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Abstract: For any non-negative real valuesh andk, anL(h, k)-labelling of a graphG = (V , E)
is a functionL : V → R such that|L(u) − L(v)| ≥ h if (u, v) ∈ E and|L(u) − L(v)| ≥ k if
there existsw ∈ V such that(u, w) ∈ E and(w, v) ∈ E. The span of anL(h, k)-labelling is
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1 Introduction

In this paper, we are interested in thefrequency assignment
problem, which arises in wireless communication systems.
More precisely, we focus here on minimising the number of
frequencies used in the framework where radio transmitters
that are geographically close may interfere if they are
assigned close frequencies. This problem was originally
introduced in Metzger (1970) and was later developed in Hale
(1980). It is equivalent to a graph labelling problem, in which
the nodes represent the transmitters, and any edge joins two

transmitters that are sufficiently close to potentially interfere.
The aim here is to label the nodes of the graph in such a way
that:

• any two neighbours (transmitters that are very close) are
assigned labels (frequencies) that differ by a parameter
at leasth

• any two nodes at distance 2 (transmitters that are close)
are assigned labels (frequencies) that differ by a
parameter at leastk
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• the gap between the smallest and the greatest value for
the labels is minimised.

This problem is usually referred to as theL(h, k)-labelling
problem. More formally, for any non-negative real values
h and k, an L(h, k)-labelling of a graphG = (V , E) is
a functionL : V → R such that|L(u) − L(v)| ≥ h if
(u, v) ∈ E and |L(u) − L(v)| ≥ k if there existsw ∈ V

such that(u, w) ∈ E and (w, v) ∈ E. The span of an
L(h, k)-labelling is the difference between the largest and the
smallest value ofL. Hence, it is not restrictive to assume 0
as the smallest value ofL, something which will be assumed
throughout this paper. We denote byλh,k(G) the smallest
real λ such that graphG has anL(h, k)-labelling of span
λ ; we call L(h, k) number of G this value. The aim
of the L(h, k)-labelling problem is to satisfy the distance
constraints using the minimum span.

Since its definition (Griggs and Yeh, 1992) as a
specialisation of the frequency assignment problem in
wireless networks (Hale, 1980; Metzger, 1970), theL(h, k)-
labelling problem has been intensively studied. Note that
the L(h, k)-labelling problem is a generalisation of some
standard graph colourings, such as the usual (or proper)
colouring whenh = 1 andk = 0, or the 2-distance colouring
(equivalent to the proper colouring of the square of the graph)
whenh = k = 1. We also note that the caseh = 2 and
k = 1 (or more generallyh = 2k), called radio-colouring
or λ-colouring, is the most widely studied (see for instance
Calamoneri and Petreschi, 2004; Chang and Kuo, 1996; Jha,
2000; Jha et al., 2000).

The decision version of theL(h, k)-labelling problem is
NP-complete even for small values ofh andk Bertossi and
Bonuccelli (1995). This motivates the search for optimal
solutions on particular classes of graphs (see for instance
(Bertossi et al., 2003; Bodlaender et al., 2000; Calamoneri,
2004; Chang et al., 2002; Griggs and Yeh, 1992; Korže and
Vesel, 2005; Molloy and Salavatipour, 2002; Sakai, 1994;
Whittlesey et al., 1995) for a complete survey). Concerning
the more specific grid topologies, a large number of papers
has been published on the subject. For instance, (Makansi,
1987) provided an optimalL(0, 1)-labelling for squared
grids, that is regular grids of degree 4 (see Figure 1(b)).
Battiti et al. (1999) found an optimalL(1, 1)-labelling for
hexagonal, squared and triangular grids (that is, respectively,
regular grids of degree 3, 4 and 6, see Figure 1(a), (b) and
(c)). TheL(2, 1)-labelling problem of regular grids of degree
�, denotedG�, has been studied independently by different
authors Bertossi et al. (2003) and Calamoneri and Petreschi
(2004) proving thatλ2,1(G�) = � + 2 by means of optimal
colouring algorithms. More recently, (Fertin and Raspaud, to
appear) determined several bounds onλh,k for d-dimensional
squared grids.

In Calamoneri (2003) some values ofλh,k for regular
grids of degree 3, 4 and 6 are exactly computed, while in
some intervals different upper and lower bounds are given;
moreover, the caseh < k is not considered at all. Our goal
in this paper is to improve some of those bounds, as well
as to consider the caseh < k. Moreover, we extend this
study to a new class of graphs, namely grids of degree 8.
Grids of degree 8 can be defined as the strong product of
two infinite paths (Korže and Vesel, 2005) (see also Figure 1

for a graphical representation of the four types of grids
we study in this paper). Grids of degree 8 can also be
seen as a natural extension of grids of degree 6, who
themselves are an extension of grids of degree 4
(see Figure 1(a), (b) and (c)).

Figure 1 Grids studied in this paper: (a)G3, (b) G4, (c) G6

and (d)G8

(a) (b)

(c) (d)

Before going further, we observe that whenh < k (a case
that we will consider in this paper), there are actually two
ways to define theL(h, k)-labelling problem:

• The first one is thedistance-based model, which asks
that twoneighbours in the graph differ by at leasth,
while two nodesat distance 2 differ by at leastk. This
means that when two nodes are at the same time
connected by a 1-path and a 2-path (hence when there is
a cycle of length 3 in the graph), we consider the
distance to be 1, and thus impose only the
condition onh.

• The second one is themax-based model, which asks
that two nodes connected at the same time by a 1-path
and a 2-path differ by at least max{h, k} ; in that sense,
this model is more restrictive than thedistance-based
model. In particular, this model imposes that any cycle
of length 3 to be always labelled with three labels
at least max{h, k} apart from each other.

Note that whenh ≥ k, the two definitions coincide, since
max{h, k} = h. The same occurs when the considered graph
has no triangles, which is the case forG3 andG4. In this
paper, in the study ofG6 andG8, whenh < k, we chose to
consider themax-based problem.

As mentioned above, we study in this paper theL(h, k)-
labelling problem on regular grids of degree 3, 4, and 6 for
those values ofh andk whoseλh,k is either not known or
not tight, and we also study theL(h, k) labelling problem
in a new class of graphs, namely grids of degree 8. For all
considered grids, in some cases we provide exact results, or
we give close upper and lower bounds (see Figure 9 at the
end of the paper for a summary of results).

The paper is organised as follows: we first give in Section 2
a few technical lemmas that will help to obtain general lower
and upper bounds for the considered types of graphs, while
in Sections 3, 4, 5 and 6, we improve bounds on theL(h, k)

number of grids for degree 3, 4, 6 and 8, respectively.
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Note finally that if no confusion arises, we will speak
interchangeably, in the rest of this paper, of a node and its
label.

2 Preliminaries

In this section, we show four different lemmas, which will
prove to be useful in the rest of the paper. Theorem 1 and
Lemma 1 are concerned with lower bounds for theL(h, k)

number, while Lemmas 2 and 3 deal with upper bounds.

Theorem 1:λh,k(G�) ≥ h + (� − 1)k when h ≤ k, for
� = 3, 4.

Proof: Consider an optimalL(h, k)-labelling ofG�, h ≤ k,
� = 3, 4 and letx be a node labelled 0. The smallest label
among those of its neighbours must be at leasth. Furthermore,
the� neighbours ofx are all connected by a 2-length path and
hence their labels must differ by at leastk from each other.
It follows that the greatest label must be at leasth+(�−1)k.

Lemma 1:λh,k(G�) ≥ �k when h ≤ k, for � = 6, 8.

Proof: Observe thatG6 and G8 are characterised by the
property that each pair of adjacent nodes is also connected
by a 2-length path. This implies that, given an optimal
L(h, k)-labelling of G�, h ≤ k, � = 6, 8, starting from
a nodex labelled 0, the smallest label, among those of their
neighbours must be at leastk. With reasonings analogous to
those of the previous proof, the claim follows.

Lemma 2:For any graph G and any h ≤ k, λh,k(G) ≤
kλ1,1(G).

Proof: Consider an optimalL(1, 1)-labelling, sayL, of G.
Consider the labellingL′ obtained fromL by substituting
every labeli with labelik (i = 0, 1, . . . , λ1,1(G)). We claim
that L′ is an L(h, k)-labelling of G with spankλ1,1(G),
providedh ≤ k. Indeed, any two neighbours, which differ
by at least 1 inL, differ by at leastk ≥ h in L′ ; moreover,
any two nodes connected by a 2-length path, which differ by
at least 1 inL differ by at leastk in L′.

Lemma 3:For any graph G and any h ≥ k/2, λh,k(G) ≤
hλ1,2(G).

Proof: Analogously to the proof of Lemma 2, consider an
L(1, 2) labelling, sayL, of G. Consider the labellingL′
obtained fromL by substituting every labeli with label
ih (i = 0, 1, . . . , λ1,2(G)). Since h ≥ k/2, L′ is an
L(h, k)-labelling ofG with spanhλ1,2(G). Indeed, any two
neighbours, which differ by at least 1 inL, differ by at least
h in L′ ; moreover, any two nodes connected by a 2-length
path, which differ by at least 2 inL differ by at least 2h ≥ k

in L′.

3 Regular grids of degree 3

3.1 Upper bounds for G3

Proposition 1:λh,k(G3) ≤ h + 2k when h ≤ k/2.

Proof: Consider an optimalL(1, 2)-labelling ofG3 over the
set of labels{0, 1, . . . , 5}, whose general pattern is depicted

in Figure 2(a). The idea is to substituteh to 1, k to 2,h + k

to 3, 2k to 4, andh + 2k to 5. In that case, the labelling
that is produced is a feasibleL(h, k)-labelling. Indeed, each
pair of consecutive labels differs by eitherh or k − h, but
since we supposedh ≤ k/2, we havek − h ≥ h and thus
any two consecutive labels differ by at leasth. Similarly, any
other pair of distinct labels differs by at leastk. Moreover,
the largest label used ish + 2k, hence the result.

Figure 2 General patterns forL(h, k)-labellings ofG3:
(a)L(1, 2)-labelling and (b)L(1, 1)-labelling
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Proposition 2:λh,k(G3) ≤ min {5h, 3k} when k/2 ≤ h ≤ k.

Proof: By Lemma 2, sincek/2 ≤ h and since there exists an
L(1, 2)-labelling ofG3 that is of span 5 (see for instance the
general pattern shown in Figure 2(a)), we know there exists
anL(h, k)-labelling ofG3 of span 5h.

Analogously, sinceh ≤ k, we obtain anL(h, k)-labelling
of span 3k by Lemma 2 ; indeed, there exists anL(1, 1)-
labelling of G3 that is of span 3 (whose general pattern is
shown in Figure 2(b), see also Battiti et al., 1999).

3.2 Lower bounds for G3

Proposition 3:λh,k(G3) ≥ h + 2k when h ≤ k.

Proof: This bound directly comes from Lemma 1.

Proposition 4:λh,k(G3) ≥ 3k when 2k/3 ≤ h ≤ k.

Proof: Consider an optimalL(h, k)-labelling ofG3. Suppose,
by contradiction, thatλh,k(G3) < 3k. Let us consider a node
labelled 0, and letx, y andz be its 3 neighbours. Without loss
of generality, supposex < y < z. In view of theL(h, k)-
constraints, we must havex ≥ h, y ≥ x + k ≥ h + k and
z ≥ y + k ≥ h + 2k. Furthermore, from the hypothesis
λh,k(G3) < 3k, we have thatz < 3k, hencey ≤ z − k < 2k

andx ≤ y − k < k. Let x1 andx2, y1 andy2, z1 andz2

be the not 0 neighbours ofx, y and z, respectively (see
Figure 3).

Figure 3 Neighbourhood of a node labelled 0 inG3
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Let us first prove that ifym = min{y1, y2} and
yM = max{y1, y2}, then ym < y < yM . Indeed, if
y < ym, thenym ≥ y + h ≥ 2h + k, and consequently
yM ≥ 2h+2k. However, 2h+2k ≥ 3k (because we supposed
h ≥ 2k/3 ≥ k/2), a contradiction to the fact thatλ < 3k.
On the other hand, ifyM < y, theny ≥ yM + h. And since
yM ≥ ym + k ≥ 2k, we end up withy ≥ h + 2k. However,
by hypothesis we know thaty < 2k, a contradiction since
h ≥ 0. Thus we conclude that in all the cases, we have
ym < y < yM .

Now, in order to prove the statement, we will show that
under the hypothesisλh,k(G3) < 3k, both casesx1 < x2 and
x1 > x2 lead to a contradiction.

Case 1: x1 < x2. In this casex1 ≥ k, asx1 is connected
by a 2-length path to node 0 (viax) andx2 ≥ x1 + k ≥ 2k.
If x1 < x, thenx ≥ x1 + h ≥ k + h, a contradiction since
x < k. Hence,x < x1 < x2. It follows thatx1 ≥ x + h ≥ 2h

andx2 ≥ x1 + k ≥ 2h + k. Let us now considery1 andy2.
Case 1.1: y1 < y2. Hence we know thaty1 < y < y2.

In such a casey1 ≥ k andy1 ≤ y − h < 2k − h. Note
thaty1 < x2 asy1 < 2k − h andx2 ≥ 2k. Let us consider
the common neighbour ofx2 andy1, α, and let us study the
relative position of its label with respect tox2 andy1.

• α < y1 < x2. Thenα ≤ y − k < k: if x < α we have
α ≥ x + k ≥ h + k, a contradiction ; on the other hand,
if α < x thenα ≤ x − k < 0, a contradiction too.

• y1 < x2 < α. Thenx2 ≤ α −h < 3k −h ; from previous
hypotheses we also havex2 ≥ 2h + k, and this leads to
a contradiction as 3k − h ≤ 2h + k whenh ≥ 2k/3.

• y1 < α < x2. We have again two cases. Ify1 < α < y

thenα ≤ y − k < k andy1 ≤ α − h < k − h that is a
contradiction asy1 ≥ k. If y1 < y < α then
α ≤ x2 − h < 3k − h, y ≤ α − k < 2k − h, and
y1 ≤ y − h < 2k − 2h that is a contradiction asy1 ≥ k

andk ≥ 2k − 2h when 2k/3 ≤ h ≤ k.

Case 1.2: y1 > y2. Thus we havey1 > y > y2. This implies
that y1 ≥ y + h ≥ 2h + k. Hence,y1 lies in the interval
[2h+k; 3k]. However, we also know thatx2 lies in the interval
[2h+ k; 3k]. Since this interval is of widthw < 2k − 2h, we
conclude thatw < k (because we supposedh ≥ 2k/3 and
henceh ≥ k/2). This leads to a contradiction becausey1 and
x2 must be at leastk away from each other.

Case 2: x1 > x2. With considerations analogous to those
done for casex1 < x2, we can derivex < x2 < x1 and
2h + k ≤ x1 < 3k and 2h ≤ x2 < 2k. Now, let us look at
y1 andy2.

Case 2.1: y1 < y2. We thus havey1 < y < y2. However,
this leads to a contradiction. Indeed,y1 > k as it is connected
by a 2-length path to node 0, thenx2 ≥ y1 + k > 2k.

Case 2.2: y1 > y2. We then havey2 < y < y1. This
implies thaty1 ≥ y + h ≥ 2h + k and hencey1 > x2 as
x2 < 2k. Now considerα, the common neighbour ofx2 and
y1.

• x2 < y1 < α. Thenα ≥ y1 + h ≥ 3h + k ≥ 3k, a
contradiction since we supposedλ < 3k.

• α < x2 < y1. Thenα ≤ x2 − h < 2k − h. If α > y then
α ≥ y + k ≥ h + 2k, a contradiction ; ifα < y then
α ≤ y − k ≤ k. However, we know thatx < k ;
moreover, becauseα < k andα must lie at leastk away
from x, this leads to a contradiction.

• x2 < α < y1. Thenα ≤ y1 − h < 3k − h. If α > y then
α ≥ y + k ≥ h + 2k that is greater than 3k − h under
the hypothesish ≥ 2k/3, a contradiction ; ifα < y then
α ≤ y − k ≤ k that again contradicts the fact thatα

must lie at leastk away fromx.

Altogether, we see that every possible case leads to a
contradiction. This proves that the initial assumption,λ < 3k,
is false, and consequently the proposition is proved.

Proposition 5:λh,k(G3) ≥ 3h when k ≤ h ≤ 3k/2.

Proof: The proof is analogous to the previous one,that is, by
contradiction we assume that there exists aL(h, k)-labelling
with spanλ < 3h, we start from node labelled 0, we look at
its neighbours and prove that neitherx1 < x2 nor x1 > x2

can occur. Wlog, let us assumex < y < z. Hence,x ≥ h,
y ≥ h + k andz ≥ h + 2k. On the other hand,z < 3h,
y < 3h − k andx < 3h − 2k. Let x1 andx2, y1 andy2, z1

andz2 be the not 0 neighbours ofx, y andz, respectively (see
Figure 3).

We first prove that ifym = min{y1, y2} and yM =
max{y1, y2}, thenym < y < yM . Indeed, ify < ym, then
ym ≥ y + h ≥ 2h + k, and consequentlyyM ≥ 2h + 2k.
However, 2h + 2k ≥ 3h (because we supposedh ≤ 3k/2),
a contradiction to the fact thatλ < 3h. On the other hand, if
yM < y, theny ≥ yM +h. And sinceyM ≥ ym +k ≥ 2k, we
end up withy ≥ h + 2k. However, by hypothesis we know
that y < 3h − k, a contradiction since 3h − k ≤ h + 2k,
because we supposedh ≤ 3k/2. Thus we conclude that in
all the cases, we haveym < y < yM . Now, as in the previous
proof, let us considerx1 andx2 (see Figure 3), and show that,
under the hypothesisλ < 3h, none of the casesx1 < x2 and
x1 > x2 can occur.

Case 1: x1 < x2. This impliesx1 ≥ k, asx1 is connected by
a 2-length path to node 0 (viax). If x1 < x, thenx ≥ x1+h ≥
h + k, that is a contradiction asx < 3h − 2k ≤ h + k under
the hypothesish ≤ 3k/2. Hence,x < x1 < x2. It follows
thatx1 ≥ x + h ≥ 2h andx2 ≥ x1 + k ≥ 2h + k. Let us
consider nowy1 andy2.

Case 1.1: y1 < y2. Then we know thaty1 < y < y2. Note
thaty1 < x2 asx2 ≥ 2h + k andy1 ≤ y − h ≤ y2 − 2h <

3h−2h = h. Now, let us considerα, the common neighbour
of y1 andx2.

• y1 < x2 < α. The contradiction comes from the
inequalityα ≥ x2 + h ≥ 3h + k.

• α < y1 < x2. Theny1 ≥ α + h ≥ h, y ≥ y1 + h ≥ 2h

andy2 ≥ y + h ≥ 3h, a contradiction.

• y1 < α < x2. Since we havey1 ≥ k, this implies
α ≥ y1 + h ≥ h + k andα ≤ x2 − h < 2h. It is easy to
see that the same bounds hold also fory. Hencey andα

both lie in the interval[h + k; 2h], of width w < h − k,
that isw ≤ k. The contradiction comes from the fact
thatα andy being connected by a 2-length path, they
must lie at leastk away from each other.

Case 1.2: y1 > y2. Thus, we know thaty1 > y > y2. We
know thatx2 andy1 must be at leastk away from each other.
Moreover, 2h+ k ≤ x2 < 3h and 2h+ k ≤ y1 < 3h. Hence,
bothx2 andy1 lie in an interval of widthw < h − k. Since
we supposedh ≤ 3k/2, we concludew < k, a contradiction.
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Case 2: x1 > x2. We can easily see that in that case we
must havex1 > x2 > x. Indeed,x2 ≥ k, since it is connected
by a 2-length path to node 0. Hence, ifx > x2, thenx ≥ h+k.
However, we know thatx < 3h − 2k, a contradiction since
h ≤ 3k/2. Hence we conclude thatx1 > x2 > x, which
impliesx2 ≥ x + h ≥ 2h andx1 ≥ x2 + k ≥ 2h + k. Now
let us considery1 andy2.

Case 2.1: y1 < y2. Let us then considerα, the common
neighbour ofy1 andx2, and let us look at its relative position
compared tox andy. There are three possible cases.

• α > y > x. We recall that we are in the case
x1 > x2 > x, that isx2 ≥ x + h ≥ 2h. If α > x2 then
α ≥ x2 + h ≥ 3h, a contradiction to the hypothesis
λ < 3h. Now, if α < x2, α ≤ x2 − h. Since
x2 ≤ x1 − k < 3h − k, we concludeα ≤ 2h − k. But
y ≥ h + k andα ≥ y + k, that isα ≥ h + 2k. This is a
contradiction since 2h − k ≤ h + 2k, by the hypothesis
thath ≤ 3k/2.

• y > α > x. We then conclude that
α ≤ y − k < 3h − 2k. On the other hand, we have
α ≥ x + k ≥ h + k. This is a contradiction since
h + k ≥ 3h − 2k due to the fact that we supposed
h ≤ 3k/2.

• y > x > α. In that case, ifα < y1, then
y1 ≥ α + h ≥ h, which impliesy ≥ 2h andy2 ≥ 3h, a
contradiction to the hypothesisλ < 3h. Now, if α > y1,
thenα ≥ h, which in turns means thatx ≥ h + k and
y ≥ h + 2k. However, we know thaty < 3h − k, a
contradiction since 3h − k ≤ h + 2k due to the fact that
we supposedh ≤ 3k/2.

Case 2.2: y1 > y2. Here, we consider the three nodes
z, z1 and z2. We first show that ifzm = min{z1, z2} and
zM = max{z1, z2}, thenzm < zM < z. Indeed, ifzM > z

thenzM ≥ z+h, and since we knowz ≥ h+2k, we conclude
zM ≥ 2h + 2k, a contradiction to the fact thatλ < 3h since
2h + 2k ≥ 3h. Now let us look at the relative positions of
z1 andz2. There are two cases to consider:

• z1 > z2. In that case, we havez > z1 > z2. Now let us
look atβ, common neighbour ofz1 andy2, and let us
consider the relative positions ofβ andy.

– β < y. Firstly, we note thatβ < z1. Indeed,z2 ≥ k

(it is connected by a 2-length path to node 0), thus
z1 ≥ 2k. However,β < y by hypothesis, hence
β ≤ y − k, that isβ < 2h − k. Moreover,
2h − k ≤ 2k since we are in the caseh ≤ 3k/2, and
thus we conclude thatβ < z1. This implies
β ≤ z1 − h, that is,β ≤ z − 2h ; and since
z ≤ λ < 3h, we getβ < h. On the other hand,
y2 < y, thusy2 ≤ y − h. But sincey < 2h, we then
havey2 < h. Hence, bothβ andy2 lie in the
interval[0; h]. However, they are neighbours and
thus should have labels that are at leasth away, a
contradiction.

– β > y. Then we haveβ ≥ y + k, that is,
β ≥ h + 2k. However, we know thatz ≥ h + 2k as
well. Thus,β andz lie in the interval[h + 2k; λ],
whereλ < 3h by hypothesis. Thus the width of this
intervalw satisfiesw < 2h − 2k, and thusw < k

because we supposedh ≤ 3k/2. However,β andz

are neighbours, and thus should have labels at least
differing byh, a contradiction with the fact that
w < h.

• z2 > z1. In that case, we know thatz > z2 > z1. In
particular, this means thatz2 < 2h, andz1 < 2h − k.
However,z1 ≥ k since it is connected by a 2-length path
to node 0. We also havey ≤ z − h < 2h, and thus
y2 ≤ y − h < h ; and sinceh ≥ k, we conclude that
y2 ≤ 2h − k. Moreover,y2 ≥ k since it is connected by
a 2-length path to node 0. Hence, bothz1 andy2 lie in
the interval[0; 2h − k], of width w < 2h − 2k, that is
w < k since we supposedh ≤ 3k/2. However,z1 and
y2 are connected by a 2-length path, and thus should
have labels at least differing fromk, a contradiction.

Altogether, we see that every possible case leads to a
contradiction. This proves that the initial assumption,
λ < 3h, is false, and consequently the proposition is proved.

Proposition 6:λh,k(G3) ≥ h + 3k when 3k/2 ≤ h ≤ 2k.

Proof: Consider an optimalL(h, k)-labelling ofG3 with span
λ. By contradiction, supposeλ < h + 3k. Let us consider
a node labeled 0, and letx, y, andz be its 3 neighbours.
Without loss of generality, supposex < y < z. In view of the
L(h, k)-constraints, we must havex ≥ h, y ≥ x+k ≥ h+k,
andz ≥ y + k ≥ h + 2k. Furthermore, for the hypothesis
λ < h + 3k, z < h + 3k, hencey ≤ z − k < h + 2k, and
x ≤ y − k < h+ k. Letx1 andx2, y1 andy2, z1 andz2 be the
not 0 neighbours ofx, y andz, respectively (see Figure 3).

Let us first prove the following, which will be useful in the
rest of the proof: ifym = min{y1, y2} andyM = max{y1, y2},
thenym < y < yM . Indeed, ify < ym < yM , we have
ym ≥ y + h ≥ 2h + k, andyM ≥ ym + k ≥ 2h + 2k.
However, this contradicts the fact thatλ < h + 3k, because
2h + 2k ≥ h + 3k (since we supposedh ≥ 3k/2). Now
supposeym < yM < y. Thenym ≥ k, because it is connected
by a 2-length path to node 0. ThusyM ≥ ym + k ≥ 2k,
andy ≥ yM + h ≥ h + 2k, which contradicts the fact that
y < h + 2k. Altogether, we conclude that the only possible
case isym < y < yM (1).

In the following we show that, under the hypothesis
λ < h + 3k, both casesx1 < x2 and x1 > x2 lead to a
contradiction, which will prove the statement.

Case 1: x1 < x2. This impliesx1 ≥ k, asx1 is connected
by a 2-length path to node 0 (viax) andx2 ≥ x1 + k ≥ 2k.
If x1 < x, thenx ≥ x1 + h ≥ k + h, that is a contradiction
asx < h + k. Hence, we havex < x1 < x2. It follows that
x1 ≥ x + h ≥ 2h andx2 ≥ x1 + k ≥ 2h + k. Moreover,
x1 ≤ x2 − k < h + 2k andx ≤ x1 − h < 2k. Let us now
considery1 andy2.

Case 1.1: y1 < y2. By (1) above, we havey1 < y < y2.
Let us now considerα (common neighbour ofy1 andx2),
and let us study its relative position compared tox andy (we
recall thatx < y by hypothesis).

• α > y > x. Hence we haveα ≥ y + k ≥ h + 2k.
But x2 ≥ 2h + k ≥ h + 2k as well. Hence, both
α andx2 lie in the interval[h + 2k; h + 3k],
of width w < k ≤ h. However,x2 andα are
neighbours, thus they must be at leasth away, a
contradiction.
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• y > α > x. In that case,α ≤ y − k < 2k. But we also
haveα ≥ x + k ≥ h + k, a contradiction.

• y > x > α. Sincex < 2k, we conclude that
α ≤ x − k < k. However, we knowy1 ≥ k (because it
is connected by a 2-length path to node 0). Thus
α < y1, hencey1 ≥ α + h ≥ h. But we know
y1 < y < y2, thusy1 ≤ y − h, andy ≤ y2 − h < 3k,
thusy1 < 3k − h. But we cannot havey1 ≥ h and
y1 < 3k − h, sinceh ≥ 3k/2.

Case 1.2: y2 < y1. By (1) above, we havey2 < y < y1.
Hencey1 ≥ y +h ≥ 2h+k. We also know thatx2 ≥ 2h+k,
sincex < x1 < x2. Thusy1 andx2 share the same interval
[2h + k; h + 3k], of width w < 2k − h ≤ k. But y1 andx2

are connected by a 2-length path, and thus must be at leastk

away, which is impossible.
Hence, at this point we conclude that necessarilyx1 > x2.

Thus let us consider this case.
Case 2: x2 < x1. In that case, it is easily seen that actually

x1 > x2 > x, sincex > x2 would imply x ≥ x2 + h ; and
sincex2 ≥ k (it is connected by a 2-length path to node 0),
we would havex ≥ h + k, a contradiction to the fact that
x < h + k. Now let us look again at the relative positions of
y1 andy2.

Case 2.1: y1 < y2. By (1) above, we havey1 < y < y2.
This implies thaty ≤ y2 − h < 3k. And since we know by
hypothesis thatx < y, we conclude thatx ≤ y − k < 2k.

• α > y > x. Thenα ≥ y + k ≥ h + 2k. However, we
knowx2 < x1, that isx2 ≤ x1 − k < h + 2k, hence we
concludeα > x2. Thusα ≥ x2 + h, and sincex2 > x

we havex2 ≥ x + h ≥ 2h, we concludeα ≥ 3h, a
contradiction to the fact thatλ < h + 3k, since we
supposedh ≥ 3k/2.

• y > α > x. Thenα ≥ x + k ≥ h + k, and
α ≤ y − k < 2k. This is a contradiction since
h + k ≥ 2k by hypothesis.

• y > x > α. Thenα ≤ x − k < k. However,y1 ≥ k (it is
connected by a 2-length path to node 0). Thusy1 > α,
which meansy1 ≥ α + h ≥ h. But we know that
y1 < y, that is,y1 ≤ y − h < 3k − h. This is a
contradiction sinceh ≥ 3k − h by hypothesis.

Case 2.2: y1 > y2. By (1) above, we havey2 < y < y1. Let
us now look at the relative positions ofz, z1 andz2. We first
note that ifzm = min{z1, z2} andzM = max{z1, z2}, then
zm < zM < z. Indeed, ifzM > z thenzM ≥ z + h, and
since we knowz ≥ h + 2k, we concludezM ≥ h + 3k, a
contradiction.

• z1 > z2. Hencez > z1 > z2, by the argument above.
Let us derive here some inequalities that will be useful
in the following. Sincez < h + 3k andz1 ≤ z − h, we
concludez1 < 3k. Moreover, we know thatz2 ≥ k and
z1 > z2, thus we concludez1 ≥ z2 + k ≥ 2k. Finally,
we recall thath + 2k ≤ z < h + 3k. Now let us look at
the relative positions ofβ andy.

– β < y. Thenβ ≤ y − k < 2k. Sincez1 ≥ 2k, we
concludeβ < z1. Thusβ ≤ z1 − h ≤ 3k − h. We
also know thaty2 ≤ 3k − h because

y2 < y ≤ y − h, and becausey < 3k. Hence, both
β andy2 are contained in the interval[0; 3k − h], of
width w < 3k − h. But 3k − h ≤ h by hypothesis,
and sinceβ andy2 must be at leasth away, this is
impossible.

– β > y. Thenβ ≥ y + k ≥ h + 2k. This implies
that bothβ andz lie in the interval[h + 2k; h + 3k],
of width w < k. However,β andz must be at least
k away from each other, a contradiction.

• z2 > z1. Hencez > z2 > z1. In particular, we have
k ≤ z1 < 2k. But we also know that
k ≤ y2 < 3k − h ≤ 2k. Thusy2 andz1 both lie in the
interval[k; 2k], of width w < k. But they must be at
leastk away, a contradiction.

Altogether, we have shown that every possible case leads
to a contradiction. This proves that the initial assumption,
λ < h + 3k, is false. This proves the proposition.

4 Regular grids of degree 4

4.1 Upper bounds for G4

Proposition 7:λh,k(G4) ≤ h + 3k when h ≤ k
2.

Proof: Consider theL(1, 2)-labelling whose general pattern
is depicted in Figure 4(a). This labelling has span 7. If we
now substitute labels 0, h, k, h + k, 2k, h + 2k, 3k, h + 3k

to labels 0, 1, . . . , 7, the new labelling we obtain is an
L(h, k)-labelling of G4. Indeed, it is easy to see that
whenh ≤ k/2, each pair of consecutive labels differs by
at leasth, while each other pair of distinct labels differs by
at leastk. Moreover, the largest label used ish + 3k, hence
the result.

Proposition 8:λh,k(G4) ≤ min {7h, 4k} when k/2 ≤ h ≤ k.

Proof: By Lemma 2, sincek/2 ≤ h and since there exists
an L(1, 2)-labelling of G4 that is of span 7 (as shown in
Figure 4(a)), we know there exists anL(h, k)-labelling of
G4 of span 7h.

Analogously, sinceh ≤ k, we obtain anL(h, k)-labelling
of span 4k by Lemma 2; indeed, there exists anL(1, 1)-
labelling ofG4 that is of span 4 (whose pattern is shown in
Figure 4(b), see also Battiti et al., 1999).

Figure 4 General patterns forL(h, k)-labellings ofG4:
(a)L(1, 2); (b) L(1, 1); (c) L(3, 2)
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Proposition 9:λh,k(G4) ≤ 3h + k when 3k/2 ≤ h ≤ 5k/3.
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Proof: Consider theL(3, 2)-labelling of G4 whose general
pattern is depicted in Figure 4(c). This labelling has span
11. If we now substitute labels 0, h − k, k, h, 2h − k, h +
k, 2h, 3h−k, 2h+k, 3h, 4h−k, 3h+k to labels 0, 1, . . . , 11,
the new labelling we obtain is anL(h, k)-labelling ofG4. By
construction, any pair of labels that are at least 3 away in the
list differs by at leasth, while any pair of labels that is at least
2 away in the list differs by at leastk, because we supposed
3k/2 ≤ h. Moreover, the largest label used is 3h + k, hence
the result.

Proposition 10:λh,k(G4) ≤ 11k/2 when 11k/8 ≤ h ≤ 3k/2.

Proof: It is known (see Calamoneri (2003)) thatλh,k(G4) ≤
4h whenh ≥ k. Sinceλh,k is a non decreasing function,
Proposition 4.1 implies thatλh,k(G4) ≤ 11k/2 when
11k/8 ≤ h ≤ 3k/2.

4.2 Lower bounds for G4

Proposition 11:λh,k(G4) ≥ h + 3k when h ≤ k.

Proof: This bound directly comes from Lemma 1.

5 Regular grids of degree 6

Proposition 12:λh,k(G6) = 6k when h ≤ k.

Proof: The upper bound is proved observing that sinceh ≤ k,
we obtain anL(h, k)-labelling of span 6k by Lemma 2 ;
indeed, there exists anL(1, 1)-labelling of G6 of span
6, whose general pattern is shown in Figure 5 (see also
Battiti et al., 1999). The lower bound directly comes from
Lemma 1.

Figure 5 General pattern of anL(1, 1)-labelling ofG6

of span 6
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6 Regular grids of degree 8

6.1 Upper bounds for G8

Proposition 13:λh,k(G8) ≤ 8k when h ≤ k.

Proof: Since h ≤ k, we obtain anL(h, k)-labelling of
span 8k by Lemma 2 ; indeed, there exists anL(1, 1)-
labelling of G8 of span 8 (whose general pattern shown in
Figure 6(a)).

Proposition 14: λh,k(G8) ≤ min {8h, 10k} when
k ≤ h ≤ 2k.

Figure 6 General patterns forL(h, k)-labellings ofG8:
(a)L(1, 1); (b) L(2, 1); (c) L(3, 1)
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Proof: Once again we exploit theL(1, 1)-labelling of G8

whose general pattern is depicted in Figure 6(a). If we
substitute 0, h, 2h, . . . , 8h to labels 0, 1, . . . , 8, the new
labelling we obtain is anL(h, k)-labelling of G8. Indeed,
it is easy to see that each pair of consecutive labels differs by
at leasth, and thus by at leastk sincek ≤ h. Moreover, the
largest label used is 8h, hence the result.

The upper bound of 10k comes from theL(2, 1)-labelling
of G8 whose general pattern is shown in Figure 6(b). If we
substitute 0, k, 2k, . . . , 10k to labels 0, 1, . . . , 10, the new
labelling we obtain is anL(h, k)-labelling of G8. Indeed,
it is easy to see that whenk ≤ h ≤ 2k, each pair of non
consecutive labels differs by at least 2k ≥ h, while any pair
of distinct labels differs by at leastk. Moreover, the largest
label used is 10k, hence the result.

Proposition 15: λh,k(G8) ≤ min {5h, 14k} when
2k ≤ h ≤ 3k.

Proof: Consider the L(2, 1)-labelling whose general
pattern is described in Figure 6(b). This labelling has span
10. If we now substitute 0, k, h, h + k, 2h, 2h + k, 3h, 3h +
k, 4h, 4h + k, 5h to labels 0, 1, . . . , 10, the new labelling
we obtain is anL(h, k)-labelling of G8. Indeed, it is easy
to see that each pair of non consecutive labels differs by
at leasth. On the other hand, since 2k ≤ h, any pair of
distinct labels differs by at leastk. Moreover, the largest label
used is 5h.

Analogously, the other bound is given using anL(3, 1)-
labelling, such as the one whose general pattern is shown in
Figure 6(c). This labelling is of span 14. If we now substitute
0, k, 2k, . . . , 14k to labels 0, 1, . . . , 14, the new labelling we
obtain is anL(h, k)-labelling ofG8. Indeed, whenh ≤ 3k,
each pair of labels that are at least 3 away in the list differs
by at least 3k ≥ h, while any pair of distinct labels differs by
at leastk. Moreover, the largest label used is 14k, hence the
result.

Proposition 16:λh,k(G8) ≤ 4h + 2k when 3k ≤ h ≤ 6k.

Proof: Starting from theL(3, 1)-labelling used in the
previous proof (cf. also Figure 6(c)) of span 14, we substitute
labels 0, k, 2k, h, h + k, h + 2k, 2h, 2h + k, . . . , 4h, 4h +
k, 4h + 2k to labels 0, 1, . . . , 14. This new labelling is also
anL(h, k)-labelling ofG8. Indeed, each pair of labels that are
at least 3 away in the list differs by at leasth by construction,
while any pair of distinct labels differs by at leastk because
h ≥ 3k. Moreover, the largest label used is 4h + 2k, hence
the result.
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Proposition 17:λh,k(G8) ≤ 3h + 8k when h ≥ 6k.

Proof: Consider the labelling whose general pattern is
depicted in Figure 7(a). This labelling is anL(1, 1)-
labelling of span 11, with the additional property that the
only consecutive labels that can appear on neighboring
nodes are of the form 3i + 2 and 3(i + 1). We now replace
any labell of this labelling by a new label, thanks to the
following rule (cf. Figure 7(b)): any label of the form
l = 3i + j (i = 0, 1, 2, 3, j = 0, 1, 2) is replaced by
l′ = (h + 2k)i + jk. In this new labelling, any pair of
labels of the form 3i + 2 and 3(i + 1) is now separated by
h. Moreover, the labelling we started from is anL(1, 1)-
labelling, and any two differing labels in the new labelling
are at leastk away. Thus, this new labelling is anL(h, k)-
labelling, of span 3h + 8k.

Figure 7 (a) General pattern of anL(1, 1)-labelling
of G8 and (b) general pattern of theL(h, k)-labelling
we derive
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6.2 Lower bounds for G8

Proposition 18:λh,k(G8) ≥ 8k when h ≤ k.

Proof: This bound directly comes from Lemma 2.

Proposition 19:λh,k(G8) ≥ 2h + 6k when k ≤ h ≤ 3k.

Proof: Consider any optimalL(h, k)-labelling ofG8. Let λ

be the greatest label. Let us consider a labelx which is neither
0 norλ (note that there must exist one sinceG8 containsK3

as an induced subgraph ; note also that necessarily,x lies
in the interval[h; λ − h]). Now, consider its 8 neighbours,
sayv1, . . . , v8. Then no other label thanx can be used in
the interval[x − h; x + h] for thevis. However, all thevis
are pairwise connected by 2-length paths, so they must be
at leastk away from each other. If there areα (respectively
β) labels for thevis in the interval[0; x − h] (respectively
[x + h; λ]), then we must have(x − h) − (α − 1)k ≥ 0 and
λ ≥ (x+h)+(β−1)k, with α+β = 8. Sinceλh,k(G8) = λ,
we conclude thatλh,k(G8) ≥ 2h + (α + β − 2)k, hence the
result.

Proposition 20:λh,k(G8) ≥ 3h + 3k when h ≥ 3k.

Proof: Firstly, observe that we haveλh,k(G8) ≥ 3h + k.
Indeed, consider an optimalL(h, k)-labelling ofG8, a node
labeled 0, and the set of its neighbors (see Figure 8). Wlog,
suppose min{a, b, c} ≤ min{e, f, g}. Sincea, b andc are

neighbours of 0, then we have min{a, b, c} ≥ h. And since
any node amonge, f and g are connected by a 2-length
path to any node amonga, b and c, we conclude that
min{e, f, g} ≥ h + k. Finally, sincee, f andg induce a
K3, we have max{e, f, g} ≥ 3h + k.

Figure 8 Neighbourhood of a node labelled 0 inG8

0 cg

a bh

e df

However, we can derive a better lower bound of 3h +
3k, taking into account nodesd and h in addition to
the previous study. This bound then derives from a very
tedious case by case analysis that is not developed here.
Instead, we have run an exhaustive search by computer
on the grid restricted to those nine nodes. The source
and binary codes corresponding to this search are available
at the following website: http://www.sciences.univ-
nantes.fr/info/perso/permanents/fertin/Lhk/Lhk.c).

7 Concluding remarks

In this paper, we have studied theL(h, k)-labelling problem
on regular grids of degree 3, 4, 6 and 8, and we have improved,
in many different cases, the bounds on theL(h, k) number
in each of these classes of graphs. A graphical representation
of our results is depicted in Figure 9: bold lines in this figure
are results from this paper, grey lines are previously known
results, and grey zones represent the gaps that still exist
between the known lower and upper bounds.

Though we managed to obtain tight bounds in several
cases, there are still some other cases for which the gap is not
closed, and it actually looks difficult to improve the bounds
without using case by case analysis arguments, as we have
sometimes done in this paper. However, a natural question
consists in closing the gaps that still remain in all the four
classes of graphs considered here.

Moreover, as observed in the introduction, whenh < k

we have considered in this paper themax-based model,
that imposes a condition on labels of nodes connected by a
2-length path instead of using the concept ofdistance 2
(we recall that whenh ≥ k, the two definitions coincide).
Hence, it is also natural to ask for a similar study in the case
h < k, but using this time thedistance-based definition. We
note that this makes sense only forG6 andG8, since there
are no triangles inG3 andG4, and thus in that case the two
definitions coincide. Moreover, since themax-based model is
by definition more restrictive than thedistance-based model,
the upper bounds we obtain in themax-based model also
apply in thedistance-based model, while this is not a priori
the case for lower bounds.
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Figure 9 Summary of the results achieved in this paper: bold lines are results from this paper, grey lines are previously known
results, and grey zones represent the gaps that still exist between the known lower and upper bounds
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