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Abstract

In this paper we show that the problem of finding a chordlesk patween a vertes and a
vertext containing a vertex remains NP-complete in bipartite graphs, thereby stremgtiy
previous results on the same problem. We show a relationdeetihis problem and two interval
operators: the simple path interval operator in hypergsapid the even-chorded path interval
operator in graphs. We show that the problem of computingwioementioned intervals is NP-
complete.
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1. Introduction

Given a grapl, a pathP of length k is a sequencerg, vy, . .., W), k > 0 of distinct vertices
such thatvivi,1, 1 < i < kis an edge ofc. A chord of a path is an edge joining two non
consecutive vertices. A path @hordless (or induced) if it contains no chord. Here we discuss
the problem of finding a chordless path between two givenoess andt containing a specified
vertexv in bipartite graphs. This problem, called®, has been shown to be NP-complete
for general graphs [2, 14]. TherB8v problem arises in the context of service deployment in
communication networks [14] and is related to the study ofgoe graphs [2, 4, 6, 7, 5].

Let V be the set of vertices of a connected graph or hypergraphint@rval operator (also
called transit function in [3]) is a functioh: V x V — 2V with the property thatu, v} € I(u, V)
andl(u,v) = I(v,u) [19]. Usually the interval operator is defined in terms oenfly of paths
in a graph (or in a hypergraph). Prime example of intervakraioe is thegeodesic interval in
a graph. It contains every vertex on every shortest pathdmtw andv. Other examples of
interval operators are thraonophonic (or induced-path) interval, which contains every vertex on
every chordless (induced) path betwesandv, and theall-paths interval, which is the set of all
vertices lying on paths betweerandv.

Given an interval operatdr, a subsef of V is saidl-convex if |(u,v) € Afor all u,vin A.
The |-convex hull of a subsetA of V is the smallest-convex set containing. Each interval
operator defines aalignment on V. An alignment is a sel of subsets o¥/, that satisfies the
following properties :
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the couple ¥, £) is called aconvexity space [19, 16]. The elements of are exactly the convex
sets. An elemenp of anl-convex setA is anextreme point of A if A— {p}is |-convex. If the
convexity space satisfies the following propertyn{kbwski-KReIN-MILMAN property):

Every convex set is the hull of its extreme points

then it is called ayjeometric convexity.

Some works [2, 3, 10, 14, 16] have investigated the compmutaticomplexity of interval
operators and the complexity of computing the convex holigiifferent type of convexities. In
[3] a number of specific interval operators (referred to asdit functions) and a list of some
basic facts about them are given, while in [2, 10, 14] it isvemadhat the monophonic interval
is computationally hard. An interesting fact is that for sofamilies of paths, computing the
intervall is NP-hard, while computing theconvex hull requires polynomial time. An example
of this is the monophonic convexity, whose interval, as weaaly mentioned, is NP-hard, while
computing the monophonic convex hull can be done in polyabtime [10, 16].

Other two instances of interval operators aredimaple path interval in hypergraphs and the
even-chorded path interval in graphs. The first one defines #ieple path convexity (s.p. con-
vexity) in hypergraphs, while the second one definestitomgly chordal convexity (s-convexity)
in graphs [13]. In [13], both the s. p. convexity and the svexity are studied for hypergraphs
and graphs (see Section 3 for all the definitions on hypehg,agimple paths, the simple path
and the even-chorded path intervals and their related &@im& and a characterization is given
of the hypergraphs and graphs for which the s.p. convexiagasm@mnd the s-convexity space,
respectively, are geometric.

In this paper we show thateBv problem in bipartite graphs is related to the computation of
the simple path and even-chorded path interval operators.

We discuss the complexity of computing the simple path aadtlen-chorded path intervals
in hypergraphs and graphs, respectively, by showing treptbblem of deciding if a vertex
belong to a simple path between two given vertisandt, hereafter referred as thei®roblem
and the problem of deciding if a vertexbelong to an even-chorded path between two given
verticess andt, hereafter referred as thet problem, are NP-complete. We do this by first
demonstrating that ther@v problem remains NP-complete in bipartite graphs.

The hypergraphs and graphs for which the s.p. convexityespad the s-convexity space
are convex geometries turn out to be correlated to each byhitve concept ofotally balanced
hypergraph [12] (see also Section 3). The study of totally balanced ryqaghs and the study of
algorithmic aspects related to the two above mentionedeoatiws, has application, for example,
in database theory [1, 8, 11, 15, 16, 17, 18].

The work is organized as follows. In Section 2 we give the ptbat the G3v problem is
NP-complete in bipartite graphs. In Section 3, using resfithe Section 2 we give the proof that
the St and the Epi problems are NP-complete. In Section 4 we give some congjudimarks.

2. Thereduction

We will use more or less standard graph theory definitions.3_be an undirected loopless
simple graph. Theertex set and theedge set of G are denoted by/(G) andE(G), respectively;
furthermoren = |V(G)|. We say that a paths, ..., w), k > 0, in a graphG contains an edge
of G if e = vivi,1 for some 0< i < k. Given two vertices; andv;, i < j of a pathP then the
subpath of P betweernv; andv; is the subsequencg (Vi.1, ..., Vj_1, ;) of consecutive vertices
of P.
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Two vertices ofG areadjacent if they are the end points of an edge. We denot@&ly) the
set of vertices adjacent to a vertexT heclosed neighborhood of a vertex isNg[V] = Ng (V) U{V}.
A set of pairwise non adjacent vertices isiadependent set. A graph is bipartite if there exists
a partition {1, V) of V(G) such that botlv; andV, are independent sets.
We show that @3v is NP-complete in bipartite graphs using a reduction fromitidependent
set problem. The reduction we present here is somewhat sinoifdret one given in [14].

The independent set problem asks, given a gfa@md an integek, if there exists an inde-
pendent set of size at ledsbf vertices ofG.

We shall construct a bipartite gra@i such that there exists a chordless path between two
verticess andt containing a vertex if and only if there exists it an independent set of vertices
of size at leask.

The graphG’ is built with two basic structures (partly similar to theusttures called in [14]
vertex choice diamonds) as shown if Fig. 1.

The structure of type (a) has two verticgsandt” and vertices/, vj,...,\il. Each vertex
vih is connected to the vertice8 andt". We make a copy of each structure of type (a) and in
this copy we denote the vertica®, t" and V! as p", d" andw! respectivelyi = 1,...,n and
h=1,...,k

We connect together all these structures by identifyingith s™* and by identifyingp" with
g™ for 1 < h < k. We also add the edgkp’.

The structure of type (b) has two vertice8 and<" and vertices!, V203,51 /02 03

s v V2 VRS, Each vertex!™ is connected to the verteX? and each vertex is con-
nected to the vertex™®,i = 1,..., n. All the vertices/™ are connected to" and all the vertices
vih’3 are connected to", i = 1,...,n. We make a copy of each structure of type (b) and in this

copy we denote the verticed, 7" andv™ asz", 6" andw!™ respectivelyj = 1,2,3,i = 1,...,n
andh=1,...,k

We connect together all these structures by identifyitig with " and by identifyingg"*
with 7" for 1 < h < k. We also add the edgér?.

Then we add the edg¥d*.

Forallh=1,...,kand for alli # j we add the following edges
ot
e
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8. (uih’zv?’z

and we call thentonsistency edges of type (t),t = 1,..., 8. For short, we refer to them &Xt)
edgest=1,...,8.

We add toG’ the edge'™w! and the edge!™w! for all 1 < h < kand forall 1< r < h,
i =1,...,n. These edges are calleet edges.

For each edgev; of G we add toG’ the edge/ihvv; and the edgeih’zwg forall1<h<kand
forall1<r <h,i=1,...,n. These edges are callaaiependent edges.

Example 1. In Fig. 2 is shown an example of a graph G and the corresponding graph G’. In
Fig. 3 only consistency edges from type 1 to type 4 are drawn and in Fig. 4 only consistency
edges fromtype 5 to type 8 are drawn. In Fig. 5 only set and independent edges are drawn.

Figure 1: The basic structures

Remark 1. Thegraph G’ isbipartite.

Observe that given a gra@and an integek the graphs’ has 8k+4k+4 vertices. Therefore

Remark 2. Given a graph G and an integer k the graph G’ can be constructed in polynomial
time.

First of all we prove the following

Lemma 1. Let P be a chordless path between st and o containing g¢. Then P contains t
and 7¢. Furthermore P includes the subpaths (s, 2, t%,. .., &, V€, %) and (7%, v:‘f, vikk’z, v:‘k'l, o,
1R vE? vt o) which contain no consistency no set nor independent edges.

Proof: We prove the Lemma by induction on= 1, ...,k

Basism = 1. LetP be a chordless path frost to o* containingg¥. Letv! be the first vertex of
P afters'. Suppose that@(1) edgevv;* is in P. Thenvj o> would be a chord oP. Therefore
no C(1) edge of the fornv!vj"* is in P andP must contain;*. Also note thaf cannot contain

anyC(1) edge of the formy"'v for, otherwise s'v} would be a chord oP. It follows thaty;"?
must also be irP.



Figure 2: An example of transformation wikh= 2. In the inset above on the left the graphThe consistency edges are
shown in dashed lines. The set edges are shown in solid Inasl. liThe independent edges are shown in a mixed dotted

an dashed lines.
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Figure 3: The consistency edges from type 1 to 4 of Example 1.
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Figure 5: The set and independent edges of Example 1.
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If a C(7) edgev;*w! or aC(8) edgey; “w;? is in P then theC(4) edgewlv:" or theC(3) edge
vt would be, respectlvely, a chord Bf From this follows that the edgycﬂf2 3 must be inP.
At this point we note that n€(2) edge of the form/il’gvj1 is in P for otherwises'v; would be a

chord ofP, and the only possibility is tha»ql’g’rl isinP.

Suppose now that@(2) edgevv; is in P. Sincer® is in P thenv;*r* would be a chord of
P (contradiction).

Suppose then that@(3) edgevilel'2 or aC(4) edgev/w; is in P. SinceP containsy?, then
theC(8) edgaw;*v-# or theC(7) edgewlv-* would be, respectively, a chord Bf(contradiction).

Since no set or independent edges are incidewt the next vertex o must bet! and the
subpaths oP betweenr! andot and betweers! andt! contain no consistency no set nor inde-
pendent edges. This concludes the basis step.

Induction step. Let 1 < m < k. By the induction hypothesis the pahcontainss™ = t™1
ando™ = ™1 and the subpaths betweshandt™* and between™ ! ando! contain no con-
sistency no set nor independent edges.\Mdbe the vertex oP immediately subsequent of'.

Suppose that €(1) edgev;“v’jTLl isinP. Thenv?"lam would be a chord oP. Therefore no
C(1) edge of the form/i”‘v’jTLl is in P and P must contairvim’l. Also note thatP cannot contain

anyC(1) edge of the form/im’lv'j“ for otherwise§“v'jT1 would be a chord oP. It follows thatvi""2
must also be irP.

Now letX = Ne: (V%) — ™, v™®). A vertexxis in X due to aC(7) edge[*w" or aC(8)
edgey™*w " or a set edgeimzwl', 1 <r < mor anindependent edgfw, 1 < r < m. Each
vertex inX'is also adjacent t@" due to the presence & of aC(4) edgeﬁ‘mf“ or aC(3) edge
vi”‘a)’jTLZ or a set edge™ or an independent edyfw/. Therefore no vertex ok could be inP.
From this follows that neither™*x nor v"x could be inP. As a consequence the edgev:-®

must be inP (see fig. 6).
At this point we note that n€(2) edge of the form'im’sv’jn is in P for otherwises™" would

be a chord oP, and the only possibility is thaf**r isin P .

Suppose now that@(2) edge'v'“vnls isinP. Sincer™isin P thenvm3 ™ would be a chord
of P (contradiction).

Therefore the next vertex of" must bet™. By what said above we have that the subpaths
of P betweenr™ ando™ and betweers™ andt™ contains no consistency no set nor independent
edges. This concludes the induction step. O

By Lemma 1, any chordless path betwesrando containingg® must contairt and 7*.
Hence it must contain alse' andxt. Furthermore we have the following

Lemma?2. Let P be a chordless path between st and ¢! containing g. Then P contains no
C(3) and no C(4) edges and for any given h € {1,...,k}, P contains at most one vertex among
7



Figure 6: The gray vertices are all adjacenvfoand vim’z. Therefore no edge of the fomﬁ"’zx or v"x for all x €
No (/™) — (v, v%) could be inP.

... ).

Proof: By Lemma 1,P contains the subpatlsy vill, . ,v}i,t") and neither &(3) nor aC(4)
edge incident tcv{;, h=1,...,kisinP. If WT j # in, is in P then theC(4) edga/{‘hvv*j1 would be a
chord ofP. Therefore at most on) among{w., ..., w}} can be inP. Now if a C(4) edgenf
is in P thenV's" would be a chord oP. Analogously we have that if &(3) edgewih’zv'jq isinP
thenv's" would be a chord oP (contradiction). |

Lemma 3. Let P bea chordless path between s' and o containing g¢. Then P contains 6. Fur-
thermore P includesthe subpaths (p*, wi ..., w, o) and (6, f*, 0% W, .. 0l%, 2wt
1) which contain no consistency no set nor independent edges.

. il b

Proof: We prove the lemma by induction on = k, ..., 1 that the subpath betwegf andgf
and the subpath betweeh and=™ satisfy the conditions of Lemma. Recall that by Lemma 2,
no C(3) andC(4) edges are iR.

Basis m = k. By hypothesid is a chordless path and by Lemma 1, there exists a ve{ﬂm(
P. By Lemma 2, only is in P. Furthermore sincg*6% is in G’ then¢X is in P.
8



If a C(5) edgevvﬁa)‘j"3 isinP thenw'j"36?k would be a chord oP. Therefore naC(5) edge of
the formvvika)'j"3 is in P and we have that)ik’3 must be inP. Also note thaP cannot contain any

C(5) edge of the forna):"3V\/‘j‘ for otherwisew!q would be a chord oP. It follows thatw? must
also be inP.

Note that noC(8) edgew!®vi? could be inP for otherwise theC(7) edgevi®wk would be a
chord of P. From this follows that the edge“*w!** must be inP. At this point we note that no
C(6) edgew:"lvv‘j( is in P for otherwisew!q* would be a chord oP and the only possibility is that

wik’lﬂ'k isinP.

Suppose that &(6) edgevvf‘w'j(’1 is in P. SincesX is in P we have thatrka)'j"l would be a
chord ofP (contradiction).

Suppose now that @(7) edgew!»? is in P. Sincew(? is in P then theC(8) edge/?w|®
would be a chord oP (contradiction).

Since no set or independent edges are incidenf ibfollow that p¥ is in P. This proves that
the subpaths oP betweenpX andg* and betweer* andz* contain no consistency no set nor
independent edges.

Induction step. Letk > m > 1. By the induction hypothesig" andg™ are inP and the sub-
paths betweenq™ andg< and betweem* andé™ contain no consistency no set nor independent
edges.

Letv" be a vertex oP (which must exist by Lemma 1). By Lemma 2, we have thidiis in
P. Note that no set and no independent edge of the w,m] 1< m<r < kcould be inP for
otherwise, ifV! is in P, then this contradict Lemma 1, andxlﬁfis notinP, thenvfjsr would be a
chord ofP.

With an argument similar to the one used in the basis stepaneskow that n&(5) edge
incident tow™ is in P. Furthermore the verticeg™, ™, w™" andz™ must also be irP. The

same argument can also be used to show that nétggmorC(7) edge incident tev" is in P.

Suppose that a set edt\z_;é‘vir'2 isin P, m < r < k. Then consider the vertef of P (which
must exist by Lemma 1). I = i then the set edge"v{, would be, by Lemma 1, a chord &%
Thereforeh # i. By Lemma 1, and by the induction hypothestanust contairwj. But then the
C(7) edgevi”zvvg would be a chord oP. Analogously we can prove, using a similar argument,
that no independent edge of the fowﬁ‘v;’2 isinP,m<r <k

It follow that the vertex preceding" is p™. Hence we have that the subpathddfetween
p™ andg* and betwee* andz™ contain no consistency no set nor independent edges. This
concludes the induction step. O



Lemma 4. Let P be a chordless path between st and o containing g¥. If P contains vijj then it
containswijj forall j=1,....k

Proof: By Lemma 1 and Lemma 3, any chordless path betwseando! containingg® does
not use any consistency, set or independent edges andcnfmitertontainssl,vill, .. .,v}‘k,tk and
pl,wjll, . ,w‘j‘k,qk. If ih # ji, for some 1< h < k then theC(4) edge'\/{“hWTh would be a chord of
P (contradiction). O

Theorem 1. Cp3v is NP-completein bipartite graphs.

Proof: It is easy to see thatiBv is in NP. We shall show that given a gra@hand an integer
k, there exist inG’ a chordless path betweshto o* containingg® if and only if there exists in
G an independent set of size at leksSuppose that there exists a chordlBgsath betweers
ando* containingg. Let! = {v; € G : v} € P}. First of all no two vertices{! andv{ are in

Pfor1<h< ¢ <k Infactif ! andV/ are inP then, by Lemma 4w/ is also inP. Then the
set edge/w" would be a chord oP. Therefore the set has cardinalitk. We now show that
| is independent is. Suppose not and let, andv;, be two vertices of adjacent inG and let

vijj andvf[ be the corresponding vertices Bfwith 1 < j < ¢ < k. By Lemma 4, the vertewijJ

is contained irP. But then the independent edg’feNiJj would be a chord oP, a contradiction.
Finally it is easy to see that given an independent set ofksizere exists i’ a chordless path
betweens' ando! containingg®. By Remark 1 and by Remark &' is bipartite and can be
obtained fronG andk in polynomial time. This completes the proof. O

3. Simple path and even-chorded path interval operators

A hypergraph is a family{ of non empty sets whose union, denoted\{yH), is called the
vertex set of H. Each element o is an(hyper)edge. A path of lengthk > 0, inH is a sequence
(%o, €1, X1, - - . , &, Xx) Of pairwise distinct vertices and pairwise distinct edgesof H such that
{Xi_1, X} cgforl<i<k ApathinHissmpleif eN{xo,..., X} = {X_1, %} for1 <i < Kk[13].

A simple cycle in a hypergraph is defined in the same way as a simple path étlexception
that the first and the last vertex do coincide &l 2. Thelength of a cycle is the number of its
distinct vertices. A hypergraph istally balanced if it contains no simple cycle of length greater
than two [11, 12]. Theweighborhood hypergraph of a graphG, denoted byNV(G), is given by
N(G) = {Ng[V] : v € V(G)}. Thetwo-section of a hypergraplH is a graphG4 whose vertex set
is V(Gg) = V(H) and whose edge sB{G4) contains an edgev if and only if {u,v} C ee H.

3.1. Complexity of the Ecpr problem

A chord in a path or in a cycl® is odd (resp. even) if it joins vertices at odd (resp. even)
distance from each other ix A graph is saidtrongly chordal [13] if it is chordal and, in addition
every even cycle of length at least 6 has an odd chord [13,APathP = (Vo,V1,...,Vy) in a
graph iseven-chorded if it has no odd chord and neithes nor v, lies in a chord of. Given two
verticesu andv, the even-chorded path interval operator in a graph contains every vertices on
every even-chorded path betwaeandv. A subsetX of vertices ofV(G) is s-convex if it contain
all the vertices in an even-chorded path between vertices. ofhe class of strongly chordal
graph is exactly the one for which the s-convexity is geom§ti3].

As said in the introduction the strongly chordal graphs dredtotally balanced hypergraphs
are correlated to each other. In fact we have the followireyatterizations
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e A graphG is strongly chordal if and only ifV(G) is totally balanced. [12]
o A hypergraph is totally balanced if and only if its two-sectis strongly chordal. [9]

The strongly chordal graphs are interesting also because sptimization problems, which
are NP-complete in chordal graphs, become polynomiallyadé in strongly chordal graphs
[13]. We note the following

Remark 3. In a bipartite graph a path is even-chorded if and only if it is a chordless path.
and therefore
Remark 4. In a bipartite graph the monophonic convexity and the s-convexity do coincide.

In light of Remark 3 and 4 we have the following
Theorem 2. The Ecpi problem is NP-complete.

Proof: Clearly the Ep1 problem is in NP. By Remark 3 and 4 in a bipartite graph a pativés-
chorded if and only if it is a chordless path. By Theorem ledwatning if a vertex in a bipartite
graph belongs to an even-chorded path between two veridé¢B-icomplete. O

3.2. Complexity of the Ser problem

Let H be a hypergraph andandv two vertices ofH. The simple path interval operator
contains every vertex on every simple path betweandv. A subsetX of vertices ofV(H) is
s.p. convex if it contains all the vertices in a simple patiween vertices oK. The class of
totally balanced hypergraphs is exactly the one for whighsiimple path convexity is a convex
geometry [13].

Given a connected bipartite graghwith at least two vertices and partitioiX,(Y) of V(G)
then the hypergrapit(sx) associated t& with vertex setX is given by{Ng(y) : y € Y}. We
have the following

Lemma5. Let G bea connected bipartite graph with at least two vertices and bipartition (X, Y).
Then a path (Xo, Y1, X1, - . - » Yk» Xk), X0, Xk € X ischordlessin G if and only if (Xo, Ng(Y1), X1, - . .,
Na(Yk), %) is a simple path of Hgx).

Proof: (onlyif) Suppose tha® = (Xo, Y1, X1, - - - » Yk, X«) IS chordless itis and letP’” = (Xo, Ng (Y1),

X1, .., Na(Yk), X). First we show thaNg(yi) # Ng(y;) for alli # j. In fact suppose that there

existi and j, i # j, such thalNg(yi) = Ng(y;). Thenxi_1 € Ng(y;) andx_1y; would be a chord

of P. ThereforeP’ is a path ofHgx). Suppose now tha’ is not simple inHgxy. Then there

exists an edg®g(y;) such thatNg(y;) N {Xo, ..., %} # {Xj-1. Xj}. Letx € Na(y;j) — {Xj-1, Xj},

i €1{0,...,k}. Butthenxy; is an edge o6 and a chord oP, and a contradiction arises.

(if) Suppose thalP’ = (Xg, Ng(Y1), X1, - - ., Na(Yk), X) is a simple path irHgx). We claim that
= (X0, Y1, X1, - - - » Yk» Xk) iS chordless. Suppose not andyieq be a chord oP. Thenx; e NG(y.)

and this implies thallg(y;) N {Xo, . .., X} # {Xi-1, X}, that is,P’ is not simple.

By Lemma 5, we have the following

Theorem 3. The Spr problem is NP-compl ete.
11



Proof: Clearly the $1 problem is in NP. We shall show a reduction from the indepahdet
problem. LetG be a graph and an integer and Ie&’ be the bipartite graph as in Section 2. We
add toG’ a vertexs’ and an edga’st. Let (X, Y) be the partition o#/(G’) such thatX contains
L, gf andot. Finally letHg (x) be the hypergraph with vertex s¢tassociated t&’. By Lemma

5, Ha(x) has a simple path betweefi and o containingg® if and only if G’ has a chordless
path betweers® ando! containingg®. By Theorem 1G’ has a chordless path betweshand
! containinggX if and only if G has an independent set of skeSinceG’ andHg () can be
constructed in polynomial time fro@ this completes the proof. O

4. Conclusions

We showed that the ©Bv remains NP-complete in bipartite graphs, therefore stresming
previous results on the same problem. We showed also tlisattbiies that the S and the Ep1
problems, are NP-complete. Interestingly, while thefBoblem is NP-complete, computing the
simple path convex hull of a set of vertices of a hypergraphtEmadone in polynomial time [17].
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