by at least k from each other. It follows that the greatest label must be at least $h+(\Delta-1) k$.

Lemma 1: $\lambda_{h, k}\left(G_{\Delta}\right) \geq \Delta k$ when $h \leq k$, for $\Delta=6,8$.
Proof: Observe that G_{6} and G_{8} are characterised by the property that each pair of adjacent nodes is also connected by a 2-length path. This implies that, given an optimal $L(h, k)$-labelling of $G_{\Delta}, h \leq k, \Delta=6,8$, starting from a node x labelled 0 , the smallest label, among those of their neighbours must be at least k. With reasonings analogous to those of the previous proof, the claim follows.

Lemma 2: For any graph G and any $h \leq k, \lambda_{h, k}(G) \leq$ $k \lambda_{1,1}(G)$.

Proof: Consider an optimal $L(1,1)$-labelling, say \mathcal{L}, of G. Consider the labelling \mathcal{L}^{\prime} obtained from \mathcal{L} by substituting every label i with label $i k\left(i=0,1, \ldots, \lambda_{1,1}(G)\right)$. We claim that \mathcal{L}^{\prime} is an $L(h, k)$-labelling of G with span $k \lambda_{1,1}(G)$, provided $h \leq k$. Indeed, any two neighbours, which differ by at least 1 in \mathcal{L}, differ by at least $k \geq h$ in \mathcal{L}^{\prime}; moreover, any two nodes connected by a 2 -length path, which differ by at least 1 in \mathcal{L} differ by at least k in \mathcal{L}^{\prime}.

Lemma 3: For any graph G and any $h \geq k / 2, \lambda_{h, k}(G) \leq$ $h \lambda_{1,2}(G)$.

Proof: Analogously to the proof of Lemma 2, consider an $L(1,2)$ labelling, say \mathcal{L}, of G. Consider the labelling \mathcal{L}^{\prime} obtained from \mathcal{L} by substituting every label i with label $i h\left(i=0,1, \ldots, \lambda_{1,2}(G)\right)$. Since $h \geq k / 2, \mathcal{L}^{\prime}$ is an $L(h, k)$-labelling of G with span $h \lambda_{1,2}(G)$. Indeed, any two neighbours, which differ by at least 1 in \mathcal{L}, differ by at least h in \mathcal{L}^{\prime}; moreover, any two nodes connected by a 2 -length path, which differ by at least 2 in \mathcal{L} differ by at least $2 h \geq k$ in \mathcal{L}^{\prime}.

3 Regular grids of degree 3

3.1 Upper bounds for G_{3}

Proposition 1: $\lambda_{h, k}\left(G_{3}\right) \leq h+2 k$ when $h \leq k / 2$.
Proof: Consider an optimal $L(1,2)$-labelling of G_{3} over the set of labels $\{0,1, \ldots, 5\}$, whose general pattern is depicted
in Figure 2(a). The idea is to substitute h to $1, k$ to $2, h+k$ to $3,2 k$ to 4 , and $h+2 k$ to 5 . In that case, the labelling that is produced is a feasible $L(h, k)$-labelling. Indeed, each pair of consecutive labels differs by either h or $k-h$, but since we supposed $h \leq k / 2$, we have $k-h \geq h$ and thus any two consecutive labels differ by at least h. Similarly, any other pair of distinct labels differs by at least k. Moreover, the largest label used is $h+2 k$, hence the result.

Figure 2 General patterns for $L(h, k)$-labellings of G_{3} : (a) $L(1,2)$-labelling and (b) $L(1,1)$-labelling

Proposition 2: $\lambda_{h, k}\left(G_{3}\right) \leq \min \{5 h, 3 k\}$ when $k / 2 \leq h \leq k$.
Proof: By Lemma 2, since $k / 2 \leq h$ and since there exists an $L(1,2)$-labelling of G_{3} that is of span 5 (see for instance the general pattern shown in Figure 2(a)), we know there exists an $L(h, k)$-labelling of G_{3} of span $5 h$.

Analogously, since $h \leq k$, we obtain an $L(h, k)$-labelling of span $3 k$ by Lemma 2 ; indeed, there exists an $L(1,1)$ labelling of G_{3} that is of span 3 (whose general pattern is shown in Figure 2(b), see also Battiti et al., 1999).

3.2 Lower bounds for G_{3}

Proposition 3: $\lambda_{h, k}\left(G_{3}\right) \geq h+2 k$ when $h \leq k$.
Proof: This bound directly comes from Lemma 1.
Proposition 4: $\lambda_{h, k}\left(G_{3}\right) \geq 3 k$ when $2 k / 3 \leq h \leq k$.
Proof: Consider an optimal $L(h, k)$-labelling of G_{3}. Suppose, by contradiction, that $\lambda_{h, k}\left(G_{3}\right)<3 k$. Let us consider a node labelled 0 , and let x, y and z be its 3 neighbours. Without loss of generality, suppose $x<y<z$. In view of the $L(h, k)$ constraints, we must have $x \geq h, y \geq x+k \geq h+k$ and $z \geq y+k \geq h+2 k$. Furthermore, from the hypothesis $\lambda_{h, k}\left(G_{3}\right)<3 k$, we have that $z<3 k$, hence $y \leq z-k<2 k$ and $x \leq y-k<k$. Let x_{1} and x_{2}, y_{1} and y_{2}, z_{1} and z_{2} be the not 0 neighbours of x, y and z, respectively (see Figure 3).

Figure 3 Neighbourhood of a node labelled 0 in G_{3}

Let us first prove that if $y_{m}=\min \left\{y_{1}, y_{2}\right\}$ and $y_{M}=\max \left\{y_{1}, y_{2}\right\}$, then $y_{m}<y<y_{M}$. Indeed, if $y<y_{m}$, then $y_{m} \geq y+h \geq 2 h+k$, and consequently $y_{M} \geq 2 h+2 k$. However, $2 h+2 k \geq 3 k$ (because we supposed $h \geq 2 k / 3 \geq k / 2$), a contradiction to the fact that $\lambda<3 k$. On the other hand, if $y_{M}<y$, then $y \geq y_{M}+h$. And since $y_{M} \geq y_{m}+k \geq 2 k$, we end up with $y \geq h+2 k$. However, by hypothesis we know that $y<2 k$, a contradiction since $h \geq 0$. Thus we conclude that in all the cases, we have $y_{m}<y<y_{M}$.

Now, in order to prove the statement, we will show that under the hypothesis $\lambda_{h, k}\left(G_{3}\right)<3 k$, both cases $x_{1}<x_{2}$ and $x_{1}>x_{2}$ lead to a contradiction.

Case 1: $x_{1}<x_{2}$. In this case $x_{1} \geq k$, as x_{1} is connected by a 2-length path to node 0 (via x) and $x_{2} \geq x_{1}+k \geq 2 k$. If $x_{1}<x$, then $x \geq x_{1}+h \geq k+h$, a contradiction since $x<k$. Hence, $x<x_{1}<x_{2}$. It follows that $x_{1} \geq x+h \geq 2 h$ and $x_{2} \geq x_{1}+k \geq 2 h+k$. Let us now consider y_{1} and y_{2}.

Case 1.1: $y_{1}<y_{2}$. Hence we know that $y_{1}<y<y_{2}$. In such a case $y_{1} \geq k$ and $y_{1} \leq y-h<2 k-h$. Note that $y_{1}<x_{2}$ as $y_{1}<2 k-h$ and $x_{2} \geq 2 k$. Let us consider the common neighbour of x_{2} and y_{1}, α, and let us study the relative position of its label with respect to x_{2} and y_{1}.

- $\alpha<y_{1}<x_{2}$. Then $\alpha \leq y-k<k$: if $x<\alpha$ we have $\alpha \geq x+k \geq h+k$, a contradiction ; on the other hand, if $\alpha<x$ then $\alpha \leq x-k<0$, a contradiction too.
- $y_{1}<x_{2}<\alpha$. Then $x_{2} \leq \alpha-h<3 k-h$; from previous hypotheses we also have $x_{2} \geq 2 h+k$, and this leads to a contradiction as $3 k-h \leq 2 h+k$ when $h \geq 2 k / 3$.
- $y_{1}<\alpha<x_{2}$. We have again two cases. If $y_{1}<\alpha<y$ then $\alpha \leq y-k<k$ and $y_{1} \leq \alpha-h<k-h$ that is a contradiction as $y_{1} \geq k$. If $y_{1}<y<\alpha$ then $\alpha \leq x_{2}-h<3 k-h, y \leq \alpha-k<2 k-h$, and $y_{1} \leq y-h<2 k-2 h$ that is a contradiction as $y_{1} \geq k$ and $k \geq 2 k-2 h$ when $2 k / 3 \leq h \leq k$.

Case 1.2: $y_{1}>y_{2}$. Thus we have $y_{1}>y>y_{2}$. This implies that $y_{1} \geq y+h \geq 2 h+k$. Hence, y_{1} lies in the interval [$2 h+k ; 3 k]$. However, we also know that x_{2} lies in the interval [$2 h+k ; 3 k$]. Since this interval is of width $w<2 k-2 h$, we conclude that $w<k$ (because we supposed $h \geq 2 k / 3$ and hence $h \geq k / 2$). This leads to a contradiction because y_{1} and x_{2} must be at least k away from each other.

Case 2: $x_{1}>x_{2}$. With considerations analogous to those done for case $x_{1}<x_{2}$, we can derive $x<x_{2}<x_{1}$ and $2 h+k \leq x_{1}<3 k$ and $2 h \leq x_{2}<2 k$. Now, let us look at y_{1} and y_{2}.

Case 2.1: $y_{1}<y_{2}$. We thus have $y_{1}<y<y_{2}$. However, this leads to a contradiction. Indeed, $y_{1}>k$ as it is connected by a 2-length path to node 0 , then $x_{2} \geq y_{1}+k>2 k$.

Case 2.2: $y_{1}>y_{2}$. We then have $y_{2}<y<y_{1}$. This implies that $y_{1} \geq y+h \geq 2 h+k$ and hence $y_{1}>x_{2}$ as $x_{2}<2 k$. Now consider α, the common neighbour of x_{2} and y_{1}.

- $\quad x_{2}<y_{1}<\alpha$. Then $\alpha \geq y_{1}+h \geq 3 h+k \geq 3 k$, a contradiction since we supposed $\lambda<3 k$.
- $\alpha<x_{2}<y_{1}$. Then $\alpha \leq x_{2}-h<2 k-h$. If $\alpha>y$ then $\alpha \geq y+k \geq h+2 k$, a contradiction; if $\alpha<y$ then $\alpha \leq y-k \leq k$. However, we know that $x<k$; moreover, because $\alpha<k$ and α must lie at least k away from x, this leads to a contradiction.
- $x_{2}<\alpha<y_{1}$. Then $\alpha \leq y_{1}-h<3 k-h$. If $\alpha>y$ then $\alpha \geq y+k \geq h+2 k$ that is greater than $3 k-h$ under the hypothesis $h \geq 2 k / 3$, a contradiction; if $\alpha<y$ then $\alpha \leq y-k \leq k$ that again contradicts the fact that α must lie at least k away from x.

Altogether, we see that every possible case leads to a contradiction. This proves that the initial assumption, $\lambda<3 k$, is false, and consequently the proposition is proved.

Proposition 5: $\lambda_{h, k}\left(G_{3}\right) \geq 3 h$ when $k \leq h \leq 3 k / 2$.
Proof: The proof is analogous to the previous one,that is, by contradiction we assume that there exists a $L(h, k)$-labelling with span $\lambda<3 h$, we start from node labelled 0 , we look at its neighbours and prove that neither $x_{1}<x_{2}$ nor $x_{1}>x_{2}$ can occur. Wlog, let us assume $x<y<z$. Hence, $x \geq h$, $y \geq h+k$ and $z \geq h+2 k$. On the other hand, $z<3 h$, $y<3 h-k$ and $x<3 h-2 k$. Let x_{1} and x_{2}, y_{1} and y_{2}, z_{1} and z_{2} be the not 0 neighbours of x, y and z, respectively (see Figure 3).

We first prove that if $y_{m}=\min \left\{y_{1}, y_{2}\right\}$ and $y_{M}=$ $\max \left\{y_{1}, y_{2}\right\}$, then $y_{m}<y<y_{M}$. Indeed, if $y<y_{m}$, then $y_{m} \geq y+h \geq 2 h+k$, and consequently $y_{M} \geq 2 h+2 k$. However, $2 h+2 k \geq 3 h$ (because we supposed $h \leq 3 k / 2$), a contradiction to the fact that $\lambda<3 h$. On the other hand, if $y_{M}<y$, then $y \geq y_{M}+h$. And since $y_{M} \geq y_{m}+k \geq 2 k$, we end up with $y \geq h+2 k$. However, by hypothesis we know that $y<3 h-k$, a contradiction since $3 h-k \leq h+2 k$, because we supposed $h \leq 3 k / 2$. Thus we conclude that in all the cases, we have $y_{m}<y<y_{M}$. Now, as in the previous proof, let us consider x_{1} and x_{2} (see Figure 3), and show that, under the hypothesis $\lambda<3 h$, none of the cases $x_{1}<x_{2}$ and $x_{1}>x_{2}$ can occur.

Case 1: $x_{1}<x_{2}$. This implies $x_{1} \geq k$, as x_{1} is connected by a 2-length path to node $0(\operatorname{via} x)$. If $x_{1}<x$, then $x \geq x_{1}+h \geq$ $h+k$, that is a contradiction as $x<3 h-2 k \leq h+k$ under the hypothesis $h \leq 3 k / 2$. Hence, $x<x_{1}<x_{2}$. It follows that $x_{1} \geq x+h \geq 2 h$ and $x_{2} \geq x_{1}+k \geq 2 h+k$. Let us consider now y_{1} and y_{2}.

Case 1.1: $y_{1}<y_{2}$. Then we know that $y_{1}<y<y_{2}$. Note that $y_{1}<x_{2}$ as $x_{2} \geq 2 h+k$ and $y_{1} \leq y-h \leq y_{2}-2 h<$ $3 h-2 h=h$. Now, let us consider α, the common neighbour of y_{1} and x_{2}.

- $y_{1}<x_{2}<\alpha$. The contradiction comes from the inequality $\alpha \geq x_{2}+h \geq 3 h+k$.
- $\alpha<y_{1}<x_{2}$. Then $y_{1} \geq \alpha+h \geq h, y \geq y_{1}+h \geq 2 h$ and $y_{2} \geq y+h \geq 3 h$, a contradiction.
- $y_{1}<\alpha<x_{2}$. Since we have $y_{1} \geq k$, this implies $\alpha \geq y_{1}+h \geq h+k$ and $\alpha \leq x_{2}-h<2 h$. It is easy to see that the same bounds hold also for y. Hence y and α both lie in the interval [$h+k ; 2 h$], of width $w<h-k$, that is $w \leq k$. The contradiction comes from the fact that α and y being connected by a 2-length path, they must lie at least k away from each other.

Case 1.2: $y_{1}>y_{2}$. Thus, we know that $y_{1}>y>y_{2}$. We know that x_{2} and y_{1} must be at least k away from each other. Moreover, $2 h+k \leq x_{2}<3 h$ and $2 h+k \leq y_{1}<3 h$. Hence, both x_{2} and y_{1} lie in an interval of width $w<h-k$. Since we supposed $h \leq 3 k / 2$, we conclude $w<k$, a contradiction.

Case 2: $x_{1}>x_{2}$. We can easily see that in that case we must have $x_{1}>x_{2}>x$. Indeed, $x_{2} \geq k$, since it is connected by a 2 -length path to node 0 . Hence, if $x>x_{2}$, then $x \geq h+k$. However, we know that $x<3 h-2 k$, a contradiction since $h \leq 3 k / 2$. Hence we conclude that $x_{1}>x_{2}>x$, which implies $x_{2} \geq x+h \geq 2 h$ and $x_{1} \geq x_{2}+k \geq 2 h+k$. Now let us consider y_{1} and y_{2}.

Case 2.1: $y_{1}<y_{2}$. Let us then consider α, the common neighbour of y_{1} and x_{2}, and let us look at its relative position compared to x and y. There are three possible cases.

- $\alpha>y>x$. We recall that we are in the case
$x_{1}>x_{2}>x$, that is $x_{2} \geq x+h \geq 2 h$. If $\alpha>x_{2}$ then $\alpha \geq x_{2}+h \geq 3 h$, a contradiction to the hypothesis $\lambda<3 h$. Now, if $\alpha<x_{2}, \alpha \leq x_{2}-h$. Since $x_{2} \leq x_{1}-k<3 h-k$, we conclude $\alpha \leq 2 h-k$. But $y \geq h+k$ and $\alpha \geq y+k$, that is $\alpha \geq h+2 k$. This is a contradiction since $2 h-k \leq h+2 k$, by the hypothesis that $h \leq 3 k / 2$.
- $y>\alpha>x$. We then conclude that $\alpha \leq y-k<3 h-2 k$. On the other hand, we have $\alpha \geq x+k \geq h+k$. This is a contradiction since $h+k \geq 3 h-2 k$ due to the fact that we supposed $h \leq 3 k / 2$.
- $y>x>\alpha$. In that case, if $\alpha<y_{1}$, then $y_{1} \geq \alpha+h \geq h$, which implies $y \geq 2 h$ and $y_{2} \geq 3 h$, a contradiction to the hypothesis $\lambda<3 h$. Now, if $\alpha>y_{1}$, then $\alpha \geq h$, which in turns means that $x \geq h+k$ and $y \geq h+2 k$. However, we know that $y<3 h-k$, a contradiction since $3 h-k \leq h+2 k$ due to the fact that we supposed $h \leq 3 k / 2$.
Case 2.2: $y_{1}>y_{2}$. Here, we consider the three nodes z, z_{1} and z_{2}. We first show that if $z_{m}=\min \left\{z_{1}, z_{2}\right\}$ and $z_{M}=\max \left\{z_{1}, z_{2}\right\}$, then $z_{m}<z_{M}<z$. Indeed, if $z_{M}>z$ then $z_{M} \geq z+h$, and since we know $z \geq h+2 k$, we conclude $z_{M} \geq 2 h+2 k$, a contradiction to the fact that $\lambda<3 h$ since $2 h+2 k \geq 3 h$. Now let us look at the relative positions of z_{1} and z_{2}. There are two cases to consider:
- $z_{1}>z_{2}$. In that case, we have $z>z_{1}>z_{2}$. Now let us look at β, common neighbour of z_{1} and y_{2}, and let us consider the relative positions of β and y.
$-\quad \beta<y$. Firstly, we note that $\beta<z_{1}$. Indeed, $z_{2} \geq k$ (it is connected by a 2 -length path to node 0), thus $z_{1} \geq 2 k$. However, $\beta<y$ by hypothesis, hence $\beta \leq y-k$, that is $\beta<2 h-k$. Moreover, $2 h-k \leq 2 k$ since we are in the case $h \leq 3 k / 2$, and thus we conclude that $\beta<z_{1}$. This implies $\beta \leq z_{1}-h$, that is, $\beta \leq z-2 h$; and since $z \leq \lambda<3 h$, we get $\beta<h$. On the other hand, $y_{2}<y$, thus $y_{2} \leq y-h$. But since $y<2 h$, we then have $y_{2}<h$. Hence, both β and y_{2} lie in the interval $[0 ; h]$. However, they are neighbours and thus should have labels that are at least h away, a contradiction.
- $\beta>y$. Then we have $\beta \geq y+k$, that is, $\beta \geq h+2 k$. However, we know that $z \geq h+2 k$ as well. Thus, β and z lie in the interval $[h+2 k$; $\lambda]$, where $\lambda<3 h$ by hypothesis. Thus the width of this interval w satisfies $w<2 h-2 k$, and thus $w<k$
because we supposed $h \leq 3 k / 2$. However, β and z are neighbours, and thus should have labels at least differing by h, a contradiction with the fact that $w<h$.
- $\quad z_{2}>z_{1}$. In that case, we know that $z>z_{2}>z_{1}$. In particular, this means that $z_{2}<2 h$, and $z_{1}<2 h-k$. However, $z_{1} \geq k$ since it is connected by a 2 -length path to node 0 . We also have $y \leq z-h<2 h$, and thus $y_{2} \leq y-h<h$; and since $h \geq k$, we conclude that $y_{2} \leq 2 h-k$. Moreover, $y_{2} \geq k$ since it is connected by a 2-length path to node 0 . Hence, both z_{1} and y_{2} lie in the interval [$0 ; 2 h-k$], of width $w<2 h-2 k$, that is $w<k$ since we supposed $h \leq 3 k / 2$. However, z_{1} and y_{2} are connected by a 2-length path, and thus should have labels at least differing from k, a contradiction.

Altogether, we see that every possible case leads to a contradiction. This proves that the initial assumption, $\lambda<3 h$, is false, and consequently the proposition is proved.

Proposition 6: $\lambda_{h, k}\left(G_{3}\right) \geq h+3 k$ when $3 k / 2 \leq h \leq 2 k$.
Proof: Consider an optimal $L(h, k)$-labelling of G_{3} with span λ. By contradiction, suppose $\lambda<h+3 k$. Let us consider a node labeled 0 , and let x, y, and z be its 3 neighbours. Without loss of generality, suppose $x<y<z$. In view of the $L(h, k)$-constraints, we must have $x \geq h, y \geq x+k \geq h+k$, and $z \geq y+k \geq h+2 k$. Furthermore, for the hypothesis $\lambda<h+3 k, z<h+3 k$, hence $y \leq z-k<h+2 k$, and $x \leq y-k<h+k$. Let x_{1} and x_{2}, y_{1} and y_{2}, z_{1} and z_{2} be the not 0 neighbours of x, y and z, respectively (see Figure 3).

Let us first prove the following, which will be useful in the rest of the proof: if $y_{m}=\min \left\{y_{1}, y_{2}\right\}$ and $y_{M}=\max \left\{y_{1}, y_{2}\right\}$, then $y_{m}<y<y_{M}$. Indeed, if $y<y_{m}<y_{M}$, we have $y_{m} \geq y+h \geq 2 h+k$, and $y_{M} \geq y_{m}+k \geq 2 h+2 k$. However, this contradicts the fact that $\lambda<h+3 k$, because $2 h+2 k \geq h+3 k$ (since we supposed $h \geq 3 k / 2$). Now suppose $y_{m}<y_{M}<y$. Then $y_{m} \geq k$, because it is connected by a 2-length path to node 0 . Thus $y_{M} \geq y_{m}+k \geq 2 k$, and $y \geq y_{M}+h \geq h+2 k$, which contradicts the fact that $y<h+2 k$. Altogether, we conclude that the only possible case is $y_{m}<y<y_{M}(1)$.

In the following we show that, under the hypothesis $\lambda<h+3 k$, both cases $x_{1}<x_{2}$ and $x_{1}>x_{2}$ lead to a contradiction, which will prove the statement.

Case 1: $x_{1}<x_{2}$. This implies $x_{1} \geq k$, as x_{1} is connected by a 2-length path to node 0 (via x) and $x_{2} \geq x_{1}+k \geq 2 k$. If $x_{1}<x$, then $x \geq x_{1}+h \geq k+h$, that is a contradiction as $x<h+k$. Hence, we have $x<x_{1}<x_{2}$. It follows that $x_{1} \geq x+h \geq 2 h$ and $x_{2} \geq x_{1}+k \geq 2 h+k$. Moreover, $x_{1} \leq x_{2}-k<h+2 k$ and $x \leq x_{1}-h<2 k$. Let us now consider y_{1} and y_{2}.

Case 1.1: $y_{1}<y_{2}$. By (1) above, we have $y_{1}<y<y_{2}$. Let us now consider α (common neighbour of y_{1} and x_{2}), and let us study its relative position compared to x and y (we recall that $x<y$ by hypothesis).

- $\alpha>y>x$. Hence we have $\alpha \geq y+k \geq h+2 k$. But $x_{2} \geq 2 h+k \geq h+2 k$ as well. Hence, both α and x_{2} lie in the interval $[h+2 k ; h+3 k]$, of width $w<k \leq h$. However, x_{2} and α are neighbours, thus they must be at least h away, a contradiction.
- $y>\alpha>x$. In that case, $\alpha \leq y-k<2 k$. But we also have $\alpha \geq x+k \geq h+k$, a contradiction.
- $y>x>\alpha$. Since $x<2 k$, we conclude that $\alpha \leq x-k<k$. However, we know $y_{1} \geq k$ (because it is connected by a 2 -length path to node 0). Thus $\alpha<y_{1}$, hence $y_{1} \geq \alpha+h \geq h$. But we know $y_{1}<y<y_{2}$, thus $y_{1} \leq y-h$, and $y \leq y_{2}-h<3 k$, thus $y_{1}<3 k-h$. But we cannot have $y_{1} \geq h$ and $y_{1}<3 k-h$, since $h \geq 3 k / 2$.
Case 1.2: $y_{2}<y_{1}$. By (1) above, we have $y_{2}<y<y_{1}$. Hence $y_{1} \geq y+h \geq 2 h+k$. We also know that $x_{2} \geq 2 h+k$, since $x<x_{1}<x_{2}$. Thus y_{1} and x_{2} share the same interval $[2 h+k ; h+3 k]$, of width $w<2 k-h \leq k$. But y_{1} and x_{2} are connected by a 2 -length path, and thus must be at least k away, which is impossible.

Hence, at this point we conclude that necessarily $x_{1}>x_{2}$. Thus let us consider this case.

Case 2: $x_{2}<x_{1}$. In that case, it is easily seen that actually $x_{1}>x_{2}>x$, since $x>x_{2}$ would imply $x \geq x_{2}+h$; and since $x_{2} \geq k$ (it is connected by a 2-length path to node 0), we would have $x \geq h+k$, a contradiction to the fact that $x<h+k$. Now let us look again at the relative positions of y_{1} and y_{2}.

Case 2.1: $y_{1}<y_{2}$. By (1) above, we have $y_{1}<y<y_{2}$. This implies that $y \leq y_{2}-h<3 k$. And since we know by hypothesis that $x<y$, we conclude that $x \leq y-k<2 k$.

- $\alpha>y>x$. Then $\alpha \geq y+k \geq h+2 k$. However, we know $x_{2}<x_{1}$, that is $x_{2} \leq x_{1}-k<h+2 k$, hence we conclude $\alpha>x_{2}$. Thus $\alpha \geq x_{2}+h$, and since $x_{2}>x$ we have $x_{2} \geq x+h \geq 2 h$, we conclude $\alpha \geq 3 h$, a contradiction to the fact that $\lambda<h+3 k$, since we supposed $h \geq 3 k / 2$.
- $y>\alpha>x$. Then $\alpha \geq x+k \geq h+k$, and $\alpha \leq y-k<2 k$. This is a contradiction since $h+k \geq 2 k$ by hypothesis.
- $y>x>\alpha$. Then $\alpha \leq x-k<k$. However, $y_{1} \geq k$ (it is connected by a 2-length path to node 0). Thus $y_{1}>\alpha$, which means $y_{1} \geq \alpha+h \geq h$. But we know that $y_{1}<y$, that is, $y_{1} \leq y-h<3 k-h$. This is a contradiction since $h \geq 3 k-h$ by hypothesis.
Case 2.2: $y_{1}>y_{2}$. By (1) above, we have $y_{2}<y<y_{1}$. Let us now look at the relative positions of z, z_{1} and z_{2}. We first note that if $z_{m}=\min \left\{z_{1}, z_{2}\right\}$ and $z_{M}=\max \left\{z_{1}, z_{2}\right\}$, then $z_{m}<z_{M}<z$. Indeed, if $z_{M}>z$ then $z_{M} \geq z+h$, and since we know $z \geq h+2 k$, we conclude $z_{M} \geq h+3 k$, a contradiction.
- $\quad z_{1}>z_{2}$. Hence $z>z_{1}>z_{2}$, by the argument above. Let us derive here some inequalities that will be useful in the following. Since $z<h+3 k$ and $z_{1} \leq z-h$, we conclude $z_{1}<3 k$. Moreover, we know that $z_{2} \geq k$ and $z_{1}>z_{2}$, thus we conclude $z_{1} \geq z_{2}+k \geq 2 k$. Finally, we recall that $h+2 k \leq z<h+3 k$. Now let us look at the relative positions of β and y.
- $\beta<y$. Then $\beta \leq y-k<2 k$. Since $z_{1} \geq 2 k$, we conclude $\beta<z_{1}$. Thus $\beta \leq z_{1}-h \leq 3 k-h$. We also know that $y_{2} \leq 3 k-h$ because
$y_{2}<y \leq y-h$, and because $y<3 k$. Hence, both β and y_{2} are contained in the interval $[0 ; 3 k-h]$, of width $w<3 k-h$. But $3 k-h \leq h$ by hypothesis, and since β and y_{2} must be at least h away, this is impossible.
- $\beta>y$. Then $\beta \geq y+k \geq h+2 k$. This implies that both β and z lie in the interval $[h+2 k ; h+3 k]$, of width $w<k$. However, β and z must be at least k away from each other, a contradiction.
- $\quad z_{2}>z_{1}$. Hence $z>z_{2}>z_{1}$. In particular, we have $k \leq z_{1}<2 k$. But we also know that $k \leq y_{2}<3 k-h \leq 2 k$. Thus y_{2} and z_{1} both lie in the interval [$k ; 2 k$], of width $w<k$. But they must be at least k away, a contradiction.
Altogether, we have shown that every possible case leads to a contradiction. This proves that the initial assumption, $\lambda<h+3 k$, is false. This proves the proposition.

4 Regular grids of degree 4

4.1 Upper bounds for G_{4}

Proposition 7: $\lambda_{h, k}\left(G_{4}\right) \leq h+3 k$ when $h \leq \frac{k}{2}$.
Proof: Consider the $L(1,2)$-labelling whose general pattern is depicted in Figure 4(a). This labelling has span 7. If we now substitute labels $0, h, k, h+k, 2 k, h+2 k, 3 k, h+3 k$ to labels $0,1, \ldots, 7$, the new labelling we obtain is an $L(h, k)$-labelling of G_{4}. Indeed, it is easy to see that when $h \leq k / 2$, each pair of consecutive labels differs by at least h, while each other pair of distinct labels differs by at least k. Moreover, the largest label used is $h+3 k$, hence the result.

Proposition 8: $\lambda_{h, k}\left(G_{4}\right) \leq \min \{7 h, 4 k\}$ when $k / 2 \leq h \leq k$.
Proof: By Lemma 2, since $k / 2 \leq h$ and since there exists an $L(1,2)$-labelling of G_{4} that is of span 7 (as shown in Figure 4(a)), we know there exists an $L(h, k)$-labelling of G_{4} of span $7 h$.

Analogously, since $h \leq k$, we obtain an $L(h, k)$-labelling of span $4 k$ by Lemma 2 ; indeed, there exists an $L(1,1)$ labelling of G_{4} that is of span 4 (whose pattern is shown in Figure 4(b), see also Battiti et al., 1999).

Figure 4 General patterns for $L(h, k)$-labellings of G_{4} :
(a) $L(1,2)$; (b) $L(1,1)$; (c) $L(3,2)$

Proposition 9: $\lambda_{h, k}\left(G_{4}\right) \leq 3 h+k$ when $3 k / 2 \leq h \leq 5 k / 3$.

Proof: Consider the $L(3,2)$-labelling of G_{4} whose general pattern is depicted in Figure 4(c). This labelling has span 11. If we now substitute labels $0, h-k, k, h, 2 h-k, h+$ $k, 2 h, 3 h-k, 2 h+k, 3 h, 4 h-k, 3 h+k$ to labels $0,1, \ldots, 11$, the new labelling we obtain is an $L(h, k)$-labelling of G_{4}. By construction, any pair of labels that are at least 3 away in the list differs by at least h, while any pair of labels that is at least 2 away in the list differs by at least k, because we supposed $3 k / 2 \leq h$. Moreover, the largest label used is $3 h+k$, hence the result.

Proposition 10: $\lambda_{h, k}\left(G_{4}\right) \leq 11 k / 2$ when $11 k / 8 \leq h \leq 3 k / 2$.
Proof: It is known (see Calamoneri (2003)) that $\lambda_{h, k}\left(G_{4}\right) \leq$ $4 h$ when $h \geq k$. Since $\lambda_{h, k}$ is a non decreasing function, Proposition 4.1 implies that $\lambda_{h, k}\left(G_{4}\right) \leq 11 k / 2$ when $11 k / 8 \leq h \leq 3 k / 2$.

4.2 Lower bounds for G_{4}

Proposition 11: $\lambda_{h, k}\left(G_{4}\right) \geq h+3 k$ when $h \leq k$.
Proof: This bound directly comes from Lemma 1.

5 Regular grids of degree 6

Proposition 12: $\lambda_{h, k}\left(G_{6}\right)=6 k$ when $h \leq k$.
Proof: The upper bound is proved observing that since $h \leq k$, we obtain an $L(h, k)$-labelling of span $6 k$ by Lemma 2 ; indeed, there exists an $L(1,1)$-labelling of G_{6} of span 6, whose general pattern is shown in Figure 5 (see also Battiti et al., 1999). The lower bound directly comes from Lemma 1.

Figure 5 General pattern of an $L(1,1)$-labelling of G_{6} of span 6

6 Regular grids of degree 8

6.1 Upper bounds for G_{8}

Proposition 13: $\lambda_{h, k}\left(G_{8}\right) \leq 8 k$ when $h \leq k$.
Proof: Since $h \leq k$, we obtain an $L(h, k)$-labelling of span $8 k$ by Lemma 2 ; indeed, there exists an $L(1,1)$ labelling of G_{8} of span 8 (whose general pattern shown in Figure 6(a)).
Proposition 14: $\lambda_{h, k}\left(G_{8}\right) \leq \min \{8 h, 10 k\}$ when $k \leq h \leq 2 k$.

Figure 6 General patterns for $L(h, k)$-labellings of G_{8} :
(a) $L(1,1)$; (b) $L(2,1)$; (c) $L(3,1)$

(a)

(b)

Proof: Once again we exploit the $L(1,1)$-labelling of G_{8} whose general pattern is depicted in Figure 6(a). If we substitute $0, h, 2 h, \ldots, 8 h$ to labels $0,1, \ldots, 8$, the new labelling we obtain is an $L(h, k)$-labelling of G_{8}. Indeed, it is easy to see that each pair of consecutive labels differs by at least h, and thus by at least k since $k \leq h$. Moreover, the largest label used is $8 h$, hence the result.

The upper bound of $10 k$ comes from the $L(2,1)$-labelling of G_{8} whose general pattern is shown in Figure 6(b). If we substitute $0, k, 2 k, \ldots, 10 k$ to labels $0,1, \ldots, 10$, the new labelling we obtain is an $L(h, k)$-labelling of G_{8}. Indeed, it is easy to see that when $k \leq h \leq 2 k$, each pair of non consecutive labels differs by at least $2 k \geq h$, while any pair of distinct labels differs by at least k. Moreover, the largest label used is $10 k$, hence the result.

Proposition 15: $\lambda_{h, k}\left(G_{8}\right) \leq \min \{5 h, 14 k\}$ when $2 k \leq h \leq 3 k$.

Proof: Consider the $L(2,1)$-labelling whose general pattern is described in Figure 6(b). This labelling has span 10. If we now substitute $0, k, h, h+k, 2 h, 2 h+k, 3 h, 3 h+$ $k, 4 h, 4 h+k, 5 h$ to labels $0,1, \ldots, 10$, the new labelling we obtain is an $L(h, k)$-labelling of G_{8}. Indeed, it is easy to see that each pair of non consecutive labels differs by at least h. On the other hand, since $2 k \leq h$, any pair of distinct labels differs by at least k. Moreover, the largest label used is $5 h$.

Analogously, the other bound is given using an $L(3,1)$ labelling, such as the one whose general pattern is shown in Figure 6(c). This labelling is of span 14. If we now substitute $0, k, 2 k, \ldots, 14 k$ to labels $0,1, \ldots, 14$, the new labelling we obtain is an $L(h, k)$-labelling of G_{8}. Indeed, when $h \leq 3 k$, each pair of labels that are at least 3 away in the list differs by at least $3 k \geq h$, while any pair of distinct labels differs by at least k. Moreover, the largest label used is $14 k$, hence the result.

Proposition 16: $\lambda_{h, k}\left(G_{8}\right) \leq 4 h+2 k$ when $3 k \leq h \leq 6 k$.
Proof: Starting from the $L(3,1)$-labelling used in the previous proof (cf. also Figure 6(c)) of span 14, we substitute labels $0, k, 2 k, h, h+k, h+2 k, 2 h, 2 h+k, \ldots, 4 h, 4 h+$ $k, 4 h+2 k$ to labels $0,1, \ldots, 14$. This new labelling is also an $L(h, k)$-labelling of G_{8}. Indeed, each pair of labels that are at least 3 away in the list differs by at least h by construction, while any pair of distinct labels differs by at least k because $h \geq 3 k$. Moreover, the largest label used is $4 h+2 k$, hence the result.

Proposition 17: $\lambda_{h, k}\left(G_{8}\right) \leq 3 h+8 k$ when $h \geq 6 k$.
Proof: Consider the labelling whose general pattern is depicted in Figure 7(a). This labelling is an $L(1,1)$ labelling of span 11, with the additional property that the only consecutive labels that can appear on neighboring nodes are of the form $3 i+2$ and $3(i+1)$. We now replace any label l of this labelling by a new label, thanks to the following rule (cf. Figure 7(b)): any label of the form $l=3 i+j(i=0,1,2,3, j=0,1,2)$ is replaced by $l^{\prime}=(h+2 k) i+j k$. In this new labelling, any pair of labels of the form $3 i+2$ and $3(i+1)$ is now separated by h. Moreover, the labelling we started from is an $L(1,1)$ labelling, and any two differing labels in the new labelling are at least k away. Thus, this new labelling is an $L(h, k)$ labelling, of span $3 h+8 k$.

Figure 7 (a) General pattern of an $L(1,1)$-labelling of G_{8} and (b) general pattern of the $L(h, k)$-labelling we derive

6.2 Lower bounds for G_{8}

Proposition 18: $\lambda_{h, k}\left(G_{8}\right) \geq 8 k$ when $h \leq k$.
Proof: This bound directly comes from Lemma 2.
Proposition 19: $\lambda_{h, k}\left(G_{8}\right) \geq 2 h+6 k$ when $k \leq h \leq 3 k$.
Proof: Consider any optimal $L(h, k)$-labelling of G_{8}. Let λ be the greatest label. Let us consider a label x which is neither 0 nor λ (note that there must exist one since G_{8} contains K_{3} as an induced subgraph; note also that necessarily, x lies in the interval $[h ; \lambda-h]$). Now, consider its 8 neighbours, say v_{1}, \ldots, v_{8}. Then no other label than x can be used in the interval $[x-h ; x+h]$ for the v_{i} s. However, all the $v_{i} \mathrm{~S}$ are pairwise connected by 2 -length paths, so they must be at least k away from each other. If there are α (respectively β) labels for the v_{i} s in the interval $[0 ; x-h]$ (respectively $[x+h ; \lambda])$, then we must have $(x-h)-(\alpha-1) k \geq 0$ and $\lambda \geq(x+h)+(\beta-1) k$, with $\alpha+\beta=8$. Since $\lambda_{h, k}\left(G_{8}\right)=\lambda$, we conclude that $\lambda_{h, k}\left(G_{8}\right) \geq 2 h+(\alpha+\beta-2) k$, hence the result.

Proposition 20: $\lambda_{h, k}\left(G_{8}\right) \geq 3 h+3 k$ when $h \geq 3 k$.
Proof: Firstly, observe that we have $\lambda_{h, k}\left(G_{8}\right) \geq 3 h+k$. Indeed, consider an optimal $L(h, k)$-labelling of G_{8}, a node labeled 0 , and the set of its neighbors (see Figure 8). Wlog, suppose $\min \{a, b, c\} \leq \min \{e, f, g\}$. Since a, b and c are
neighbours of 0 , then we have $\min \{a, b, c\} \geq h$. And since any node among e, f and g are connected by a 2-length path to any node among a, b and c, we conclude that $\min \{e, f, g\} \geq h+k$. Finally, since e, f and g induce a K_{3}, we have $\max \{e, f, g\} \geq 3 h+k$.

Figure 8 Neighbourhood of a node labelled 0 in G_{8}

However, we can derive a better lower bound of $3 h+$ $3 k$, taking into account nodes d and h in addition to the previous study. This bound then derives from a very tedious case by case analysis that is not developed here. Instead, we have run an exhaustive search by computer on the grid restricted to those nine nodes. The source and binary codes corresponding to this search are available at the following website: http://www.sciences.univnantes.fr/info/perso/permanents/fertin/Lhk/Lhk.c).

7 Concluding remarks

In this paper, we have studied the $L(h, k)$-labelling problem on regular grids of degree $3,4,6$ and 8 , and we have improved, in many different cases, the bounds on the $L(h, k)$ number in each of these classes of graphs. A graphical representation of our results is depicted in Figure 9: bold lines in this figure are results from this paper, grey lines are previously known results, and grey zones represent the gaps that still exist between the known lower and upper bounds.

Though we managed to obtain tight bounds in several cases, there are still some other cases for which the gap is not closed, and it actually looks difficult to improve the bounds without using case by case analysis arguments, as we have sometimes done in this paper. However, a natural question consists in closing the gaps that still remain in all the four classes of graphs considered here.

Moreover, as observed in the introduction, when $h<k$ we have considered in this paper the max-based model, that imposes a condition on labels of nodes connected by a 2-length path instead of using the concept of distance 2 (we recall that when $h \geq k$, the two definitions coincide). Hence, it is also natural to ask for a similar study in the case $h<k$, but using this time the distance-based definition. We note that this makes sense only for G_{6} and G_{8}, since there are no triangles in G_{3} and G_{4}, and thus in that case the two definitions coincide. Moreover, since the max-based model is by definition more restrictive than the distance-based model, the upper bounds we obtain in the max-based model also apply in the distance-based model, while this is not a priori the case for lower bounds.

Figure 9 Summary of the results achieved in this paper: bold lines are results from this paper, grey lines are previously known results, and grey zones represent the gaps that still exist between the known lower and upper bounds

References

Battiti, R., Bertossi, A.A. and Bonuccelli, M.A. (1999) 'Assigning codes in wireless networks: bounds and scaling properties', Wireless Networks, Vol. 5, pp.195-209.

Bertossi, A.A. and Bonuccelli, M.A. (1995) 'Code assignment for hidden terminal interference avoidance in multihop packet radio networks', IEEE/ACM Transactions on Networking, Vol. 3, pp.441-449.

Bertossi, A.A., Pinotti, C.M. and Tan, R.B. (2003) 'Channel assignment with separation for interference avoidance in wireless networks', IEEE Transactions on Parallel and Distributed Systems, Vol. 14, pp.222-235.

Bodlaender, H.L., Kloks, T., Tan, R.B. and van Leeuwen, J. (2000) ' λ-coloring of graphs', Proceedings of STACS 2000, LNCS 1770, pp.395-406.
Calamoneri, T. (2003) 'Exact solution of a class of frequency assignment problems in cellular networks and other regular grids', Proceedings of Eighth Italian Conference on Theoretical Computer Science (ICTCS'03), LNCS 2841, pp.163-173.
Calamoneri, T. (2004) 'The $L(h, k)$-labelling problem: a survey', Technical Report 04/2004 University of Rome 'La Sapienza', Department of Computer Science.
Calamoneri, T. and Petreschi, R. (2004). ' $L(h, 1)$-Labelling subclasses of planar graphs', Journal on Parallel and Distributed Computing, Vol. 64, No. 3, pp.414-426.

Chang, G.J., Ke, W-T., Kuo, D., Liu, D.D-F. and Yeh, R.K. (2002) 'On $L(d, 1)$-labellings of graphs’, Discrete Mathematics Vol. 220, pp.57-66.
Chang, G.J. and Kuo, D. (1996) 'The $L(2,1)$-labelling problem on graphs', SIAM Journal of Discrete Mathematics, Vol. 9, pp.309-316.
Fertin, G. and Raspaud, A. (submitted for publication) ' $L(p, q)$ labelling of d-dimensional grids', Discrete Applied Mathematics.
Griggs, J.R. and Yeh, R.K. (1992) 'Labelling graphs with a condition at Distance 2', SIAM Journal of Discrete Mathematics, Vol. 5, pp.586-595.
Hale, W.K. (1980) 'Frequency assignment: theory and applications’, Proceedings of IEEE, Vol. 68, pp.1497-1514.
Jha, P.K., Narayanan, A., Sood, P., Sundaram, K. and Sunder, V. (2000) 'On $L(2,1)$-labelling of the cartesian product of a cycle and a path', Ars Combinations, Vol. 55, pp.81-89.
Jha, P.K. (2000) 'Optimal $L(2,1)$-labelling of cartesian products of cycles with an application to independent domination', IEEE Transactions Circuits and Systems I: Fundamental Theory and Application, Vol. 47, pp.1531-1534.

Korže, D. and Vesel, A. (2005) ' $\mathrm{L}(2,1$)-labelling of strong products of cycles', Information Processing Letters, Vol. 94, pp.183-190.

Makansi, T. (1987) 'Transmitter-oriented code assignment for multihop packet radio', IEEE Transactions on Communications, Vol. 35, No. 12, pp.1379-1382.

Metzger, B.H. (1970) 'Spectrum management technique', Proceedings of the 38th National ORSA Meeting, LNCS 1770, pp.395-406.

Molloy, M. and Salavatipour, M.R. (2002) 'Frequency channel assignment on planar networks', Proceedings of Tenth Annual European Symposium on Algorithms (ESA), LNCS 2461, pp.736-747.

Sakai, D. (1994) ‘Labelling chordal graphs: distance two condition’, SIAM Journal of Discrete Mathematics, Vol. 7, pp.133-140.

Whittlesey, M.A., Georges, J.P. and Mauro, D.W. (1995) 'On the λ number of Q_{n} and related graphs', SIAM Journal of Discrete Mathematics, Vol. 8, pp.499-506.

