Fully dynamic algorithm for chordal graphs with $O(1)$ query-time and $O\left(n^{2}\right)$ update-time

Mauro Mezzini
Department of Computer Science. Sapienza University of Rome, Italy
http://www.di.uniroma1.it/

May 2012

Abstract

We propose dynamic algorithms and data structures for chordal graphs supporting the following operation: determine if an edge can be added or removed from the graph while preserving the chordality in $O(1)$ time. We show that the complexity of the algorithms for updating the data structures when an edge is actually inserted or deleted is $O\left(n^{2}\right)$ where n is the number of vertices of the graph.

Key words: Chordal graphs; Dynamic algorithms, Minimal Triangulations

1. Introduction

A cycle of length $k, k \geq 3$, of a graph, is a sequence of vertices $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ such that $v_{i} v_{i+1}$ is an edge of the graph, $i=0, \ldots, k-1$ and all vertices are distinct except v_{0} and v_{k} which do coincide. A chord in a cycle is an edge of the graph joining two non-consecutive vertices of the cycle. A graph is chordal (or triangulated) if every cycle of length greater than three has a chord (see [7] for a tutorial on chordal graphs). The class of chordal graphs is an important and well-studied class of graphs [7, 24, 11]. Chordal graphs arises in many practical and relevant fields such as computing the solutions of large sparse symmetric systems of equations $[22,3,4,6,14,15,7,17,16,26,27,19,13]$, in database systems $[12,8,26,2]$, artificial intelligence $[25,9,20,1]$ and biology [5].

For example chordal graphs are used in the field of statistics and artificial intelligence $[20,10,25,9,1]$. In this context one wants to estimate an n-dimensional discrete probability distribution from a finite set of given marginals in order to use a small amount of machine memory. To this aim, one models joint probability distributions of n discrete random variables by Markov networks (also called graphical models). Such models use undirected graphs to capture conditional dependencies among subsets of the n random variables involved. Particular Markov networks, called decomposable Markov networks (DMNs), use chordal graphs. DMNs enjoy a number of desirable properties, one of which is that the approximate distribution has a simple 'product form' [21]. Therefore, given a joint probability distribution, one is interested in finding an approximation of it which is a decomposable Markov network. A possible approach, called backward selection, to solve this problem is the following: starting from the complete graph on n vertices (no assumption of independence among the random variables of the joint distribution is made) one recursively removes an edge from the graph while chordality is preserved. The opposite approach, called forward selection, does exactly the inverse procedure, that is, it starts from an empty graph and adds edges to the graph while preserving the chordality.

Note that in such applications one wants to find as quickly as possible the sets A and R of edges eligible, respectively, for addition and deletion to the graph G, without destroying chordality. Then one chooses, at each step, an edge in the set A or an edge in the set R that satisfies some specified property. For example, in the above application, one chooses at each step the edge to add or delete, that minimizes the information
divergence [18]. Once the edge is added or deleted the sets A and R should be updated to reflect the changes in the graph.

So one wants to set up a dynamic algorithm that, as edges are added or removed from the graph, updates the data structure needed to find the sets of edges which are eligible for addition or deletion from the graph while preserving the chordality.

A fully dynamic algorithm for chordal graph has been developed [17] supporting the following operations:

1. Delete-Query $(u v)$: return "yes" if $u v$ can be deleted from G while maintaining the chordality and "no" otherwise.
2. Insert-QUery $(u v)$: return "yes" if $u v$ can be added to G while maintaining the chordality and "no" otherwise.
3. Delete $(u v)$: update the data structures needed to perform operations (1) and (2) when an edge $u v$ is deleted from G.
4. Insert (uv): update the data structures needed to perform operations (1) and (2) when an edge $u v$ is added to G.
In the first implementation proposed in [17], all the above operations have time complexity of $O(n)$, where n is the number of vertices of the graph. In a second implementation, the operation Insert-Query has $O\left(\log ^{2} n\right)$ time complexity and operation Insert has $O(n)$ time complexity while the operation DeleteQuery has $O(n)$ time complexity and the operation Delete has $O(n \log n)$ time complexity.

In [9] a dynamic algorithm is proposed to insert edges in a chordal graph while preserving chordality. In this algorithm the operation Insert-Query has $O(1)$ time complexity and the operation Insert has $O\left(n^{2}\right)$ time complexity. In [23] a dynamic algorithm is proposed, that beginning from a complete graph, removes edges while preserving chordality. In this algorithm operation Delete-Query has $O(1)$ time complexity and the operation Delete has $O\left(n^{2}\right)$ time complexity.

Here we propose a fully dynamic algorithm that runs in $O(1)$ for operations Delete-Query and InsertQuery and requires $O\left(n^{2}\right)$ time to perform operations Delete and Insert. This compares better with respect to the first implementation of the algorithm of [17] since this requires $O(n m)$ to find an edge eligible for deletion, where m is the number of edges of the graph or $O(n \bar{m})$ to find an edge eligible for insertion where \bar{m} is the number of edges of the graph's complement. Therefore if one wants to add or remove k edges, the algorithm requires $O\left(k n^{3}\right)$ time. With our algorithm, on the other hand, it requires $O\left(k n^{2}\right)$ to perform a sequence of k inserts or deletes.

We also show that our algorithm can be used to find a minimal triangulation of a graph. A triangulation of a graph G is a chordal graph G^{+}, obtained from G by adding a set F of edges. The edges in F are called fill edges. A triangulation is minimal when F is a minimal set, with respect to set inclusion, of edges that added to G make it a chordal graph. Let G^{+}be a triangulation of G, F the set of fill edges and m the number of edges of the input graph. Then the minimal triangulation algorithm we propose, has $O\left(n|F|+|F|^{2}+m\right)$ time complexity, which is comparable to existing minimal triangulation techniques $[6,23]$.

The work is organized as follows. In Section 2 we give some definitions and preliminary results. In Section 3 we recall the fully dynamic algorithm proposed in [17]. In Section 4 we discuss the algorithms and data structures for supporting the DeLETE-QUERY operation and in Section 5 we discuss the algorithms and data structures for supporting the Insert-query operation. Finally in Section 6 we give the algorithms Insert and Delete that update the data structures to support the Insert-query and Delete-query respectively.

2. Definitions and preliminaries

Let $G=(V(G), E(G))$ be a graph where $V(G)$ is the vertex set and $E(G)$ is the edge set of G; furthermore $n=|V(G)|$ and $m=|E(G)|$. A set $\{r, s\}$ of two vertices will be called an edge and will be denoted as $r s$. Let $\mathcal{E}(G)=\{r s: r \in V(G), s \in V(G)\}$. Denote by $\overline{E(G)}=\mathcal{E}(G)-E(G)$ and by $\bar{m}=|\overline{E(G)}|$. When it is not clear from the context we will explicitly indicate if an element of $\mathcal{E}(G)$ belongs to $E(G)$ or to $\overline{E(G)}$.

Two vertices are adjacent if they are endpoints of an edge of G. The neighborhood of a vertex u in G is denoted by $N_{G}(u)=\{v: u v \in E(G)\}$. Given two vertices u and v the common neighborhood of $u v$, denoted by $C N_{G}(u v)$, is the set $N_{G}(u) \cap N_{G}(v)$. A clique of G is a set of pairwise adjacent vertices. A clique is maximal if it is not properly contained in another clique.

Let S be a subset of $V(G)$; the subgraph of G induced by S, denoted by $G(S)$, is the graph with vertex set S and edge set $\{u v \in E(G):(u \in S) \wedge(v \in S)\}$. Let S be a non-empty set of vertices; then by $G-S$ we denote the subgraph of G induced by $V(G)-S$. If $S=\{v\}$ is a single vertex we write $G-v$ to denote $G-\{v\}$. Let $u v \in E(G)$; then by $G-u v$, we denote the graph with vertex set $V(G)$ and edge set $E(G)-u v$. Analogously, if $u v \in \overline{E(G)}$, we denote by $G+u v$, the graph with vertex set $V(G)$ and edge set $E(G)+u v$.

The contraction of an edge $u v$ of G gives as a result a graph G^{\prime} which is obtained from G by adding a new vertex x, replacing the edge $w u$ with $w x$ for all $w \in N_{G}(u)-v$, replacing the edge $z v$ with $z x$ for all $z \in N_{G}(v)-u$ and deleting the vertices u and v and the edge $u v$.

Let G be a connected graph; then a subset of vertices S is a separator of G if $G-S$ has two or more connected components. If two vertices u and v are in the same connected component of G and in two different connected components of $G-S$, then S is said to be a uv-separator. A minimal uv-separator S is an $u v$-separator such that no proper subset of S separates u and v in two connected components.

Let G be a chordal graph and $u v \in \overline{E(G)}$; then we say that $u v$ is an attachable edge if $G+u v$ is a chordal graph. Similarly an edge $u v \in E(G)$ is removable if $G-u v$ is a chordal graph.

A triangulation of a graph G is a chordal graph G^{+}such that $V(G)=V\left(G^{+}\right)$and $E(G) \subseteq E\left(G^{+}\right)$. The set $F=E\left(G^{+}\right)-E(G)$ is called the set of fill edges.

A triangulation of a graph G is minimal when no proper subset of F if added to G, makes it a chordal graph.

Lemma 1 ([24]). Let G be a chordal graph. An edge $u v \in E(G)$ is removable from G if it not the unique chord of any 4-cycle of G.

By Lemma 1 it follows
Lemma $2([\mathbf{1 7}, \mathbf{2 3}])$. Let G be a chordal graph. Then $u v \in E(G)$ is removable if and only if $C N_{G}(u v)$ either is empty or is a clique of G.

By Lemma 1 and Lemma 2, we have the following
Theorem $1([\mathbf{1 7}, \mathbf{9}])$. Let G be a chordal graph. An edge $u v \in E(G)$ is removable if and only if it belongs to exactly one maximal clique of G.

Furthermore we need the following
Lemma 3. Let G be a chordal graph and $u v \in E(G)$. Then u and v are disconnected in $G-u v-C N_{G}(u v)$.
Proof: Suppose, by contradiction, that u and v are connected in $G-u v-C N_{G}(u v)$. Let $P=\left(u, x_{1}, \ldots, x_{k}, v\right)$ be a chordless path connecting u and v in $G-u v-C N_{G}(u v)$; it follows that, $x_{1} \notin C N_{G}(u v)$. Therefore, $k>1$ and $P+u v$ should be a chordless cycle of length greater than three in G (contradiction).

Theorem $2([\mathbf{1 7}, \mathbf{9}])$. Let G be a chordal graph. An edge $u v \in \overline{E(G)}$ is attachable if and only if either u and v belong to different connected components of G or $C N_{G}(u v)$ is an uv-separator of G

3. Related work

We briefly recall in this section the algorithms and data structures proposed by Ibarra [17] for supporting the Insert-query, Delete-query, Insert and Delete operations. We will use these data structures in our algorithm. We refer the reader for all the details to [17].

Given a chordal graph G denote by \mathcal{K}_{G} the set of maximal cliques of G. A clique tree T of G is a tree structure with vertex set \mathcal{K}_{G} that has the induced subtree property: given any vertex v of G, the subtree
induced by the cliques containing v is a subtree of T. This property is equivalent to the clique intersection property: given any two cliques K_{x} and K_{y} then $K_{x} \cap K_{y}$ is contained in every clique in the path connecting K_{x} and K_{y} in T.

It is well-known [7] that a graph is chordal if and only if it has a clique tree. Another important and well-known property of a clique tree is that given an edge $K_{x} K_{y}$ of T then $K_{x} \cap K_{y}$ is a minimal $u v$-separator for any $u \in K_{x}-K_{y}$ and $v \in K_{y}-K_{x}$.

Next we describe the algorithms to update a clique tree T of a chordal graph G when an edge is added or deleted from G. In both algorithms each edge $K_{x} K_{y}$ of T is labeled by the weight $w\left(K_{x} K_{y}\right)=\left|K_{x} \cap K_{y}\right|$. We will later discuss the operations to determine whether an edge is removable or attachable.

The algorithm AddEdge-CliqueTree takes as input an attachable edge $u v \in \overline{E(G)}$ and a clique tree T. The algorithm is based on the following

Theorem 3 ([17]). Let G be a chordal graph. An edge $u v \in \overline{E(G)}$ is attachable if and only if there exist a clique tree T of G and an edge $K_{x} K_{y}$ of T such that $u \in K_{x}$ and $v \in K_{y}$.

In order to find, if it exists, a clique tree that satisfies the condition of Theorem 3, one can use the following
Theorem 4 ([17]). Let G be a chordal graph, T a clique tree of G and $u v \in \overline{E(G)}$. Let K_{x} and K_{y} be the closest vertices of T containing respectively u and v and let $P=\left(K_{i_{0}}, K_{i_{1}}, \ldots, K_{i_{h}}\right)$ be the path in T connecting $K_{x}=K_{i_{0}}$ and $K_{y}=K_{i_{h}}$. Then uv is attachable if and only if the minimum of $w\left(K_{i_{j}} K_{i_{j+1}}\right)$ for $j=0, \ldots, h-1$, is equal to $\left|K_{x} \cap K_{y}\right|$.

The algorithm AddEdge-CliqueTree (see Fig. 1) therefore, works as follows. It finds the closest vertices K_{x} and K_{y} of T, containing respectively u and v. Then it constructs a new clique tree T^{\prime}, by first removing the minimum weight edge of the path in T connecting K_{x} and K_{y}. Then, T^{\prime} is modified by adding a new clique $K_{z}=\left(K_{x} \cap K_{y}\right) \cup\{u, v\}$ and two new edges $K_{x} K_{z}$ and $K_{y} K_{z}$. It may happen that $K_{x} \subset K_{z}$ or $K_{y} \subset K_{z}$ or both. In the first case the edge $K_{x} K_{z}$ is contracted and K_{x} is replaced by K_{z}. Analogously if $K_{y} \subset K_{z}$ the edge $K_{z} K_{y}$ is contracted and K_{y} is replaced by K_{z}.

The algorithm RemoveEdge-CliqueTree (see Fig. 1) takes as input a removable edge $u v \in E(G)$ and a clique tree T of G. If K_{x} is the clique of G containing $u v$ then it replaces K_{x} with two new cliques $K_{x}^{u}=K_{x}-\{v\}$ and $K_{x}^{v}=K_{x}-\{u\}$, joined by the edge $K_{x}^{u} K_{x}^{v}$. Next the following sets:

$$
\begin{aligned}
& N_{u}=\left\{K_{y}:\left(u \in K_{y}\right) \wedge\left(K_{y} \in N_{T}\left(K_{x}\right)\right)\right\} \\
& N_{v}=\left\{K_{z}:\left(v \in K_{z}\right) \wedge\left(K_{z} \in N_{T}\left(K_{x}\right)\right)\right\} \\
& N_{w}=\left\{K_{w}:\left(\{v, u\} \cap K_{w}=\emptyset\right) \wedge\left(K_{w} \in N_{T}\left(K_{x}\right)\right)\right\}
\end{aligned}
$$

are constructed. Then for all $K_{y} \in N_{u}$ the edge $K_{y} K_{x}$ is replaced with the edge $K_{y} K_{x}^{u}$ and for all $K_{z} \in N_{v}$ the edge $K_{z} K_{x}$ is replaced with the edge $K_{z} K_{x}^{v}$. Finally for all $K_{w} \in N_{w}$ the edge $K_{w} K_{x}$ is replaced with the edge $K_{w} K_{x}^{u}$ or the edge $K_{w} K_{x}^{v}$, choosing arbitrarily. It may happen that there exists a $K_{y} \in N_{u}$ such that $K_{x}^{u} \subset K_{y}$ or that there exists a $K_{z} \in N_{v}$ such that $K_{x}^{v} \subset K_{z}$ or both. In the first case the algorithm chooses arbitrarily one $K_{y} \in N_{u}$ such that $K_{x}^{u} \subset K_{y}$, contracts the edge $K_{y} K_{x}^{u}$ and replaces K_{x}^{u} with K_{y}. Analogously, in the second case the algorithm chooses arbitrarily one $K_{z} \in N_{v}$ such that $K_{x}^{v} \subset K_{z}$, contracts the edge $K_{z} K_{x}^{v}$ and replaces K_{x}^{v} with K_{z}.

Note that the changes in the clique tree made by algorithms AddEdge-CliqueTree and RemoveEdgeCliqueTree are limited to few vertices of the tree. More precisely we can state the following two remarks which will be useful in the subsequent sections.
Remark 1 ([17]). Let $u v \in \overline{E(G)}$ be an attachable edge and let T be a clique tree of G such that $K_{x} K_{y}$ is an edge of T and $u \in K_{x}$ and $v \in K_{y}$. Then all maximal cliques of G different from K_{x} and K_{y} are maximal cliques of $G+u v$.

Algorithm AddEdge-CliqueTree

Input: a chordal graph G, an attachable edge $u v$ and a clique tree T of G.
Output: the chordal graph $G+u v$ and a clique tree T^{\prime} of $G+u v$.

begin

the K_{x} and K_{y} be closest vertices of T containing respectively u and v;
remove from T the minimum weight edge on the path connecting K_{x} and K_{y} in T;
let $K_{z} \leftarrow\left(K_{x} \cap K_{y}\right) \cup\{u, v\}$;
add to T the edges $K_{x} K_{z}$ and $K_{y} K_{z}$;
if $K_{x} \subset K_{z}$ then contract $K_{x} K_{z}$ and replace K_{x} with K_{z};
if $K_{y} \subset K_{z}$ then contract $K_{y} K_{z}$ and replace K_{y} with K_{z};
end

Algorithm RemoveEdge-CliqueTree

Input: a chordal graph G, a removable edge $u v \in E(G)$ and a clique tree T of G.
Output: the chordal graph $G-u v$ and a clique tree T^{\prime} of $G-u v$.

begin

let K_{x} be the clique of T containing $u v$;
let $N_{u} \leftarrow\left\{K_{y}:\left(u \in K_{y}\right) \wedge\left(K_{y} \in N_{T}\left(K_{x}\right)\right)\right\} ;$
let $N_{v} \leftarrow\left\{K_{z}:\left(v \in K_{z}\right) \wedge\left(K_{z} \in N_{T}\left(K_{x}\right)\right)\right\} ;$
let $N_{w} \leftarrow\left\{K_{w}:\left(\{v, u\} \cap K_{w}=\emptyset\right) \wedge\left(K_{w} \in N_{T}\left(K_{x}\right)\right)\right\}$;
let $K_{x}^{u} \leftarrow K_{x}-\{v\}$ and $K_{x}^{v} \leftarrow K_{x}-\{u\}$;
Replace K_{x} with vertices K_{x}^{u} and K_{x}^{v} joined by the edge $K_{x}^{u} K_{x}^{v}$;
for all $K_{y} \in N_{u}$ do replace $K_{y} K_{x}$ with $K_{y} K_{x}^{u}$;
for all $K_{z} \in N_{v}$ do replace $K_{z} K_{x}$ with $K_{z} K_{x}^{v}$;
for all $K_{w} \in N_{w}$ do replace $K_{w} K_{x}$ with $K_{w} K_{x}^{v}$ or $K_{w} K_{x}^{u}$, choosing arbitrarily;
if $\exists K_{y} \in N_{u}$ such that $K_{x}^{u} \subset K_{y}$ then
contract $K_{y} K_{x}^{u}$ and replace K_{x}^{u} with K_{y};
if $\exists K_{z} \in N_{v}$ such that $K_{x}^{v} \subset K_{z}$ then contract $K_{z} K_{x}^{v}$ and replace K_{x}^{v} with K_{z};
end

Figure 1: The algorithms for updating the clique tree when an attachable edge is inserted or a removable edge is deleted

Remark 2 ([17]). Let uv $\in E(G)$ be a removable edge and K_{x} the maximal clique of G containing uv. Then all maximal cliques of G different from K_{x} are maximal cliques of $G-u v$.

Since a chordal graph has at most n maximal cliques, by Theorem 1 , in order to check if an edge is removable one simply counts the number of maximal cliques containing it. This can be done in $O(n)$ time.

By Theorem 4, in order to determine if an edge $u v \in \overline{E(G)}$ is attachable we must find the closest vertices K_{x} and K_{y} of T containing respectively u and v and if $P=\left(K_{i_{0}}, K_{i_{1}}, \ldots, K_{i_{h}}\right)$ is the path in T connecting $K_{x}=K_{i_{0}}$ and $K_{y}=K_{i_{h}}$, we must check that the minimum of $w\left(K_{i_{j}} K_{i_{j+1}}\right)$ for $j=0, \ldots, h-1$, is equal to $\left|K_{x} \cap K_{y}\right|$. Since it takes $O(n)$ time to determine $\left|K_{x} \cap K_{y}\right|$, this can be done in $O(n)$ time.

The algorithm AddEdge-CliqueTree requires $O(n)$ time. In fact as said above finding the closest vertices K_{x} and K_{y} of T containing respectively u and v and determining $\left|K_{x} \cap K_{y}\right|$ can be done in $O(n)$. In order to determine if $K_{x} \subset K_{z}$ we must check if $K_{z}-\{v\}=K_{x}$. This happens if and only if $\left|K_{x} \cap K_{y}\right|+1=\left|K_{x}\right|$. Similarly in order to determine if $K_{y} \subset K_{z}$ we must check if $\left|K_{x} \cap K_{y}\right|+1=\left|K_{y}\right|$. Using the clique tree edges' weight, this can be done in $O(n)$ time.

The algorithm RemoveEdge-CliqueTree also requires $O(n)$ time. In fact finding the sets N_{u}, N_{v} and N_{w} requires $O(n)$ time. By the clique intersection property, there exists a $K_{y} \in N_{u}$ such that $K_{x}^{u} \subset K_{y}$ if and only if $K_{x}^{u}=K_{x} \cap K_{y}$ and this happens if and only if $\left|K_{x}^{u}\right|=\left|K_{x} \cap K_{y}\right|$. Analogously there exists a $K_{z} \in N_{v}$ such that $K_{x}^{v} \subset K_{z}$ if and only if $\left|K_{x}^{v}\right|=\left|K_{x} \cap K_{z}\right|$. Therefore using the clique tree edges' weight, one can determine if there exists a K_{y} (resp. a K_{z}) such that $K_{x}^{u} \subset K_{y}\left(\right.$ resp. $\left.K_{x}^{v} \subset K_{z}\right)$ in $O(n)$ time. Then by what said above we can state the following

Theorem 5 ([17]). The time complexity of each of the following operations is $O(n)$.

1. Delete-Query (uv)
2. Insert-Query (uv)
3. Delete (uv)
4. Insert (uv)

4. Algorithms and data structures for supporting DELETE-QUERY

We show in this section data structures for supporting a DELETE-QUERY in $O(1)$ time. We also show the algorithms for updating these data structures when the insert or delete operation is executed and analyze their complexity.

We will use two data structures: the clique tree and a variable $C C$ containing for every edge $u v \in E(G)$ the number of maximal cliques of G containing $u v$. By Theorem 1, an edge $u v \in E(G)$ is removable if and only if the number of maximal cliques of G containing it is equal to one. Therefore, in order to determine if an edge $r s$ is removable, we simply check if $C C(r s)$ is or is not equal to one, which requires $O(1)$ time. Given a chordal graph G the variable $C C$ may be initialized by determining for each edge of G the number of maximal cliques of G containing it. Since a graph G has at most n maximal cliques it requires $O(n m)$ to initialize $C C$.

When we insert or remove edges from the graph we will use the clique tree to update the value of $C C$ in time bounded by $O(n+m)$, as described in the following.

The algorithm RemoveEdge1 (see Fig 2) takes as input a graph G, a removable edge $u v \in E(G)$, a clique tree T of G and the value of $C C$ for the edges of G. It computes the new value of $C C$ for the edges of $G-u v$ in the following manner.

Let K_{x} be the clique of G containing $u v$. For each edge with both endpoints in $K_{x}^{u} \cap K_{x}^{v}$, the value of $C C$ is increased by one. If K_{x}^{u} is included in a clique K_{y}, then for each edge with both endpoints in K_{x}^{u}, the value of $C C$ is decreased by one. Similarly if K_{x}^{v} is included in a clique K_{z} then for each edge with both endpoints in K_{x}^{v}, the value of $C C$ is decreased by one.

```
Algorithm RemoveEdge1
Input: a chordal graph G, a clique tree T of G, a removable edge
    uv\inE(G) and the value CC(rs) for all rs of G.
Output: the new values of CC(rs) for all rs of G-uv.
begin
    let K}\mp@subsup{K}{x}{}\mathrm{ be the clique of T containing both u and v;
    let }\mp@subsup{K}{x}{u}\leftarrow\mp@subsup{K}{x}{}-{v}\mathrm{ and }\mp@subsup{K}{x}{v}\leftarrow\mp@subsup{K}{x}{}-{u}
    for all {r,s}\subseteq\mp@subsup{K}{x}{u}\cap\mp@subsup{K}{x}{v}\mathrm{ do CC(rs)}\leftarrowCC(rs)+1;
    if }\exists\mp@subsup{K}{y}{}\mathrm{ such that }\mp@subsup{K}{x}{u}\subset\mp@subsup{K}{y}{}\mathrm{ then
        for all {r,s}\subseteq\mp@subsup{K}{x}{}}\mathrm{ such that v}\not\in{r,s} do CC(rs)\leftarrowCC(rs)-1;
    if \exists\mp@subsup{K}{z}{}\mathrm{ such that }\mp@subsup{K}{x}{v}\subset\mp@subsup{K}{z}{}\mathrm{ then}
        for all {r,s}\subseteq\mp@subsup{K}{x}{}\mathrm{ such that }u\not\in{r,s} do CC(rs)\leftarrowCC(rs)-1;
end
Algorithm AddEdge1
Input: a chordal graph G}\mathrm{ , a clique tree T of G, an attachable edge
    uv\in\overline{E(G)}\mathrm{ and the value of CC(rs) for all rs of G.}
Output: the new values of CC(rs) for all rs of G+uv.
begin
    Let }\mp@subsup{K}{x}{}\mathrm{ and }\mp@subsup{K}{y}{}\mathrm{ be closest vertices of T containing
        respectively }u\mathrm{ and }v\mathrm{ ;
    let }\mp@subsup{K}{z}{}\leftarrow(\mp@subsup{K}{x}{}\cap\mp@subsup{K}{y}{})\cup{u,v}
    for all {r,s}\subseteq\mp@subsup{K}{z}{}\mathrm{ do CC(rs)}\leftarrowCC(rs)+1;
    if }\mp@subsup{K}{x}{}\subset\mp@subsup{K}{z}{}\mathrm{ then
        for all {r,s}\subseteq\mp@subsup{K}{z}{}\mathrm{ such that }v\not\in{r,s} do CC(rs)\leftarrowCC(rs)-1;
    if }\mp@subsup{K}{y}{}\subset\mp@subsup{K}{z}{}\mathrm{ then
        for all {r,s}\subseteq K}\mp@subsup{K}{z}{}\mathrm{ such that }u\not\in{r,s}\mathrm{ do CC(rs)}\leftarrowCC(rs)-1
end
```

Figure 2: The algorithms for updating the variable $C C$ when an attachable edge is inserted or a removable edge is deleted

The algorithm AddEdge1 (see Fig 2) takes as input a graph G, an attachable edge $u v \in \overline{E(G)}$, a clique tree T of G and the value of $C C$ for the edges of G. It finds the closest vertices K_{x} and K_{y} in T containing respectively u and v. Let $K_{z}=\left(K_{x} \cap K_{y}\right) \cup\{u, v\}$. For each edge with both endpoints in K_{z}, the value of $C C$ is increased by one. If $K_{x} \subset K_{z}$ then for each edge with both endpoints in K_{x}, the value of $C C$ is decreased by one. Similarly if $K_{y} \subset K_{z}$ then for each edge with both endpoints in K_{y}, the value of $C C$ is decreased by one.

Lemma 4. Let $u v \in \overline{E(G)}$ be an attachable edge. Let T be a clique tree of G such that $K_{x} K_{y}$ is an edge of T and $u \in K_{x}$ and $v \in K_{y}$. Then, after adding uv, the value of $C C(r s)$ remains unchanged for all rs such that $\{r, s\}-\left(K_{x} \cup K_{y}\right) \neq \emptyset$.

Proof: Let $r s$ be such that $\{r, s\}-\left(K_{x} \cup K_{y}\right) \neq \emptyset$. By the clique intersection property, the set of cliques containing both r and s induces a subtree $T_{r s}$ of T not containing both K_{x} and K_{y}. By Remark 1, after the execution of AddEdge-CliqueTree, all the maximal cliques different from K_{x} and K_{y} remain unchanged. Therefore if T^{\prime} is the clique tree of $G+u v$ after the execution of AddEdge-CliqueTree, then the subtree of T^{\prime} induced by the cliques containing both r and s is equal to $T_{r s}$. It follows that the value of $C C(r s)$ remains unchanged.

Analogously we have the following Lemma, the proof of which is very similar to the proof of Lemma 4, and is therefore, omitted.

Lemma 5. Let $u v \in E(G)$ be a removable edge and K_{x} the maximal clique containing it. Then, after removing uv, the value of $C C(r s)$ remains unchanged for all $r s \in E(G)$ such that $\{r, s\}-K_{x} \neq \emptyset$.

Lemma 6. The algorithm RemoveEdge1 is correct.
Proof: Let $u v$ be the edge being removed and let K_{x} be the clique of G containing $u v$. We must show that the values of $C C(r s)$ after the elimination of $u v$ represent the number of maximal cliques of $G-u v$ containing $r s$ for each $r s \in E(G)-\{u v\}$. By Lemma 5, only edges with both endpoints in K_{x} may have the value of $C C$ modified.

With reference to the algorithm RemoveEdge-CliqueTree, after the elimination of $u v$, the clique tree is modified in the following manner. First, two new cliques $K_{x}^{u}=K_{x}-\{v\}$ and $K_{x}^{v}=K_{x}-\{u\}$ are added and one clique, K_{x}, is deleted. Therefore in $G-u v$ all the edges of K_{x} incident in u (resp. v) are contained in the same number of cliques of G, while the edges of K_{x} not incident in u and not incident in v are contained in $K_{x}^{u} \cap K_{x}^{v}$ and the number of cliques containing them is increased by one. Then if K_{x}^{u} is contained in another clique K_{y}, we replace K_{x}^{u} with K_{y}. But then each edge with both endpoints in K_{x}^{u} has the number of cliques containing it decreased by one. Similarly if K_{x}^{v} is contained in a clique K_{z} then each edge with both endpoints in K_{x}^{v} has the number of cliques containing it decreased by one.

Lemma 7. The algorithm AddEdge1 is correct.
Proof: Let $u v$ be the edge being added and let K_{x} and K_{y} be the clique of G containing respectively u and v. By Lemma 4 , only edges of $E(G)$ with both endpoints in $K_{x} \cup K_{y}$ may have the value of $C C$ modified.

With reference to the algorithm AddEdge-CliqueTree, after the addition of $u v$, the clique tree is modified in the following manner. First, a new clique $K_{z}=\left(K_{x} \cap K_{y}\right) \cup\{u, v\}$ is added. Clearly in $G+u v$, each edge with both endpoints in $\left(K_{x} \cap K_{y}\right) \cup\{u, v\}$ has the number of cliques containing it increased by one. Then if K_{x} is contained in K_{z}, we replace K_{x} with K_{z}. But then each edge with both endpoints in K_{x} has the number of cliques containing it decreased by one. Similarly if K_{y} is contained in K_{z} then each edge with both endpoints in K_{y} has the number of cliques containing it decreased by one.

The complexity of algorithm RemoveEdge1 is $O(n+m)$. In fact we update the value of $C C$ for each edge $r s$ such that $\{r, s\} \subseteq K_{x}^{u} \cap K_{x}^{v}$ where $u v$ is the edge being removed. This requires $O(m)$ since there can be at most m edges with both endpoints in $K_{x}^{u} \cap K_{x}^{v}$. Finding a maximal clique K_{y} such that $K_{x}^{u} \subset K_{y}$ and finding a maximal clique K_{z} such that $K_{x}^{v} \subset K_{z}$ requires $O(n)$ time as seen in Section 3. Similarly decreasing the value of $C C$ for each $r s$ with both endpoints in K_{x}^{u} (resp. K_{x}^{v}) if $K_{x}^{u} \subset K_{y}\left(\right.$ resp $\left.K_{x}^{v} \subset K_{z}\right)$ requires, at most, $O(m)$ time.

Also the complexity of algorithm AddEdge1 is $O(n+m)$. In fact we update the value of $C C$ for each edge $r s,\{r, s\} \subseteq K_{z}$. This require $O(m)$ since there can be at most m edges with both endpoints in K_{z}. Similarly decreasing the value of $C C$ for each $r s$ with both endpoints in K_{x} (resp. K_{y}) if $K_{x} \subset K_{z}$ (resp $K_{y} \subset K_{z}$) requires, at most, $O(m)$ time. Therefore we have the following
Lemma 8. The complexity of algorithms RemoveEdge1 and AddEdge1 is $O(n+m)$
Example. Fig. 3 (a) shows a graph G where each edge is labeled by the corresponding value of $C C$. Fig. 3 (b) shows the graph $G-b e$ and the new values of $C C$. In Fig. 3 (c), on the left, the initial clique tree of G is shown. The algorithm creates two cliques $K_{3}^{b}=\{b, c, d\}$ and $K_{3}^{e}=\{c, d, e\}$ (shown in Fig. 3 (c) on the center). Then since $K_{3}^{b} \subset K_{1}$ it contracts the edge $K_{3}^{b} K_{1}$ and replaces K_{3}^{b} with K_{1} (shown in Fig. 3 (c) on the right).

4.1. Minimal triangulation algorithm

Note that we may use algorithm RemoveEdge1 to find a minimal triangulation of a given graph in time $O\left(n f+f^{2}+m\right)$ where $f=|F|$ and F is the set of fill edges of a triangulation of G. In order to find a minimal triangulation we may execute the following procedure: find a triangulation G^{+}of G. Then recursively delete from G^{+}and F a removable edge of F. If no edge of F is removable then the triangulation is minimal. The correctness of the above procedure is based on the following

Figure 3: An example of execution of algorithm RemoveEdge1. (a) The initial graph where each edge is labeled by the value of $C C$. (b) The graph after removal of be. (c) The transformation of the clique tree of G : to the left the initial clique tree. In the center the clique tree after replacing K_{3} with K_{3}^{b} and K_{3}^{e}. To the right the clique tree of $G-b e$.

Lemma 9 ([24]). Let G^{+}be a triangulation of G. Then $E\left(G^{+}\right)-E(G)$ has at least one removable edge if and only if G^{+}is not minimal.

Given a graph G a triangulation G^{+}of G can be found in time $O(n+m+f)$ [26]. Then we initialize and modify the variable $C C$ only for the edges of F. The initialization of $C C$ requires $O(n f)$ time. The execution of algorithm RemoveEdge1 requires $O(n+f)$ time since we update the value of $C C$ only for the edges of F. Since at most f edges can be removed, the total running time of the algorithm is $O(f(n+f)+m)$.

5. Algorithms and data structures for supporting INSERT-QUERY

In order to support the operation INSERT-QUERY in $O(1)$ time we use a binary $n \times n$ matrix A containing for each $u v \in \overline{E(G)}$ a boolean value which is one if $u v$ is attachable and zero otherwise. Therefore using the matrix A it requires $O(1)$ time to check if an edge is or is not attachable. Given a chordal graph G one may initialize the matrix A by using operation Insert-query of Theorem 5 in time $O(n \bar{m})$.

When an edge is inserted or deleted we will use the clique tree in order to update the matrix A in time bounded by $O\left(n^{2}\right)$.

Let $u v \in \mathcal{E}(G)$ and denote by $G * u v$ the graph $G+u v$ if $u v \in \overline{E(G)}$ and $G-u v$ if $u v \in E(G)$. Denote by $E_{u v}$ the subset of $\overline{E(G)}$ such that $r s \in E_{u v}$ if and only if $C N_{G}(r s) \neq C N_{G * u v}(r s)$.

Fact 1. Let $u v \in \mathcal{E}(G)$ then

$$
\begin{aligned}
E_{u v}=\{r s \in \overline{E(G)}: & \left(s \in N_{G}(u) \wedge(r=v)\right) \vee\left(s \in N_{G}(v) \wedge(r=u)\right. \\
& \left(r \in N_{G}(u) \wedge(s=v)\right) \vee\left(r \in N_{G}(v) \wedge(s=u)\right\}
\end{aligned}
$$

Proof: The proof follows by the definition.
Denote by $\overline{E_{u v}}$ the set $\overline{E(G)}-E_{u v}$. By definition we have the following

Fact 2. Let G be a graph and $u v \in \mathcal{E}(G)$. Then for every $r s \in \overline{E_{u v}}$ we have that $C N_{G}(r s)=C N_{G * u v}(r s)$.
We also need the following Lemma
Lemma 10. Let G be a connected chordal graph. Let uv be an attachable edge and $r \boldsymbol{p} \neq u v$ be an attachable edge such that r is connected or coincides with u in $G-C N_{G}(u v)$ and s is connected or coincides with v in $G-C N_{G}(u v)$. Then $C N_{G}(u v)=C N_{G}(r s)$.
Proof: By Theorem 2, $C N_{G}(u v)$ is a minimal $u v$-separator. Since r and s are connected in G and not connected in $G-C N_{G}(u v)$, it follows that $C N_{G}(u v)$ is a $r s$-separator. Then $C N_{G}(r s) \subseteq C N_{G}(u v)$. If there exists a vertex $x \in C N_{G}(u v)-C N_{G}(r s)$, then r and s are connected in $G-C N_{G}(r s)$. But then we have a contradiction because by Theorem $2, C N_{G}(r s)$ is a $r s$-separator. So it must be that $C N_{G}(u v)=C N_{G}(r s)$.

5.1. Updating data structures supporting the INSERT-QUERY operation when an edge is added

Lemma 11 ([9]). Let G be a chordal graph and $u v \in \overline{E(G)}$ an attachable edge. Let $r s \in \overline{E_{u v}}$ be an attachable edge of G. Then $r s$ is not attachable in $G+u v$ if and only if r is connected to u in $G-C N_{G}(u v)$ and s is connected to v in $G-C N_{G}(u v)$.

Proof: (if) Let $r s \in \overline{E_{u v}}$ such that r is connected to u and s is connected to v in $G-C N_{G}(u v)$. In order to show that $r s$ is not attachable in $G+u v$, we show that r and s are connected in $G+u v-C N_{G+u v}(r s)$. Suppose that u and v are connected in G; it follows, by Lemma 10 , that $C N_{G}(r s)=C N_{G}(u v)$. Therefore

$$
\begin{aligned}
& G+u v-C N_{G+u v}(r s)= \\
& G+u v-C N_{G}(r s)= \\
& G+u v-C N_{G}(u v)
\end{aligned}
$$

(by Fact 2)
(by Lemma 10)

Since r is connected to u and s is connected to v in $G-C N_{G}(u v)$ they are connected in $G+u v-C N_{G+u v}(u v)$. Then, by Theorem 2, rs is not attachable in $G+u v$.

Suppose now that u and v belong to two different connected components of G; then $C N_{G}(u v)=\emptyset$. If r is connected to u and s is connected to v then $C N_{G}(r s)=\emptyset$. Since by Fact $2, C N_{G+u v}(r s)=C N_{G}(r s)$ and since r and s are connected in $G+u v$, by Theorem 2, $r s$ is not attachable in $G+u v$.
(only if) We discuss only the case where r and s belong to the same connected component of G since the proof of the other case is similar and is omitted. Suppose that $r s \in \overline{E_{u v}}$ is attachable in G and is not attachable in $G+u v$. Then r and s are connected in $G+u v-C N_{G+u v}(r s)$. By Fact $2, C N_{G+u v}(r s)=C N_{G}(r s)$ and this implies that r and s are connected in $G+u v-C N_{G}(r s)$. Since, by Theorem $2, r$ and s are disconnected in $G-C N_{G}(r s)$ any path connecting r and s in $G+u v-C N_{G}(r s)$ must contain $u v$. Therefore r is connected, say, to u and s is connected to v in $G-C N_{G}(r s)$. By Lemma 10, it follows that $C N_{G}(r s)=C N_{G}(u v)$ and therefore, r is connected to u and s is connected to v in $G-C N_{G}(u v)$.

Lemma 12. Let G be a chordal graph and $u v \in \overline{E(G)}$ an attachable edge. Every $r s \in \overline{E_{u v}}$ that is not attachable in G, remains not attachable in $G+u v$.

Proof: Since $r s$ is not attachable in G then $G-C N_{G}(r s)$ contains a path P connecting r and s. By Fact $2, C N_{G}(r s)=C N_{G+u v}(r s)$. Then P is in $G+u v-C N_{G}(r s)$ and $r s$ remains not attachable in $G+u v$.

Lemma 13. Let G be a chordal graph and $u v \in \overline{E(G)}$ an attachable edge. If an edge $r s \in E_{u v}$ is attachable in G then it remains attachable in $G+u v$.

Proof: Since $r s \in E_{u v}$ it follows that $r \in\{u, v\}$. We discuss only the case where $r=v$, being the other case symmetric. Since $r s$ is attachable in G then, by Theorem $2, C N_{G}(r s)$ is an $r s$-separator. Since $s u \in E(G)$ then r and s are disconnected in $G-C N_{G}(u v)$, and by Lemma 10, $C N_{G}(r s)=C N_{G}(u v)$. But then r and

```
Algorithm AddEdge2
Input: a chordal graph G, a clique tree T of G,
    an attachable edge uv and the boolean matrix A
Output: the new value of A(rs) for all rs\in\overline{E(G+uv)}
begin
    let C}\mp@subsup{C}{u}{}\mathrm{ and }\mp@subsup{C}{v}{}\mathrm{ be the connected components of G-CNN
    containing u and v respectively;
    for all r\inC}u\mathrm{ and for all s}\in\mp@subsup{C}{v}{}\mathrm{ do
        if rs\in\overline{\mp@subsup{E}{uv}{}}\mathrm{ and }A(rs)=1 then }A(rs)\leftarrow0
    for all rs\inE Euv such that A(rs)=0 do
        begin
            using Insert-Query of Theorem 5, check if rs
            is attachable in }G+uv\mathrm{ and update }A(rs)\mathrm{ accordingly;
        end
end
```

Figure 4: The algorithm ADDEDGE2 for updating the matrix A when an attachable edge is added to G
s are connected in $G+u v-C N_{G}(r s)$ only by u. Since $u \in C N_{G+u v}(r s)$ then r and s are disconnected in $G+u v-C N_{G+u v}(r s)$.

By Lemma 11 and Lemma 12, when an attachable edge $u v$ is added to G, in order to update the matrix A we need to find the set C_{u} of vertices connected to u in $G-C N_{G}(u v)$ and the set C_{v} of vertices connected to v in $G-C N_{G}(u v)$. Then for every $r \in C_{u}$ and for every $s \in C_{v}$ such that $r s \in \overline{E_{u v}}$ and $A(r s)=1$, we set $A(r s) \leftarrow 0$. Finally by Lemma 13, we need to update the value of $A(r s)$ for all the edges $r s \in E_{u v}$ such that $A(r s)=0$. We do this by using the operation Insert-query of Theorem 5 . In Fig. 4 is shown the algorithm for updating the boolean matrix A when we add an attachable edge $u v$ to G.

By what was said above and by Lemma 11, Lemma 12 and Lemma 13 we can state the following
Lemma 14. The algorithm AddEdge2 is correct.
Finding the set C_{u} and C_{v} requires $O(n+m)$. Then setting $A(r s) \leftarrow 0$ for all $r s \in \overline{E_{u v}}$ such that $r \in C_{u}$ and $s \in C_{v}$ require $O(\bar{m})$. Finally, since $\left|E_{u v}\right| \leq 2 n$ using the operation Insert-query of Theorem 5 , we can determine in $O\left(n^{2}\right)$ time which edges of $E_{u v}$ become attachable and which do not after adding $u v$.

Lemma 15. The complexity of algorithm AddEdge2 is $O\left(n^{2}\right)$.

5.2. Updating data structures supporting the INSERT-QUERY operation when an edge is deleted

Lemma 16. Let G be a chordal graph and $u v \in E(G)$ a removable edge. Let $r s \in \overline{E_{u v}}$ be a not attachable edge of G. Then rs is attachable in $G-u v$ if and only if r is connected to u in $G-u v-C N_{G}(u v)$ and s is connected to v in $G-u v-C N_{G}(u v)$ and $C N_{G}(r s)=C N_{G}(u v)$.

Proof: (if) Suppose that $r s \in \overline{E_{u v}}$ is a not attachable edge of G, r is connected to u in $G-u v-C N_{G}(u v)$, s is connected to v in $G-u v-C N_{G}(u v)$ and $C N_{G}(r s)=C N_{G}(u v)$. By Lemma 3, u and v are in two different connected components of $G-u v-C N_{G}(u v)$. Since $r s \in \overline{E_{u v}}$, by Fact $2, C N_{G}(r s)=C N_{G-u v}(r s)$. Furthermore, by hypothesis $C N_{G-u v}(r s)=C N_{G}(u v)$ and r is connected to u and s is connected to v in $G-u v-C N_{G}(u v)$. It follows that r and s are separated in $G-u v-C N_{G}(u v)$. By Theorem 2, rs is attachable in $G-u v$.
(only if) Suppose that $r s \in \overline{E_{u v}}$ is not attachable in G but is attachable in $G-u v$. Then, by Theorem 2, $C N_{G-u v}(r s)$ is an $r s$-separator in $G-u v$ or r and s belong to different connected component of $G-u v$.

In the following we discuss only the case when r and s are in the same connected component of $G-u v$, since the proof of the other case is similar. Since $r s$ is not attachable in G, but is attachable in $G-u v$, then r and s are disconnected in $G-u v-C N_{G-u v}(r s)$ but connected in $G-C N_{G}(r s)$. Since by Fact 2, $C N_{G}(r s)=C N_{G-u v}(r s)$, it follows that any path connecting r and s in $G-C N_{G}(r s)$ contains $u v$. In other words r is connected in $G-u v-C N_{G-u v}(r s)$ to, say u, and s is connected to v in $G-u v-C N_{G-u v}(r s)$. Since $u v$ is an attachable edge of $G-u v$ and $r s$ an attachable edge of $G-u v$ then, by Lemma 10 we have that $C N_{G-u v}(r s)=C N_{G-u v}(u v)=C N_{G}(u v)$.

Lemma 17. Let G be a chordal graph and $u v \in E(G)$ a removable edge. Every $r s \in \overline{E_{u v}}$ that is attachable in G, remains attachable in $G-u v$.

Proof: Since $r s$ is attachable in G then, by Theorem $2, C N_{G}(r s)$ is an $r s$-separator. By Fact $2, C N_{G}(r s)=$ $C N_{G-u v}(r s)$. Therefore if r and s are disconnected in $G-C N_{G}(r s)$ still they are disconnected in $G-u v-$ $C N_{G-u v}(r s)$.

Lemma 18. Let G be a chordal graph and uv $\in E(G)$ a removable edge. If an edge $r s \in E_{u v}$ is not attachable in G then it remains not attachable in $G-u v$.

Proof: Since $r s \in E_{u v}$, it follows that $r \in\{u, v\}$. We discuss only the case where $r=v$, being the other case symmetric. Since $r s$ is not attachable in G then r and s are not disconnected in $G-C N_{G}(r s)$. Note that since $u \in C N_{G}(r s)$ then any path connecting r and s in $G-C N_{G}(r s)$ does not contains u. Therefore r and s are connected in $G-u v-C N_{G-u v}(r s)$.

By Lemma 16 and Lemma 17, when a removable edge $u v$ is deleted from G, in order to update the matrix A we need to find the set C_{u}^{\prime} of vertices connected to u in $G-u v-C N_{G}(u v)$ and the set C_{v}^{\prime} of vertices connected to v in $G-u v-C N_{G}(u v)$. Then for every $r \in C_{u}^{\prime}$ and for every $s \in C_{v}^{\prime}$ such that $r s \in \overline{E_{u v}}$ and $C N_{G}(u v)=C N_{G}(r s)$ we set $A(r s) \leftarrow 1$. Finally by Lemma 18, we update the value of $A(r s)$ for all the edges in $E_{u v}$ such that $A(r s)=1$. We do this by using the Insert-query of Theorem 5. By Lemma 16, Lemma 17 and Lemma 18 we can state the following

Lemma 19. The algorithm RemoveEdge2 is correct.
In order to analyze the complexity of algorithm REMOVEEDGE2 we need first the following
Lemma 20. Let $u v \in E(G)$ be a removable edge of G and $r s \in \overline{E_{u v}}$ such that r is connected to u and s is connected to v in $G-u v-C N_{G}(u v)$. Then $C N_{G}(u v)=C N_{G}(r s)$ if and only if $C N_{G}(u v) \subseteq N_{G}(r)$ and $C N_{G}(u v) \subseteq N_{G}(s)$
Proof: (only if) Clearly if $C N_{G}(u v)=C N_{G}(r s)$ then $C N_{G}(u v) \subseteq N_{G}(r)$ and $C N_{G}(u v) \subseteq N_{G}(s)$.
(if) If $C N_{G}(u v) \subseteq N_{G}(r)$ and $C N_{G}(u v) \subseteq N_{G}(s)$ then $C N_{G}(u v) \subseteq C N_{G}(r s)$. Suppose, by contradiction, that there exists a vertex $x \in C N_{G}(r s)$ such that $x \notin C N_{G}(u v)$. Then r and s are connected in $G-u v-C N_{G}(u v)$ by x. Since r is connected to u and s is connected to v in $G-u v-C N_{G}(u v), u$ and v are not disconnected in $G-u v-C N_{G}(u v)$ and this contradicts Lemma 3.

By Lemma 20 in order to find all the edge $r s \in \overline{E(G)}$ such that $C N_{G}(r s)=C N_{G}(u v)$ we need to find the sets C_{u}^{\prime} and C_{v}^{\prime} of vertices connected respectively to u and v in $G-u v$ such that $C N_{G}(u v) \subseteq N_{G}(r)$ and $C N_{G}(u v) \subseteq N_{G}(s)$. It requires $O(n)$ to find $C N_{G}(u v)$. Then given a vertex r it requires $O(n)$ time to check if $C N_{G}(u v) \subseteq N_{G}(r)$. Therefore it requires $O\left(n^{2}\right)$ to find the sets C_{u}^{\prime} and C_{v}^{\prime}. Furthermore it requires $O\left(n^{2}\right)$ to set $A(r s) \leftarrow 1$ for all $r s \in \overline{E_{u v}}$ such that $r \in C_{u}^{\prime}$ and $s \in C_{v}^{\prime}$. Finally, since $\left|E_{u v}\right|<2 n$ using the InSERT-QUERY of Theorem 5 that requires $O(n)$ to determine if an edge is attachable, we can determine in $O\left(n^{2}\right)$ time which edges of $E_{u v}$ become attachable and which do not after removing $u v$. By what was said above we have the following

Lemma 21. The complexity of algorithm RemoveEdge2 is $O\left(n^{2}\right)$.

```
Algorithm RemoveEdge2
Input: a chordal graph G a clique tree T of G,
    a removable edge uv and the boolean matrix }
Output: the new value of A(rs) for all rs\in\overline{E(G-uv)}
begin
    let Cu}\mp@subsup{C}{u}{}\mathrm{ and }\mp@subsup{C}{v}{}\mathrm{ be the connected components of G-uv-CN G}(uv
        containing }u\mathrm{ and v respectively;
    let }\mp@subsup{C}{u}{\prime}\leftarrow\emptyset\mathrm{ and let }\mp@subsup{C}{v}{\prime}\leftarrow\emptyset
    for all r}\in\mp@subsup{C}{u}{}\mathrm{ do if CNNG}(uv)\subseteq\mp@subsup{N}{G}{}(r)\mathrm{ then add r to C}\mp@subsup{C}{u}{\prime
    for all s\in\mp@subsup{C}{v}{}}\mathrm{ do if }C\mp@subsup{N}{G}{}(uv)\subseteq\mp@subsup{N}{G}{}(s)\mathrm{ then add s to C}\mp@subsup{C}{u}{\prime
    for all }r\in\mp@subsup{C}{u}{\prime}\mathrm{ and for all }s\in\mp@subsup{C}{v}{\prime}\mathrm{ do
        if rs\in\overline{\mp@subsup{E}{uv}{}}\mathrm{ and A(rs)=0 then }A(rs)\leftarrow1;
    for all rs \in E uv such that A(rs)=1 do
        begin
            using Insert-Query of Theorem 5 check if rs
            is attachable in G-uv and update }A(rs)\mathrm{ accordingly;
    end
end
```

Figure 5: The algorithm RemoveEdge2 for updating the matrix A when a removable edge is deleted from G

6. The operations INSERT and DELETE

In Section 4 and Section 5 we discussed the algorithms that update the data structures for supporting the Insert-Query operation and for supporting the Delete-Query operation. In order to obtain the operations Insert and Delete we simply merge the algorithms AddEdge1 and AddEdge2 and the algorithms RemoveEdge1 and RemoveEdge2 as shown in Fig. 6.

By Lemma 8, Lemma 15 and Lemma 21 we have
Theorem 6. The complexity of operations Insert and Delete is $O\left(n^{2}\right)$.
In the work of Ibarra [17] the operations Insert and Delete have $O(n)$ complexity while our algorithms implements both operations in $O\left(n^{2}\right)$ time. However our algorithm performs better in those applications, such as those described in the Introduction or in Section 4.1, where the most frequent operations are the Insert-Query or Delete-Query. Therefore using our algorithm it takes $O\left(k n^{2}\right)$ to insert or delete k edges which is an improvement with respect to the Ibarra's algorithm which would requires $O\left(k n^{3}\right)$ time. Last, note that when we add or remove an edge from a chordal graph, potentially $O(m)$ removable edges can become not removable and at the same time $O(\bar{m})$ attachable edges can become not attachable. Therefore the time bound of $O\left(n^{2}\right)$ for the operations Insert and Delete, is probably, the best that we can obtain if we want to have at the same time a constant time bound for the operations Insert-Query and DeleteQuery.

Acknowledgment

The author wishes to thank Louis Ibarra for his comments.

Algorithm Insert
Input: a chordal graph G, its clique tree T, the boolean matrix A, the variable $C C$ and an attachable edge $u v$
Output: the new value of A and the new value of $C C$
begin
AddEdge1;
AddEdge2;
end
Algorithm Delete
Input: a chordal graph G, its clique tree T, the boolean matrix A, the variable $C C$ and a removable edge $u v$
Output: the new value of A and the new value of $C C$

begin

RemoveEdge1;
RemoveEdge2;
end

Figure 6: The operations Insert and Delete

References

[1] A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal clique trees. Artif. Intell., 125(1-2):3-17, 2001.
[2] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database schemes. J. ACM, 30(3):479-513, 1983.
[3] A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton. Maximum cardinality search for computing minimal triangulations of graphs. Algorithmica, 39(4):287-298, 2004.
[4] A. Berry, J. P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-range algorithm for minimal triangulation from an arbitrary ordering. J. Algorithms, 58(1):33-66, 2006.
[5] A. Berry, A. Sigayret, and J. Spinrad. Faster dynamic algorithms for chordal graphs, and an application to phylogeny. In D. Kratsch, editor, $W G$, volume 3787 of Lecture Notes in Computer Science, pages 445-455. Springer, 2005.
[6] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making filled graphs minimal. Theor. Comput. Sci., 250(1-2):125-141, 2001.
[7] J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique trees. In J. A. George, J. R. Gilbert, and J. W. H. Liu, editors, Sparse Matrix Computations: Graph Theory Issues and Algorithms. Springer Verlag. IMA Volumes in Mathematics and its Applications, 56:1-30, 1993.
[8] A. D'Atri and M. Moscarini. Recognition algorithms and design methodologies for acyclic database schemes. Advances in Computing Research, 3:43-67, 1986.
[9] A. Deshpande, M. N. Garofalakis, and M. I. Jordan. Efficient stepwise selection in decomposable models. In J. S. Breese and D. Koller, editors, UAI '01: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, University of Washington, Seattle, Washington, USA, pages 128-135. Morgan Kaufmann, 2001.
[10] G. Ding, R. F. Lax, J. Chen, P. P. Chen, and B. D. Marx. Comparison of greedy strategies for learning markov networks of treewidth k. In Proceedings of the 2007 International Conference on Machine Learning, Las Vegas Nevada, USA, pages 294-, 2007.
[11] G. Dirac. On rigid circuit graphs. Abh. Math. Semin. Univ. Hamb., 25:71-76, 1961.
[12] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM, 30(3):514-550, 1983.
[13] A. George and W. H. Liu. The evolution of the minimum degree ordering algorithm. SIAM Rev., 31(1):1-19, 1989.
[14] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics, 306(3):297-317, 2006.
[15] P. Heggernes and B. Peyton. Fast computation of minimal fill inside a given elimination ordering. SIAM Journal on Matrix Analysis and Applications, To appear, 2008.
[16] P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in time $o\left(n^{\alpha} \log n\right)=o\left(n^{2.376}\right)$. SIAM J. Discret. Math., 19(4):900-913, 2005.
[17] L. Ibarra. Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms, 4(4):1-20, 2008.
[18] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist, 22(1):79-86, 1951.
[19] J. W. H. Liu. Modification of the minimum-degree algorithm by multiple elimination. ACM Trans. Math. Softw., 11(2):141-153, 1985.
[20] F. Malvestuto. Approximating discrete probability distributions with decomposable models. IEEE Transactions on Systems, Man and Cybernetics,, 21(5):1287-1294, 1991.
[21] F. M. Malvestuto. Existence of extensions and product extensions for discrete probability distributions. Discrete Math., 69(1):61-77, 1988.
[22] M. Mezzini. Fast minimal triangulation algorithm using minimum degree criterion. Theor. Comput. Sci., 412(29):37753787, 2011.
[23] M. Mezzini and M. Moscarini. Simple algorithms for minimal triangulation of a graph and backward selection of decomposable markov network. Submitted to Theoretical Computer Science, 2009.
[24] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing, 5(2):266-283, 1976.
[25] N. Srebro. Maximum likelihood bounded tree-width markov networks. In UAI '01: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, University of Washington, Seattle, Washington, USA, pages 504-511, 2001.
[26] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput., 13(3):566-579, 1984.
[27] M. Yannakakis. Computing the minimum fill-in is NP-Complete. SIAM. J. on Algebraic and Discrete Methods, 2(1):77-79, 1981.

