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Abstract

In this paper we show that the problem of finding a chordless path between a vertexs and a
vertex t containing a vertexv remains NP-complete in bipartite graphs, thereby strengthening
previous results on the same problem. We show a relation between this problem and two interval
operators: the simple path interval operator in hypergraphs and the even-chorded path interval
operator in graphs. We show that the problem of computing thetwo mentioned intervals is NP-
complete.
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1. Introduction

Given a graphG, a pathP of length k is a sequence (v0, v1, . . . , vk), k ≥ 0 of distinct vertices
such thatvivi+1, 1 ≤ i < k is an edge ofG. A chord of a path is an edge joining two non
consecutive vertices. A path ischordless (or induced) if it contains no chord. Here we discuss
the problem of finding a chordless path between two given verticess andt containing a specified
vertex v in bipartite graphs. This problem, called Cp3v, has been shown to be NP-complete
for general graphs [2, 14]. The Cp3v problem arises in the context of service deployment in
communication networks [14] and is related to the study of perfect graphs [2, 4, 6, 7, 5].

Let V be the set of vertices of a connected graph or hypergraph. Aninterval operator (also
called transit function in [3]) is a functionI : V × V → 2V with the property that{u, v} ⊆ I(u, v)
and I(u, v) = I(v, u) [19]. Usually the interval operator is defined in terms of a family of paths
in a graph (or in a hypergraph). Prime example of interval operator is thegeodesic interval in
a graph. It contains every vertex on every shortest path betweenu andv. Other examples of
interval operators are themonophonic (or induced-path) interval, which contains every vertex on
every chordless (induced) path betweenu andv, and theall-paths interval, which is the set of all
vertices lying on paths betweenu andv.

Given an interval operatorI, a subsetA of V is saidI-convex if I(u, v) ⊆ A for all u, v in A.
The I-convex hull of a subsetA of V is the smallestI-convex set containingA. Each interval
operator defines analignment on V. An alignment is a setL of subsets ofV, that satisfies the
following properties :

1. ∅,V ∈ L
2. X ∩ Y ∈ L for any two elementsX andY of L



the couple (V,L) is called aconvexity space [19, 16]. The elements ofL are exactly the convex
sets. An elementp of an I-convex setA is anextreme point of A if A − {p} is I-convex. If the
convexity space satisfies the following property (Minkowski-Krein-Milman property):

Every convex set is the hull of its extreme points

then it is called ageometric convexity.
Some works [2, 3, 10, 14, 16] have investigated the computational complexity of interval

operators and the complexity of computing the convex hulls for different type of convexities. In
[3] a number of specific interval operators (referred to as transit functions) and a list of some
basic facts about them are given, while in [2, 10, 14] it is shown that the monophonic interval
is computationally hard. An interesting fact is that for some families of paths, computing the
interval I is NP-hard, while computing theI-convex hull requires polynomial time. An example
of this is the monophonic convexity, whose interval, as we already mentioned, is NP-hard, while
computing the monophonic convex hull can be done in polynomial time [10, 16].

Other two instances of interval operators are thesimple path interval in hypergraphs and the
even-chorded path interval in graphs. The first one defines thesimple path convexity (s.p. con-
vexity) in hypergraphs, while the second one defines thestrongly chordal convexity (s-convexity)
in graphs [13]. In [13], both the s. p. convexity and the s-convexity are studied for hypergraphs
and graphs (see Section 3 for all the definitions on hypergraphs, simple paths, the simple path
and the even-chorded path intervals and their related convexities) and a characterization is given
of the hypergraphs and graphs for which the s.p. convexity space and the s-convexity space,
respectively, are geometric.

In this paper we show that Cp3v problem in bipartite graphs is related to the computation of
the simple path and even-chorded path interval operators.

We discuss the complexity of computing the simple path and the even-chorded path intervals
in hypergraphs and graphs, respectively, by showing that the problem of deciding if a vertexv
belong to a simple path between two given verticess andt, hereafter referred as the Spi problem
and the problem of deciding if a vertexv belong to an even-chorded path between two given
verticess and t, hereafter referred as the Ecpi problem, are NP-complete. We do this by first
demonstrating that the Cp3v problem remains NP-complete in bipartite graphs.

The hypergraphs and graphs for which the s.p. convexity space and the s-convexity space
are convex geometries turn out to be correlated to each otherby the concept oftotally balanced
hypergraph [12] (see also Section 3). The study of totally balanced hypergraphs and the study of
algorithmic aspects related to the two above mentioned convexities, has application, for example,
in database theory [1, 8, 11, 15, 16, 17, 18].

The work is organized as follows. In Section 2 we give the proof that the Cp3v problem is
NP-complete in bipartite graphs. In Section 3, using resultof the Section 2 we give the proof that
the Spi and the Ecpi problems are NP-complete. In Section 4 we give some concluding remarks.

2. The reduction

We will use more or less standard graph theory definitions. Let G be an undirected loopless
simple graph. Thevertex set and theedge set of G are denoted byV(G) andE(G), respectively;
furthermoren = |V(G)|. We say that a path (v0, . . . , vk), k > 0, in a graphG contains an edgee
of G if e = vivi+1 for some 0≤ i < k. Given two verticesvi andv j, i < j of a pathP then the
subpath of P betweenvi andv j is the subsequence (vi, vi+1, . . . , v j−1, v j) of consecutive vertices
of P.
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Two vertices ofG areadjacent if they are the end points of an edge. We denote byNG(v) the
set of vertices adjacent to a vertexv. Theclosed neighborhood of a vertex isNG[v] = NG(v)∪{v}.
A set of pairwise non adjacent vertices is anindependent set. A graph is bipartite if there exists
a partition (V1,V2) of V(G) such that bothV1 andV2 are independent sets.
We show that Cp3v is NP-complete in bipartite graphs using a reduction from the independent
set problem. The reduction we present here is somewhat similar to the one given in [14].

The independent set problem asks, given a graphG and an integerk, if there exists an inde-
pendent set of size at leastk of vertices ofG.

We shall construct a bipartite graphG′ such that there exists a chordless path between two
verticess andt containing a vertexv if and only if there exists inG an independent set of vertices
of size at leastk.

The graphG′ is built with two basic structures (partly similar to the structures called in [14]
vertex choice diamonds) as shown if Fig. 1.

The structure of type (a) has two verticessh and th and verticesvh
1, v

h
2, . . . , v

h
n. Each vertex

vh
i is connected to the verticessh and th. We make a copy of each structure of type (a) and in

this copy we denote the verticessh, th andvh
i as ph, qh andwh

i respectively,i = 1, . . . , n and
h = 1, . . . , k.

We connect together all these structures by identifyingth with sh+1 and by identifyingph with
qh+1 for 1 ≤ h < k. We also add the edgetk p1.

The structure of type (b) has two verticesσh andτh and verticesνh,11 , ν
h,2
1 ,ν

h,3
1 , ν

h,1
2 , ν

h,2
2 , ν

h,3
2

, . . . , ν
h,1
n , ν

h,2
n , ν

h,3
n . Each vertexνh,1i is connected to the vertexνh,2i and each vertexνh,2i is con-

nected to the vertexνh,3i , i = 1, . . . , n. All the verticesνh,1i are connected toσh and all the vertices
ν

h,3
i are connected toτh, i = 1, . . . , n. We make a copy of each structure of type (b) and in this

copy we denote the verticesσh, τh andνh, ji asπh, θh andωh, j
i respectively,j = 1,2,3, i = 1, . . . , n

andh = 1, . . . , k.

We connect together all these structures by identifyingτh−1 with σh and by identifyingθh−1

with πh for 1 < h < k. We also add the edgeτkπ1.

Then we add the edgeθkqk.

For all h = 1, . . . , k and for alli , j we add the following edges

1. vh
i ν

h,1
j

2. vh
i ν

h,3
j

3. vh
iω

h,2
j

4. vh
i wh

j

5. wh
iω

h,3
j

6. wh
iω

h,1
j

7. wh
i ν

h,2
j
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8. ωh,2
i ν

h,2
j

and we call themconsistency edges of type (t), t = 1, . . . ,8. For short, we refer to them asC(t)
edges,t = 1, . . . ,8.

We add toG′ the edgevh
i wr

i and the edgeνh,2i wr
i for all 1 < h ≤ k and for all 1≤ r < h,

i = 1, . . . , n. These edges are calledset edges.

For each edgeviv j of G we add toG′ the edgevh
i wr

j and the edgeνh,2i wr
j for all 1 < h ≤ k and

for all 1 ≤ r < h, i = 1, . . . , n. These edges are calledindependent edges.

Example 1. In Fig. 2 is shown an example of a graph G and the corresponding graph G′. In
Fig. 3 only consistency edges from type 1 to type 4 are drawn and in Fig. 4 only consistency
edges from type 5 to type 8 are drawn. In Fig. 5 only set and independent edges are drawn.

 

thsh

υ1
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h,2 υ1

h,3

υ2
h,1 υ2

h,2 υ2
h,3

υi
h,1 υi

h,2 υi
h,3
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h

υn
h,1 υn

h,2 υn
h,3

v2
h
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h
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h

Figure 1: The basic structures

Remark 1. The graph G′ is bipartite.

Observe that given a graphG and an integerk the graphG′ has 8nk+4k+4 vertices. Therefore

Remark 2. Given a graph G and an integer k the graph G′ can be constructed in polynomial
time.

First of all we prove the following

Lemma 1. Let P be a chordless path between s1 and σ1 containing qk. Then P contains tk

and τk. Furthermore P includes the subpaths (s1, v1
i1
, t1, . . . , sk, vk

ik
, tk) and (τk, ν

k,3
ik
, ν

k,2
ik
, ν

k,1
ik
, σk,

. . . , τ1, ν
1,3
i1
, ν

1,2
i1
, ν

1,1
i1
, σ1) which contain no consistency no set nor independent edges.

Proof: We prove the Lemma by induction onm = 1, . . . , k.
Basis m = 1. Let P be a chordless path froms1 to σ1 containingqk. Let v1

i be the first vertex of
P afters1. Suppose that aC(1) edgev1

i ν
1,1
j is in P. Thenν1,1j σ

1 would be a chord ofP. Therefore

noC(1) edge of the formv1
i ν

1,1
j is in P andP must containν1,1i . Also note thatP cannot contain

anyC(1) edge of the formν1,1i v1
j for, otherwise,s1v1

j would be a chord ofP. It follows thatν1,2i
must also be inP.
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Figure 2: An example of transformation withk = 2. In the inset above on the left the graphG. The consistency edges are
shown in dashed lines. The set edges are shown in solid bold lines. The independent edges are shown in a mixed dotted
an dashed lines.
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Figure 3: The consistency edges from type 1 to 4 of Example 1.
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Figure 4: The consistency edges from type 5 to 8 of Example 1.
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Figure 5: The set and independent edges of Example 1.

6



If a C(7) edgeν1,2i w1
j or aC(8) edgeν1,2i ω

1,2
j is in P then theC(4) edgew1

jv
1
i or theC(3) edge

ω
1,2
j v1

i would be, respectively, a chord ofP. From this follows that the edgeν1,2i ν
1,3
i must be inP.

At this point we note that noC(2) edge of the formν1,3i v1
j is in P for otherwises1v1

j would be a

chord ofP, and the only possibility is thatν1,3i τ
1 is in P.

Suppose now that aC(2) edgev1
i ν

1,3
j is in P. Sinceτ1 is in P thenν1,3j τ

1 would be a chord of
P (contradiction).

Suppose then that aC(3) edgev1
iω

1,2
j or aC(4) edgev1

i w1
j is in P. SinceP containsν1,2i , then

theC(8) edgeω1,2
j ν

1,2
i or theC(7) edgew1

jν
1,2
i would be, respectively, a chord ofP (contradiction).

Since no set or independent edges are incident tov1
i the next vertex ofP must bet1 and the

subpaths ofP betweenτ1 andσ1 and betweens1 andt1 contain no consistency no set nor inde-
pendent edges. This concludes the basis step.

Induction step. Let 1 < m ≤ k. By the induction hypothesis the pathP containssm = tm−1

andσm = τm−1 and the subpaths betweens1 andtm−1 and betweenτm−1 andσ1 contain no con-
sistency no set nor independent edges. Letvm

i be the vertex ofP immediately subsequent ofsm.

Suppose that aC(1) edgevm
i ν

m,1
j is in P. Thenνm,1j σ

m would be a chord ofP. Therefore no

C(1) edge of the formvm
i ν

m,1
j is in P andP must containνm,1i . Also note thatP cannot contain

anyC(1) edge of the formνm,1i vm
j for otherwisesmvm

j would be a chord ofP. It follows thatνm,2i
must also be inP.

Now let X = NG′ (ν
m,2
i ) − {νm,1i , ν

m,3
i }. A vertexx is in X due to aC(7) edgeνm,2i wm

j or aC(8)

edgeνm,2i ω
m,2
j or a set edgeνm,2i wr

i , 1 ≤ r < m or an independent edgeνm,2i wr
j, 1 ≤ r < m. Each

vertex inX is also adjacent tovm
i due to the presence inG′ of a C(4) edgevm

i wm
j or aC(3) edge

vm
i ω

m,2
j or a set edgevm

i wr
i or an independent edgevm

i wr
j. Therefore no vertex ofX could be inP.

From this follows that neitherνm,2i x nor vm
i x could be inP. As a consequence the edgeν1,2i ν

1,3
i

must be inP (see fig. 6).
At this point we note that noC(2) edge of the formνm,3i vm

j is in P for otherwisesmvm
j would

be a chord ofP, and the only possibility is thatνm,3i τ
1 is in P .

Suppose now that aC(2) edgevm
i ν

m,3
j is in P. Sinceτm is in P thenνm,3j τ

m would be a chord
of P (contradiction).

Therefore the next vertex ofvm
i must betm. By what said above we have that the subpaths

of P betweenτm andσm and betweensm andtm contains no consistency no set nor independent
edges. This concludes the induction step. 2

By Lemma 1, any chordless path betweens1 andσ1 containingqk must containtk andτk.
Hence it must contain alsop1 andπ1. Furthermore we have the following

Lemma 2. Let P be a chordless path between s1 and σ1 containing qk. Then P contains no
C(3) and no C(4) edges and for any given h ∈ {1, . . . , k}, P contains at most one vertex among
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i
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Figure 6: The gray vertices are all adjacent tovm
i andνm,2i . Therefore no edge of the formνm,2i x or vm

i x for all x ∈

NG′ (ν
m,2
i ) − {νm,1i , ν

m,3
i } could be inP.

{wh
1, . . . ,w

h
n}.

Proof: By Lemma 1,P contains the subpath (s1, v1
i1
, . . . , vk

ik
, tk) and neither aC(3) nor aC(4)

edge incident tovh
ih
, h = 1, . . . , k is in P. If wh

j , j , ih, is in P then theC(4) edgevh
ih

wh
j would be a

chord ofP. Therefore at most onewh
ih

among{wh
1, . . . ,w

h
n} can be inP. Now if a C(4) edgewh

ih
vh

j

is in P thenvh
j s

h would be a chord ofP. Analogously we have that if aC(3) edgeωh,2
i vh

j is in P

thenvh
j s

h would be a chord ofP (contradiction). 2

Lemma 3. Let P be a chordless path between s1 and σ1 containing qk. Then P contains θk. Fur-
thermore P includes the subpaths (p1,w1

i1
, . . . ,wk

ik
, qk) and (θk, ωk,3

ik
, ω

k,2
ik
, ω

k,1
ik
, . . . , ω

1,3
i1
, ω

1,2
i1
, ω

1,1
i1
,

π1) which contain no consistency no set nor independent edges.

Proof: We prove the lemma by induction onm = k, . . . ,1 that the subpath betweenpm andqk

and the subpath betweenθk andπm satisfy the conditions of Lemma. Recall that by Lemma 2,
noC(3) andC(4) edges are inP.

Basis m = k. By hypothesisP is a chordless path and by Lemma 1, there exists a vertexvk
i in

P. By Lemma 2, onlywk
i is in P. Furthermore sinceqkθk is in G′ thenθk is in P.
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If a C(5) edgewk
iω

k,3
j is in P thenωk,3

j θ
k would be a chord ofP. Therefore noC(5) edge of

the formwk
iω

k,3
j is in P and we have thatωk,3

i must be inP. Also note thatP cannot contain any

C(5) edge of the formωk,3
i wk

j for otherwisewk
jq

k would be a chord ofP. It follows thatωk,2
i must

also be inP.

Note that noC(8) edgeωk,2
i ν

k,2
h could be inP for otherwise theC(7) edgeνk,2h wk

i would be a
chord ofP. From this follows that the edgeωk,2

i ω
k,1
i must be inP. At this point we note that no

C(6) edgeωk,1
i wk

j is in P for otherwisewk
jq

k would be a chord ofP and the only possibility is that

ω
k,1
i π

k is in P.

Suppose that aC(6) edgewk
iω

k,1
j is in P. Sinceπk is in P we have thatπkω

k,1
j would be a

chord ofP (contradiction).

Suppose now that aC(7) edgewk
i ν

k,2
j is in P. Sinceωk,2

i is in P then theC(8) edgeνk,2j ω
k,2
i

would be a chord ofP (contradiction).

Since no set or independent edges are incident towk
i it follow that pk is in P. This proves that

the subpaths ofP betweenpk andqk and betweenθk andπk contain no consistency no set nor
independent edges.

Induction step. Let k > m ≥ 1. By the induction hypothesisqm andθm are inP and the sub-
paths betweenqm andqk and betweenθk andθm contain no consistency no set nor independent
edges.

Let vm
i be a vertex ofP (which must exist by Lemma 1). By Lemma 2, we have thatwm

i is in
P. Note that no set and no independent edge of the formwm

i vr
j, 1 < m < r ≤ k could be inP for

otherwise, ifvr
j is in P, then this contradict Lemma 1, and ifvr

j is not inP, thenvr
js

r would be a
chord ofP.

With an argument similar to the one used in the basis step, we can show that noC(5) edge
incident towm

i is in P. Furthermore the verticesωm,3
i , ωm,2

i , ωm,1
i andπm must also be inP. The

same argument can also be used to show that neitherC(6) norC(7) edge incident towm
i is in P.

Suppose that a set edgewm
i ν

r,2
i is in P, m < r ≤ k. Then consider the vertexvr

h of P (which
must exist by Lemma 1). Ifh = i then the set edgewm

i vr
h would be, by Lemma 1, a chord ofP.

Thereforeh , i. By Lemma 1, and by the induction hypothesis,P must containwr
h. But then the

C(7) edgeνr,2i wr
h would be a chord ofP. Analogously we can prove, using a similar argument,

that no independent edge of the formwm
i ν

r,2
j is in P, m < r ≤ k.

It follow that the vertex precedingwm
i is pm. Hence we have that the subpaths ofP between

pm andqk and betweenθk andπm contain no consistency no set nor independent edges. This
concludes the induction step. 2
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Lemma 4. Let P be a chordless path between s1 and σ1 containing qk. If P contains v j
i j

then it

contains w j
i j

for all j = 1, . . . , k.

Proof: By Lemma 1 and Lemma 3, any chordless path betweens1 andσ1 containingqk does
not use any consistency, set or independent edges and therefore it containss1, v1

i1
, . . . , vk

ik
, tk and

p1,w1
j1
, . . . ,wk

jk
, qk. If ih , jh for some 1≤ h ≤ k then theC(4) edgevh

ih
wh

jh
would be a chord of

P (contradiction). 2

Theorem 1. Cp3v is NP-complete in bipartite graphs.

Proof: It is easy to see that Cp3v is in NP. We shall show that given a graphG and an integer
k, there exist inG′ a chordless path betweens1 to σ1 containingqk if and only if there exists in
G an independent set of size at leastk. Suppose that there exists a chordlessP path betweens1

andσ1 containingqk. Let I = {vi j ∈ G : v j
i j
∈ P}. First of all no two verticesvh

i andvℓi are in

P for 1 ≤ h < ℓ ≤ k. In fact if vh
i andvℓi are inP then, by Lemma 4,wh

i is also inP. Then the
set edgevℓi w

h
i would be a chord ofP. Therefore the setI has cardinalityk. We now show that

I is independent inG. Suppose not and letvi j andviℓ be two vertices ofI adjacent inG and let

v j
i j

andvℓiℓ be the corresponding vertices ofP with 1 ≤ j < ℓ ≤ k. By Lemma 4, the vertexw j
i j

is contained inP. But then the independent edgevℓiℓw
j
i j

would be a chord ofP, a contradiction.
Finally it is easy to see that given an independent set of sizek there exists inG′ a chordless path
betweens1 andσ1 containingqk. By Remark 1 and by Remark 2,G′ is bipartite and can be
obtained fromG andk in polynomial time. This completes the proof. 2

3. Simple path and even-chorded path interval operators

A hypergraph is a familyH of non empty sets whose union, denoted byV(H), is called the
vertex set ofH . Each element ofH is an(hyper)edge. A path of lengthk ≥ 0, inH is a sequence
(x0, e1, x1, . . . , ek, xk) of pairwise distinct verticesxi and pairwise distinct edgesei ofH such that
{xi−1, xi} ⊆ ei for 1 ≤ i ≤ k. A path inH is simple if ei∩{x0, . . . , xk} = {xi−1, xi} for 1 ≤ i ≤ k [13].
A simple cycle in a hypergraph is defined in the same way as a simple path with the exception
that the first and the last vertex do coincide andk ≥ 2. Thelength of a cycle is the number of its
distinct vertices. A hypergraph istotally balanced if it contains no simple cycle of length greater
than two [11, 12]. Theneighborhood hypergraph of a graphG, denoted byN(G), is given by
N(G) = {NG[v] : v ∈ V(G)}. Thetwo-section of a hypergraphH is a graphGH whose vertex set
is V(GH ) = V(H) and whose edge setE(GH ) contains an edgeuv if and only if {u, v} ⊆ e ∈ H .

3.1. Complexity of the Ecpi problem
A chord in a path or in a cycleP is odd (resp. even) if it joins vertices at odd (resp. even)

distance from each other inP. A graph is saidstrongly chordal [13] if it is chordal and, in addition
every even cycle of length at least 6 has an odd chord [13, 12].A path P = (v0, v1, . . . , vn) in a
graph iseven-chorded if it has no odd chord and neitherv0 norvn lies in a chord ofP. Given two
verticesu andv, theeven-chorded path interval operator in a graph contains every vertices on
every even-chorded path betweenu andv. A subsetX of vertices ofV(G) is s-convex if it contain
all the vertices in an even-chorded path between vertices ofX. The class of strongly chordal
graph is exactly the one for which the s-convexity is geometric [13].

As said in the introduction the strongly chordal graphs and the totally balanced hypergraphs
are correlated to each other. In fact we have the following characterizations
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• A graphG is strongly chordal if and only ifN(G) is totally balanced. [12]

• A hypergraph is totally balanced if and only if its two-section is strongly chordal. [9]

The strongly chordal graphs are interesting also because some optimization problems, which
are NP-complete in chordal graphs, become polynomially solvable in strongly chordal graphs
[13]. We note the following

Remark 3. In a bipartite graph a path is even-chorded if and only if it is a chordless path.

and therefore

Remark 4. In a bipartite graph the monophonic convexity and the s-convexity do coincide.

In light of Remark 3 and 4 we have the following

Theorem 2. The Ecpi problem is NP-complete.

Proof: Clearly the Ecpi problem is in NP. By Remark 3 and 4 in a bipartite graph a path iseven-
chorded if and only if it is a chordless path. By Theorem 1, determining if a vertex in a bipartite
graph belongs to an even-chorded path between two vertices is NP-complete. 2

3.2. Complexity of the Spi problem

Let H be a hypergraph andu andv two vertices ofH . The simple path interval operator
contains every vertex on every simple path betweenu andv. A subsetX of vertices ofV(H) is
s.p. convex if it contains all the vertices in a simple path between vertices ofX. The class of
totally balanced hypergraphs is exactly the one for which the simple path convexity is a convex
geometry [13].

Given a connected bipartite graphG with at least two vertices and partition (X,Y) of V(G)
then the hypergraphHG(X) associated toG with vertex setX is given by{NG(y) : y ∈ Y}. We
have the following

Lemma 5. Let G be a connected bipartite graph with at least two vertices and bipartition (X,Y).
Then a path (x0, y1, x1, . . . , yk, xk), x0, xk ∈ X is chordless in G if and only if (x0,NG(y1), x1, . . . ,

NG(yk), xk) is a simple path ofHG(X).

Proof: (only if ) Suppose thatP = (x0, y1, x1, . . . , yk, xk) is chordless inG and letP′ = (x0,NG(y1),
x1, . . . ,NG(yk), xk). First we show thatNG(yi) , NG(y j) for all i , j. In fact suppose that there
exist i and j, i , j, such thatNG(yi) = NG(y j). Thenxi−1 ∈ NG(y j) andxi−1y j would be a chord
of P. ThereforeP′ is a path ofHG(X). Suppose now thatP′ is not simple inHG(X). Then there
exists an edgeNG(y j) such thatNG(y j) ∩ {x0, . . . , xk} , {x j−1, x j}. Let xi ∈ NG(y j) − {x j−1, x j},
i ∈ {0, . . . , k}. But thenxiy j is an edge ofG and a chord ofP, and a contradiction arises.
(if ) Suppose thatP′ = (x0,NG(y1), x1, . . . ,NG(yk), xk) is a simple path inHG(X). We claim that
P = (x0, y1, x1, . . . , yk, xk) is chordless. Suppose not and letyix j be a chord ofP. Thenx j ∈ NG(yi)
and this implies thatNG(yi) ∩ {x0, . . . , xk} , {xi−1, xi}, that is,P′ is not simple. 2

By Lemma 5, we have the following

Theorem 3. The Spi problem is NP-complete.
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Proof: Clearly the Spi problem is in NP. We shall show a reduction from the independent set
problem. LetG be a graph andk an integer and letG′ be the bipartite graph as in Section 2. We
add toG′ a vertexs0 and an edges0s1. Let (X,Y) be the partition ofV(G′) such thatX contains
s0, qk andσ1. Finally letHG′(X) be the hypergraph with vertex setX associated toG′. By Lemma
5,HG′(X) has a simple path betweens0 andσ1 containingqk if and only if G′ has a chordless
path betweens0 andσ1 containingqk. By Theorem 1,G′ has a chordless path betweens0 and
σ1 containingqk if and only if G has an independent set of sizek. SinceG′ andHG′(X) can be
constructed in polynomial time fromG this completes the proof. 2

4. Conclusions

We showed that the Cp3v remains NP-complete in bipartite graphs, therefore strengthening
previous results on the same problem. We showed also that this implies that the Spi and the Ecpi
problems, are NP-complete. Interestingly, while the Spi problem is NP-complete, computing the
simple path convex hull of a set of vertices of a hypergraph can be done in polynomial time [17].
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