
Local dependency dynamic programming in the
presence of memory faults
Saverio Caminiti, Irene Finocchi, and Emanuele G. Fusco

Department of Computer Science, Sapienza University of Rome
Via Salaria 113, 00198 Rome, Italy
{caminiti,finocchi,fusco}@di.uniroma1.it

Abstract
We investigate the design of dynamic programming algorithms in unreliable memories, i.e., in
the presence of faults that may arbitrarily corrupt memory locations during the algorithm exe-
cution. As a main result, we devise a general resilient framework that can be applied to all local
dependency dynamic programming problems, where updates to entries in the auxiliary table are
determined by the contents of neighboring cells. Consider, as an example, the computation of
the edit distance between two strings of length n and m. We prove that, for any arbitrarily small
constant ε ∈ (0, 1] and n ≥ m, this problem can be solved correctly with high probability in
O
(
nm+ αδ1+ε) worst-case time and O(nm + nδ) space, when up to δ memory faults can be

inserted by an adversary with unbounded computational power and α ≤ δ is the actual number
of faults occurring during the computation. We also show that an optimal edit sequence can be
constructed in additional time O

(
nδ + αδ1+ε). It follows that our resilient algorithms match

the running time and space usage of the standard non-resilient implementations while tolerating
almost linearly-many faults.

1998 ACM Subject Classification B.8 [Performance and reliability]; F.2 [Analysis of algorithms
and problem complexity]; I.2.8 [Dynamic programming].

Keywords and phrases Unreliable memories, fault-tolerant algorithms, local dependency dy-
namic programming, edit distance.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Dynamic random access memories (DRAM) are susceptible to errors, where the logical state
of one or multiple bits is read differently from how it was last written. Such errors may be due
either to hardware problems or to transient electronic noises [14]. A recent large-scale study
of DRAM memory errors reports data collected in the field from Google’s server fleet over a
period of nearly 2.5 years [20] observing DRAM error rates that are orders of magnitude
higher than previously reported in laboratory conditions. As an example, a cluster of 1000
computers with 4 gigabytes per node can experience one bit error every three seconds, with
each node experiencing an error every 40 minutes. If errors are not corrected, they can lead
to a machine crash or to applications using corrupted data. Silent data corruptions are a
major concern in the reliability of modern storage systems, since even a few of them may be
harmful to the correctness and performance of software. To cope with this, a recent trend
is to design applications that are more tolerant to faults: this “robustification” of software
involves re-writing it so that dealing with faults simply causes the execution to take longer.
Unfortunately, most algorithms and data structures are far from being robust: since the
contents of memory locations are supposed not to change throughout the execution unless
they are explicitly written by the program, wrong steps may be taken upon reading corrupted

© John Q. Open and Joan R. Access;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Local dependency dynamic programming in the presence of memory faults

values, yielding unpredictable results. Coping with memory faults appears to be of particular
importance for all those applications handling massive data sets, for long-living processes,
for safety critical applications in avionics systems, and for cryptographic protocols, that can
be compromised by fault-based attacks that work by inducing very timing-precise bit flips.

Related work. Algorithmic research related to memory errors spans more than thirty
years. Starting from the “twenty questions game” posed by Rényi and Ulam in the late 70’s,
many results have been obtained in the liar model: see, e.g., the extensive survey in [18].
More recently, sorting and selection have been studied in the “just noticeable difference
model”, where the outcome of comparisons is unpredictable if the compared values are
within a fixed threshold [1]. All these works typically assume transient comparator failures,
but no corruption of data. Destructive faults have been first investigated in the context
of fault-tolerant sorting networks [17], and many subsequent works have focused on the
design of resilient data structures in a variety of (hardly comparable) models. Pointer-based
data structures are the subject of [2] and error-correcting data structures for fundamental
problems related to membership have been presented in [7, 9]. The more restrictive problem
of checking (but not recovering) the behavior of large data structures that reside in an
unreliable memory has also received considerable attention [3, 8].

A variety of resilient algorithms have been designed in the faulty-memory random access
machine (faulty RAM) introduced in [12], where an adversary can corrupt at most δ memory
cells of a large unreliable memory during the execution of an algorithm. The algorithms can
exploit knowledge of δ, which is a parameter of the model, and the existence of a constant
number of incorruptible registers, but do not require error detection capabilities. Resiliency
is achieved if a problem is solved correctly (at least) on the set of uncorrupted values. This
relaxed definition of correctness fits naturally sorting and searching problems addressed so far
in this model [10], as well as the design of resilient data structures such as dictionaries [11]
and priority queues [15]. As an example, given a set of n values, it is possible to sort correctly
the subset of uncorrupted values in a comparison-based model using optimal Θ(n logn) time
when δ = O(

√
n) [10]. Resilient counters in the faulty RAM model are described in [6],

showing different tradeoffs between the time for incrementing a counter and its additive error.
Motivated by the impact of memory errors on applications operating with massive data sets,
the connection between fault-tolerance and I/O-efficiency is investigated in [5], providing the
first external-memory algorithms resilient to memory faults.

Our results. In spite of the wealth of results summarized above, it remains an open question
whether powerful algorithmic techniques such as those based on dynamic programming can
be made to work in the presence of faults. This has been regarded as an elusive goal
for many years in a variety of faulty memory models. In this paper we provide the first
positive answers to this question by showing how to implement a large class of dynamic
programming algorithms resiliently in unreliable memories. We consider the faulty RAM
model introduced in [12] and we illustrate our techniques using as a case study the problem of
computing the edit distance between two strings of length n and m. A simple-minded resilient
implementation of the standard dynamic programming algorithm for edit distance could be
based on replicating all data (string symbols and table values) 2δ + 1 times. By applying
majority techniques, this would allow to tolerate up to δ faults at the cost of a multiplicative
Θ(δ) overhead on both space usage and running time. Hence, only a constant number of
faults could be tolerated while maintaining the standard O(nm) time bound. In contrast, we
devise algorithms that preserve this bound while tolerating, with high probability, up to an
almost linear number of faults. We will prove that this is nearly optimal. More formally, we

Saverio Caminiti, Irene Finocchi, and Emanuele G. Fusco 3

show that the edit distance between two strings of length n and m can be correctly computed,
with high probability, in O

(
nm+ αδ1+ε) worst-case time and O(nm + nδ) space, when

α ≤ δ faults occur during the computation, n ≥ m, and ε is an arbitrarily small constant in
(0, 1]. Our algorithms exploit knowledge of δ and only a constant number of private memory
words. If the private memory can be enlarged to O(log δ) words, the fault-dependent additive
term in the running time becomes O(αδ). The framework we provide is general enough
to be applied to all local dependency dynamic programming problems, where updates to
entries in the auxiliary table are determined by the contents of neighboring cells: this is
a significant class of problems that includes, e.g., longest common subsequence and many
sequence alignment problems in bioinformatics. Our framework can be made deterministic,
yielding an algorithm that tolerates a logarithmic number of faults, and can be extended
to incorporate well-known optimizations of dynamic programming, such as Hirschberg’s
space-saving technique [13] and Ukkonen’s distance-sensitive algorithm [21]. Due to the lack
of space, some proofs and details are omitted.

Techniques. Our resilient implementation does not rely on any cryptographic assumption.
Instead, it hinges upon a novel combination of majority techniques (which are a typical but
expensive error correction method), read and write Karp-Rabin fingerprints (to detect faults),
and an asymmetric, hierarchical decomposition of the dynamic programming table into
rectangular slices of height δ and decreasing width (to bound the cost of error recovery). We
remark that, although fingerprints have been successfully used in the context of checking the
correctness of data structures, they alone are not powerful enough in the faulty RAM model,
where the goal is to recover the computation when a fault is detected without restarting it
from scratch. Hence, to obtain the O

(
αδ1+ε) additive term in the running time, we exploit

as a main ingredient a hierarchy of O(1/ε) levels of data replication. At all levels, except
for the last one, data are stored semi-resiliently in the unreliable memory, by replicating
each variable o(δ) times. Notice that semi-resilient data could be corrupted by the adversary,
but at the cost of a large number of faults: this will allow us to amortize the cost of a slice
recomputation (semi-resilient variables need to be appropriately “refreshed” upon detection
of faults, so that the cost of a slice recomputation can always be charged to distinct faults).
O(1/ε) long-distance fingerprints stored in safe memory make it possible to backtrack the
computation, at any time, to a checkpoint that is safe with high probability. Combining
semi-resiliency with refreshing and long-distance fingerprints allows us to guarantee the
correctness of the table computation while bounding the error recovery cost.

A different technique must be used during the traceback process that computes an
optimal solution from its optimal value: at this point, long-distance fingerprints are no
longer available, and thus we have no guarantee that semi-resilient variables are correct.
To overcome this issue, we proceed incrementally in O(1/ε) passes: at each pass, either we
increase our confidence that the computed path is correct, or we are guaranteed that the
adversary has introduced a large number of faults.

2 Preliminaries

We assume a unit cost RAM with wordsize w. We distinguish between unreliable, safe, and
private memory. Up to δ unreliable memory words may be corrupted during the execution
of an algorithm by an adaptive adversary with unlimited computational power. We denote
by α ≤ δ the actual number of faults occurring during the computation. No error-detection
mechanism is provided. We have O(1) safe memory words that the adversary can read but
not overwrite: without this assumption, no reliable computation would be possible [12].

4 Local dependency dynamic programming in the presence of memory faults

Similarly to [3, 10, 11], we also assume O(1) private memory words, that the adversary
cannot even read: this is necessary to prevent the adversary from discovering random bits
used by the algorithms.

Resilient variables. A resilient variable x consists of 2δ + 1 copies of a standard
variable [11]. A reliable write operation on x means assigning the same value to each copy.
Similarly, a reliable read means calculating the majority value, which is correct since at most
δ copies can be corrupted. This can be done in Θ(δ) time with the majority algorithm in [4],
which scans the 2δ + 1 values keeping a single majority candidate and a counter in safe
memory. Throughout the paper we will also make use of r-resilient variables (with r < δ),
which consist of 2r + 1 copies of a standard variable. A r-resilient read operation on an
(at least) r-resilient variable is obtained by computing the majority value on 2r + 1 copies.
Notice that a r-resilient variable can be corrupted by the adversary, but at the cost of at
least r + 1 faults.

Generation of random primes. Random primes are usually generated by selecting a
number uniformly at random and testing it for primality with, e.g., the Miller-Rabin test [19].
If the test is successful, the selected number is returned, otherwise a new candidate is selected
and the process is iterated. The Miller-Rabin test has one-sided error: it can output prime
for a composite number with a provably small probability. We keep this scheme almost
unchanged, except for bounding the number of iterations so as to avoid having an expected
running time. Although the probability of failure in our case does not uniquely depend on
the Miller-Rabin test, it is not difficult to prove that this probability remains small and that
the algorithm can be executed in our model:

I Lemma 1. For any constants γ, c > 0, it is possible to independently select α (not
necessarily distinct) prime numbers in I = [nc−1, nc], uniformly at random, with error
probability bounded by α/nγ . Each prime selection requires time polylogarithmic in n using a
constant number of memory words.

3 An O (nm+ αδ2) algorithm for edit distance

Given two strings X = x1 · · · xn and Y = y1 · · · ym over a finite alphabet Σ, the edit distance
(a.k.a. Levenshtein distance) between X and Y is the number of edit operations (insertions,
deletions, or character substitutions) required to transform X into Y . Let ei,j , for 0 ≤ i ≤ n
and 0 ≤ j ≤ m, be the edit distance between prefix x1 · · · xi of string X and prefix y1 · · · yj
of string Y (the prefix is empty if i = 0 or j = 0). Values ei,j are defined as follows:

ei,j :=
{
ei−1,j−1 if i, j > 0 and xi = yj
1 + min {ei−1,j , ei,j−1, ei−1,j−1} if i, j > 0 and xi 6= yj

(1)

where ei,0 = i, e0,j = j, and en,m represents the edit distance of X and Y . The standard
dynamic programming algorithm stores values ei,j , for i, j > 0, in a n×m table M whose
entries can be computed, e.g., in column-major order in Θ(nm) time. While calculating the
edit distance only requires to keep in memory two table columns, an optimal edit sequence
can be obtained by a tracing back process that reads table M backward: in this case, the
space usage of the standard implementation is Θ(nm).

When executed in faulty memories, such a dynamic programming algorithm could provide
a wrong result, since undetected memory faults could corrupt either the input strings or
the values stored in table M and could be easily propagated to M [n,m]. In the rest of
this section we describe a basic resilient edit distance algorithm (RED) with running time

Saverio Caminiti, Irene Finocchi, and Emanuele G. Fusco 5

(a) (b) (c)

Figure 1 a) Table decomposition and resilient block boundaries (gray color) when n ≥ m ≥ δ ;
b) block computation with unreliable input; c) hierarchical table decomposition for k = 3.

O(nm+ αδ2). In Section 4 we will show how to decrease the fault-dependent additive term
in the running time. W.l.o.g., throughout the paper we assume that n ≥ m; we also assume
that n and |Σ| fit into a memory word of size w.

Algorithm RED mimics the behavior of the standard non-resilient dynamic programming
approach, performing additional work in order to cope with memory faults. During the
computation of table M , we compute fingerprints that allow us to determine whether some
memory fault occurred in a given set of memory words. Once detected, a fault should not
force us to recompute the entire table: this would result in a Θ(δ) multiplicative overhead
on the running time in the worst case. Hence, we divide the table in blocks and we write the
boundaries of the blocks reliably in the unreliable memory. Upon detection of a failure, we
recompute only the current block. We now describe the table decomposition into blocks, the
computation of each block, and the usage of fingerprints to detect faults. We also describe
how to handle faulty input strings.

Table decomposition. The n ×m table M is split into square blocks of side length δ

(see Figure 1a). Algorithm RED populates table M block by block, considering blocks in
column-major order. The last row and column of each block are written reliably in the
unreliable memory, using 2δ + 1 memory words for each value as described in Section 2. It
follows that each block of δ2 values takes roughly 5δ2 memory words. Blocks are smaller
(and not necessarily square) on the boundaries, whenever n or m are not divisible by δ: in
this case the last row and/or column may not be written reliably.

Block computation. Let Bi,j be an internal block (boundary blocks can be treated
similarly). Entries of Bi,j are processed in column-major order. The first column of Bi,j is
computed reliably: this is possible because row δ of block Bi−1,j , column δ of Bi,j−1, and
entry Bi−1,j−1[δ, δ] are written reliably in the unreliable memory. During the computation
of column 1, a fingerprint ϕ1 is calculated (details are given below). Let us now consider a
generic column k, for k > 1. Each value v1, . . . , vδ in column k is written unreliably in the
faulty memory as soon as it is computed, except for the values in row δ and in column δ
that are written reliably. While scanning column k top-down, the algorithm also computes
two fingerprints: a fingerprint ϕk that is a function of values v1, . . . , vδ written to column
k, and a fingerprint ϕk−1 that is a function of values read from column k − 1. The two
fingerprints, together with the fingerprint ϕk−1 previously computed during the calculation
of column k − 1, are stored in the private memory. When column k is completed, algorithm

6 Local dependency dynamic programming in the presence of memory faults

RED compares fingerprints ϕk−1 and ϕk−1: we call this a fingerprint test. If the fingerprints
match, both of them are discarded and the computation of column k + 1 begins. Otherwise,
a memory fault has been detected: in this case the computation of the block is restarted.

Fault detection. We use Karp-Rabin fingerprints [16] to detect faults. The fingerprint
for column k is defined as ϕk = v1 ◦ v2 ◦ . . . ◦ vδmod p, where the δ values vh of column
k are considered as bit strings of length equal to the word size w and symbol ◦ denotes
string concatenation. The concatenation v1 ◦ v2 ◦ . . . ◦ vδ is thus an integer, upper bounded
by 2wδ, corresponding to the binary representation of the entire column k. Number p is a
sufficiently large prime, chosen uniformly at random at the beginning of the execution of
the algorithm and after each fault detection. Using logical shifts and Horner’s rule, each
fingerprint can be incrementally computed while generating the values vh in time Θ(δ). All
computations related to the fingerprints are performed in O(1) private memory words, so
that no information regarding the prime number p is revealed to the adversary.

Handling the input strings. We assume each symbol in strings X and Y to be written
reliably in the unreliable memory after its first reading (it is clearly impossible to detect a
fault corrupting an input symbol before it is read for the first time). In order to compute
matrix M in O(nm) time, each comparison of the input symbols required by Equation 1
must be performed in constant (amortized) time. Let Bi,j be a δ × δ block. The input
values involved in the computation of Bi,j are xiδ+1, . . . , x(i+1)δ and yjδ+1, . . . , y(j+1)δ (see
Figure 1b). Consider a column k of block Bi,j . Character yjδ+k is the only character of
string Y needed to compute the values in column k: we read yjδ+k reliably and amortize this
Θ(δ) operation on the cost of computing the δ values of column k. Conversely, all characters
xiδ+1, . . . , x(i+1)δ are required to compute each column of Bi,j , and we cannot afford reading
each of them reliably δ times. These input characters are thus read reliably once, while
computing the first column of the block, producing a fingerprint ϕx that is kept in the private
memory. While processing a column k > 1, values xiδ+1, . . . , x(i+1)δ are read unreliably (i.e.,
considering only one copy) and a fingerprint ϕx,k is computed. If fingerprint ϕx,k is different
from ϕx, a memory fault has been detected: the resilient variables xiδ+1, . . . , x(i+1)δ are
refreshed and the entire block is recomputed from scratch.

We now analyze algorithm RED, focusing first on correctness.

I Lemma 2. For any constant β > 0, algorithm RED is correct with probability larger than
1− 1/nβ, when the upper bound δ on the number of memory faults is polynomial in n.

Proof. Assume that the algorithm fails either when a composite number is generated instead
of a prime, or when a fingerprint test does not detect a memory fault. This is an overestimation
of the actual probability of error. Let B be a block that gets corrupted during its own
computation. Assume for the time being that values in the boundaries of its neighboring
blocks are correct. Then, the values written to column 1 of block B are also correct, because
the neighboring entries used to compute column 1 and all input symbols involved are read
reliably. By applying standard techniques, it is possible to prove that the probability that
a fingerprint test does not detect a memory fault during the computation of B is at most
(logn)/(σnc−1) < 1/(σnc−2), for some constant σ > 0.

Now consider a game with two players. The game is divided into rounds. At each round
player 1 (the algorithm) chooses uniformly at random a prime p ∈ I and player 2 (the
adversary) chooses a number µ ≤ 2wd. If p divides µ, then player 2 wins, otherwise the next
round begins. Player 1 wins if player 2 does not win in α rounds. This game models the
behavior of algorithm RED, provided that no composite number is generated instead of a

Saverio Caminiti, Irene Finocchi, and Emanuele G. Fusco 7

prime. Namely, the probability for algorithm RED of being correct is lower bounded by the
probability for player 1 of winning the game.

Let pi and µi be the numbers chosen by the two players at round i. Let Di be the
event “player 2 does not win at round i”. If player 2 did not win in rounds 1, . . . , i− 1, the
probability of Di equals the probability that pi does not divide µi. From the discussion above,
we have Pr

{
Di|

⋂i−1
j=1 Dj

}
≥ 1− 1/(σnc−2). The probability that player 1 wins is equal to

Pr {
⋂α
i=1 Di}, which is at least 1− α/(σnc−2) by the chain rule of conditional probability.

We conclude by taking into account the probability for algorithm RED of generating at
some round a composite number instead of a prime. By Lemma 1, the probability that all
the α numbers are prime is at least 1− α/nγ , for any constant γ > 0. Hence, algorithm RED
is correct with probability larger than or equal to (1− α/(σnc−2))(1− α/nγ). Since α ≤ δ is
polynomial in n, by appropriately choosing values c and γ the correctness probability can be
made larger than 1− 1/nβ , for any constant β > 0. J

It is not difficult to see that the space usage of algorithm RED is Θ(nm) when m = Ω(δ),
and Θ(nδ) otherwise. Lemma 3 addresses the running time of the algorithm.

I Lemma 3. The worst-case running time of algorithm RED is O(nm+ αδ2), where α ≤ δ
is the actual number of memory faults occurring during the execution.

Proof. Let us distinguish between successful and unsuccessful block computations. Unsuc-
cessful block computations account for the time spent by the algorithm computing blocks
that are then discarded due to the detection of a memory fault. This time also includes the
generation of random primes, except for the first one. Successful block computations account
for the remaining time, including the calculation of fingerprints.

Successful computations. Computing the first column of a block requires constantly-many
reliable reads for each entry, i.e., O(δ2) time. The same bound holds for the last column, that
is written reliably. Computing any internal column requires instead O(δ) time, including the
time to compute fingerprints incrementally. Since there are O(δ) columns in a block, the
total time spent in a block is O(δ2). The overall time for successful block computations is
thus O(nm), because the number of blocks is dn/δe × dm/δe.

Unsuccessful computations. Each block recomputation is due to a fingerprint mismatch, that
can only be caused by a memory fault (either in the matrix cells or in some input symbol
from string X). Since all block cells are recomputed and, if necessary, the input symbols
are refreshed reading their values reliably, each block recomputation can be charged to a
distinct memory fault. It follows that at most α block computations can be discarded during
the entire execution of algorithm RED. Refreshing δ input values and computing the block
take time O(δ2), which implies an overall time O(αδ2) for unsuccessful computations. The
generation of (at most α) prime numbers does not affect this asymptotic running time (see
Lemma 1). J

4 Error recovery via long distance fingerprints

Using a one-level decomposition of the dynamic programming table M into squares of side
length δ yields an algorithm with an additive term O(αδ2) in the running time, due to
recovery from errors (a single error determines the complete recomputation of a δ × δ block).
In this section we show how to decrease this time to O(αδ1+ε), for any arbitrarily small
constant ε ∈ (0, 1]. The improved algorithm uses an asymmetric decomposition (see Figure 1c)

8 Local dependency dynamic programming in the presence of memory faults

and k = d1/εe different resiliency levels. At each level i ∈ [1, k], it relies on dδi/ke-resilient
variables. To simplify the notation, we define δi = dδi/ke.

Consider a given δ × δ block B. Every δi columns, we write a δi-resilient column (and
all δj-resilient versions of this column for j < i). In particular, the last column of each
internal block is written at all resiliency levels. The non-resilient columns of matrix M are
regarded as having resiliency level 0. During the computation of block B, for each resiliency
level i we keep (in the private memory) the fingerprint of the last δi-resilient column. These
long distance fingerprints, similarly to those described in Section 3, are computed while
writing column values. For each resiliency level, we independently select a prime number for
computing the fingerprints.

Upon detection of a fault, error recovery is done starting from the last δ1-resilient column.
Values in this column are read by majority; read values are used to recompute the fingerprint
at level 1 which is then compared with the one stored in the private memory. If these
fingerprints do not match, the recovery starts again from resiliency level 2, i.e., from the last
δ2-resilient column. In general, a level i fingerprint mismatch induces a recovery starting
from the last δi+1-resilient column. When a fingerprint mismatch arises at resiliency level
i, we generate a new random prime for level i, we read by majority all values of the last
δi+1-resilient column (i.e., we perform δ read operations at resiliency level i+ 1), and we use
these values to refresh all δj-resilient versions of this column, for j ≤ i, recomputing their
respective fingerprints.

Now consider the input symbols. As in Section 3, symbols from string Y are always
read reliably, while symbols from X are read reliably only once, at the beginning of a block
computation, and then verified by means of fingerprints. We store δi-resilient copies of the
symbols in X at all resiliency levels. During the computation of a block, for each resiliency
level (including level 0), we keep one fingerprint for the segment of X of length δ involved in
that computation. All these fingerprints are obtained using independently selected prime
numbers and are computed at the beginning of the block computation by reading reliably
the input segment. Once a fingerprint mismatch on the input symbols is detected at level i,
the δi+1-resilient copy of the input segment is used to refresh all copies at level j ≤ i (the
previously computed fingerprint for resiliency level i+ 1 allows it to check the correctness
of the read values). A new random prime for level i is then selected and the fingerprints
for all refreshed levels are recomputed. Notice that a fingerprint mismatch at level 0 may
arise during block computation, while a mismatch at level i > 0 can only arise during error
recovery. Once the input symbols are correctly refreshed, normal computation is resumed by
recomputing the current column.

I Theorem 4. Let ε be an arbitrarily small constant in (0, 1]. The edit distance between two
strings of length n and m, with n ≥ m, can be correctly computed, with high probability, in
O
(
nm+ αδ1+ε) worst-case time and O(nm+ nδ) space, when δ is polynomial in n.

Proof. The correctness of the improved version of algorithm RED follows from Lemma 2
(details are deferred to the extended version of this paper). Similarly to the proof of
Lemma 3, we analyze the running time by distinguishing between successful and unsuccessful
computations. The asymptotic running time of successful computations is not affected by the
additional O(1/ε) fingerprints and by the δi-resilient columns. Now consider the unsuccessful
computations. Recovery at resiliency level i discards at most δ × δi/k entries of table M
and requires computing O(δ) majority values. Each δi-resilient read takes time O(δi/k), thus
yielding total O(δ1+i/k) time. A recovery at resiliency level i is due to at least δ(i−1)/k + 1
errors, either on the input symbols or in table M . Errors can be propagated by the algorithm
(during both refresh operations and forward block computations) only if a fingerprint test

Saverio Caminiti, Irene Finocchi, and Emanuele G. Fusco 9

fails, which is a low probability event. Hence, a fingerprint mismatch at resiliency level i− 1
may only arise if the majority value of some δi−1-resilient cell or input symbol has been
corrupted by the adversary. This gives an amortized time per fault of O(δ1+1/k), which
proves the theorem since k = d1/εe. J

Theorem 4 implies that, whenever m = Θ(n), algorithm RED matches the time and space
complexity of the standard non-resilient implementation while tolerating almost linearly-many
memory faults; specifically, up to δ = O

(
n2/(2+ε)) faults. Notice that saving reliably the

input strings requires time and space Ω(nδ). Hence, any resilient algorithm which tolerates
δ = ω(n) memory faults must have time and space complexity ω(n2). Hence, under the
assumption that the time and space complexity of the standard non-resilient implementation
cannot be exceeded, algorithm RED tolerates an almost optimal number of faults. If O(log δ)
private memory words are available (similarly to [3, 8]), the time bound given in Theorem 4
drops to O(nm+ αδ), thus allowing to tolerate an optimal linear number of faults.

5 Resilient traceback

Once table M has been computed, an optimal edit sequence transforming string X into
string Y can be obtained by computing a traceback path from entry M [n,m] to M [0, 0]. The
predecessor of an entry M [i, j] on the traceback path can be any of the neighboring entries
M [i− 1, j], M [i, j − 1], and M [i− 1, j − 1], satisfying Equation 1. It will be convenient to
assume that there is an arc from M [i, j] to its predecessor: the cost of the arc is 0 if xi = yj ,
and 1 otherwise. We define the cost of a traceback path as the sum of the costs of its arcs:
this corresponds to the edit distance of X and Y . We now describe how the traceback process
can be made resilient.

The computation proceeds backward block by block, starting from cell M [n,m]. Within
each block traversed by the traceback path, we compute the corresponding subsequence S of
the whole edit sequence, writing it reliably. Data replication on the resilient block boundaries
and on the input symbols allows, once S is computed, to check whether some error occurred
during the backward computation. In order to recover from an error at this point, we could
recompute first the block involved (by applying algorithm RED), and then subsequence S.
This would result in an additive overhead O(αδ2) on the total running time. To bound
this cost by O(αδ1+ε), we do not stick at computing each subsequence S reliably since the
beginning, but proceed incrementally starting from resiliency level 1 up to k = d1/εe. To this
aim, we exploit the δi-resilient columns written during the forward computation of matrix
M . The fact that column fingerprints are no longer available makes the task harder.

We regard each subsequence S as being divided into (at most) δ1/k segments, computed
at resiliency level k − 1. This subdivision proceeds hierarchically, down to resiliency level
1. As a base step, segments at resiliency level 0 are computed from the cells of matrix M :
these segments correspond to single arcs of the traceback path. A segment Si, at resiliency
level i, spans two δi-resilient columns (the right/left column, in some cases, can be replaced
by the bottom/top resilient row of the block). Si is computed by combining all the δ1/k

sub-segments at resiliency level i − 1 in which Si is logically divided. Sub-segments are
read, proceeding right to left, δi−1-resiliently, and their soundness is verified against the
corresponding input symbols, which are read δi-resiliently: we call this a consistency check
(the δi-resilient reads on the input symbols from string Y are performed on the first 2δi + 1
elements of the δ-resilient copy of Y). During this process, Si is also written δi-resiliently.

If a consistency check fails at a given cell c, the input symbols corresponding to the
row and column of c are refreshed and, if either endpoint of S lies on a resilient row, the

10 Local dependency dynamic programming in the presence of memory faults

corresponding cell is also refreshed. The recovery then starts from the closest δi-resilient
column to the left of c: all δj-resilient versions of this column, for j < i, are refreshed from
the δi-resilient values (read by majority) and the block slice is recomputed by applying the
improved version of algorithm RED. At the end of the slice computation, we check if the new
values stored on the closest δi-resilient column to the right of c match the old ones: if this is
not the case, recovery restarts at resiliency level i+ 1. At the end of the recovery phase, the
computation of Si restarts from sub-segments at resiliency level 1.

When the computation of a segment Si is completed, the algorithm checks if the cost
of the segment matches the difference between the cell values in matrix M corresponding
to its endpoints. These cells lie on δi-resilient columns (or on resilient rows on the block
boundaries) and their values are read δi-resiliently. Apart from refreshing the input values,
upon detection of a mismatch in the edit sequence cost, recovery is performed as described
above.

I Theorem 5. Given table M computed by algorithm RED, an edit sequence of cost M [n,m],
if any, can be computed with high probability in time O

(
nδ + αδ1+ε).

Proof. The correctness of all edit operations is verified at all resiliency levels by consistency
checks. Moreover, the edit cost of each segment is always verified against the edit distance.
Memory faults from any resiliency level i are never propagated to higher levels of resiliency.
Indeed, during error recovery, no δi+j-resilient value is modified starting from δi-resilient
reads, for any j ≥ 0. This implies that a segment at resiliency level i may be wrong
only if at least δi/k + 1 memory faults occurred. Since the adversary can insert at most δ
faults, the δ-resilient edit sequence, if constructed, is correct and has cost M [n,m]. This
sequence may not be optimal or the traceback algorithm may not be able to reconstruct it
only if a fingerprint test failed to detect a memory fault, which is a low probability event
(see Lemma 2). We now focus on the running time, distinguishing between successful and
unsuccessful segment computations.
Successful computation. The time spent to combine all δk−1-resilient segments is asymptoti-
cally higher than the time spent at all lower resiliency levels. This time is O(nδ), because
the edit sequence traverses O((n+m)/δ) blocks, and each block costs time O(δ2).
Unsuccessful computation. Consider a consistency check failure arising while computing a
segment at resiliency level i+ 1. Such a failure is due to at least δi/k + 1 faults and costs
O(δ1+(i+1)/k) time for recomputing δ×δ(i+1)/k matrix cells. If the δi+1-resilient column used
for recovery was correct, detected errors are removed from the matrix with high probability,
with an amortized O(δ1+1/k) cost per memory fault. If the δi+1-resilient column used for
recovery was corrupted, the adversary must have inserted at least δ(i+1)/k + 1 faults and the
recomputed cells of the matrix may still contain incorrect values after recovery. Two cases
may happen: either the forward recomputation of the matrix slice finds an inconsistency
with the following δi+1-resilient column, or no inconsistency is detected and a possibly wrong
δi+1-resilient segment is computed. In both cases, the number of memory faults inserted by
the adversary is large enough to obtain an amortized O(δ1+1/k) cost per fault, with recovery
done at a higher resiliency level. J

6 Extensions

Reducing space. Hirschberg proposed a technique to compute an optimal edit sequence
in time O(nm) using only linear space [13]. In our model, Ω(nδ) space is required for storing
the input reliably. This is better than Θ(nm) when δ = o(m). We now show that this bound

Saverio Caminiti, Irene Finocchi, and Emanuele G. Fusco 11

can be achieved by adapting Hirschberg’s technique to work in faulty memories. Hirschberg’s
algorithm is recursive. In the first step, it computes the edit distances between the first half
of string X and all prefixes of string Y , and between the remaining half of X reversed and
all prefixes of Y reversed. It then finds an optimal point to split Y , constructs a segment of
the optimal edit sequence, and recursively solves two smaller subproblems. We use algorithm
RED to obtain the edit distances on the forward and reversed substrings: since no traceback
is required, we discard a block as soon as all its neighboring blocks have been processed. The
space usage is thus O(nδ). The split point can be computed reliably in O(mδ) time. Each
recursive call pushes on the stack only O(1) variables, that are stored and reloaded reliably.
We end each branch of the recursion when the subproblem matrix has size bounded by δ × δ,
i.e., fits in a single block. It can be proved that this algorithm computes an optimal edit
sequence resiliently in time O(nm+ αδ1+ε) and optimal space Θ(nδ).

Taking advantage of string similarity. Ukkonen proved that an optimal edit sequence
can be computed in time and space O(emin{m,n}), where e is the edit distance between the
input strings [21]. Since e ≥ n−m, this improves over the standard dynamic programming
algorithm only when m = n− o(n), which implies min{m,n} = m = Θ(n). The main idea is
to assume that the edit distance e is upper bounded by a small value k and to compute only
Θ(k) diagonals of matrix M . If no edit sequence of cost ≤ k exists, k is doubled and the
computation is repeated. In the resilient implementation, we avoid considering blocks that
have empty intersection with the set of diagonals that have to be computed in the current
iteration. This results in a time and space complexity O(nmax{e, δ}), matching the result
from Ukkonen when δ = O(e). If δ = ω(e), the O(nδ) time and space bounds match those
required to handle the input reliably.

Local dependency dynamic programming. In the description of algorithm RED we
exploit no specific properties of the edit distance problem. Instead, the analysis benefits
from a few structural properties of the dynamic programming recurrence relation, that are
also typical of many other problems. The techniques described in this paper can be applied
to a variety of problems that can be solved via dynamic programming and, in particular, to
local dependency dynamic programming problems, where each update to an entry in the
auxiliary table is determined by the contents of the neighboring cells. The framework in
which our technique can be applied successfully can be described as follows.

Let us consider a generic d-dimensional dynamic programming algorithm, for any constant
d ≥ 2. Assume that the problem input consist of d sequences S1, . . . , Sd, each of length
n. The sequences are not necessarily distinct and the description can be easily generalized
to deal with different lengths. The algorithm computes an auxiliary table M of dimension
(n + 1)d. Each cell M [i1, . . . , id], with 0 ≤ i1, . . . , id ≤ n, is computed using a recurrence
relation. In particular, if any index is equal to 0, then M [i1, . . . , id] is initialized with a value
that depends only on i1, . . . , id. Otherwise, M [i1, . . . , id] is recursively computed from the
values of the 2d− 1 neighboring cells, where a cell M [j1, . . . , jd] is a neighbor of a distinct cell
M [i1, . . . , id] if, for each dimension h, either jh = ih − 1 or jh = ih. Besides the neighboring
cells, the computation of M [i1, . . . , id] can also use d input symbols, i.e., the ih-th symbol
from sequence Sh for 1 ≤ h ≤ d. We assume that the table is computed according to a fixed
regular pattern (e.g., along rows, columns, or diagonals when d = 2), and that M [n, . . . , n]
contains the solution. Using blocks of dimension δd, we can generalize our approach obtaining
the following result:

I Theorem 6. Let ε be an arbitrarily small constant in (0, 1]. A d-dimensional local
dependency dynamic programming table M of size nd can be correctly computed, with high

12 Local dependency dynamic programming in the presence of memory faults

probability, in O(nd + αδd−1+ε) worst-case time and O(nd + nδ) space, when δ is polynomial
in n. Tracing back can be done with high probability in additional time O(nδ + αδd−1+ε).

This yields resilient algorithms for d-dimensional problems that have the same running
time as the non-resilient implementations and can tolerate with high probability O(nd/(d+ε))
memory faults.

References
1 M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson. Sorting and selection with imprecise

comparisons. In ICALP (1), pages 37–48, 2009.
2 Y. Aumann and M. A. Bender. Fault tolerant data structures. In FOCS, pages 580–589,

1996.
3 M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of

memories. Algorithmica, 12(2–3):225–244, 1994.
4 R. S. Boyer and J. S. Moore. Mjrty: A fast majority vote algorithm. In Automated

Reasoning: Essays in Honor of Woody Bledsoe, pages 105–118, 1991.
5 G. S. Brodal, A. G. Jørgensen, and T. Mølhave. Fault tolerant external memory algorithms.

In WADS, pages 411–422, 2009.
6 G. S. Brodal, A. G. Jørgensen, G. Moruz, and T. Mølhave. Counting in the presence of

memory faults. In ISAAC, pages 842–851, 2009.
7 V. Chen, E. Grigorescu, and R. de Wolf. Efficient and error-correcting data structures for

membership and polynomial evaluation. In STACS, pages 203–214, 2010.
8 M. Chu, S. Kannan, and A. McGregor. Checking and spot-checking the correctness of

priority queues. In ICALP, pages 728–739, 2007.
9 R. de Wolf. Error-correcting data structures. In STACS, pages 313–324, 2009.

10 I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal resilient sorting and searching in the
presence of memory faults. Theor. Comput. Sci., 410(44):4457–4470, 2009.

11 I. Finocchi, F. Grandoni, and G. F. Italiano. Resilient dictionaries. ACM Transactions on
Algorithms, 6(1), 2009.

12 I. Finocchi and G. F. Italiano. Sorting and searching in faulty memories. Algorithmica,
52(3):309–332, 2008.

13 D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Commun. ACM, 18(6):341–343, 1975.

14 B. L. Jacob, S. W. Ng, and D. T. Wang. Memory Systems: Cache, DRAM, Disk. Morgan
Kaufmann, 2008.

15 A. G. Jørgensen, G. Moruz, and T. Mølhave. Priority queues resilient to memory faults.
In WADS, pages 127–138, 2007.

16 R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM J.
Res. Dev., 31(2):249–260, 1987.

17 F. T. Leighton, Y. Ma, and C. G. Plaxton. Breaking the θ(n log2 n) barrier for sorting with
faults. J. Comput. Syst. Sci., 54(2):265–304, 1997.

18 A. Pelc. Searching games with errors - fifty years of coping with liars. Theor. Comput. Sci.,
270(1–2):71–109, 2002.

19 M. O. Rabin. Probabilistic algorithm for testing primality. J. of Number Th., 12(1):128–138,
1980.

20 B. Schroeder, E. Pinheiro, and W. D. Weber. DRAM errors in the wild: a large-scale field
study. In SIGMETRICS/Performance, pages 193–204, 2009.

21 E. Ukkonen. Algorithms for approximate string matching. Information and Control, 64(1–
3):100–118, 1985.

	Introduction
	Preliminaries
	An O(nm+2) algorithm for edit distance
	Error recovery via long distance fingerprints
	Resilient traceback
	Extensions

