Computing simple-path convex hulls in hypergraphs

Francesco M. Malvestuto*, Mauro Mezzini, Marina Moscarini
Computer Science Dept., Sapienza University of Rome, Italy

ARTICLE INFO

Article history:

Received 12 May 2010
Received in revised form 30 November 2010
Accepted 30 November 2010
Available online 3 December 2010
Communicated by J. Torán

Keywords:

Graph algorithms
Simple-path convexity
Simple-path convex hull
Totally balanced hypergraphs

Abstract

In a connected hypergraph a vertex set X is simple-path convex (sp-convex, for short) if either $|X| \leqslant 1$ or X contains every vertex on every simple path between two vertices in X (Faber and Jamison, 1986 [7]), and the sp-convex hull of a vertex set X is the minimal superset of X that is $s p$-convex. In this paper, we give a polynomial algorithm to compute $s p$-convex hulls in an arbitrary hypergraph.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

While several convexity notions exist for graphs (e.g., g-convexity [7], m-convexity [5,7], ap-convexity [4], tpconvexity [3], Steiner convexity [2,10]), fewer convexity notions have been defined explicitly for hypergraphs. The first hypergraph convexity that has been introduced is simple-path convexity (sp-convexity, for short) [7], which is a generalization of ap-convexity. Recently [8], m-convexity has been generalized to hypergraphs and another hypergraph convexity, which is stronger than m-convexity and is called c-convexity, has been introduced; moreover, efficient algorithms to compute m-convex and c-convex hulls have been given [8]. On the other hand, no result on the complexity of the problem of computing the $s p$-convex hull of a vertex set exists except for the case that the family of $s p$-convex sets is a convex geometry, in which case an efficient algorithm can be easily derived from well-known properties of totally balanced hypergraphs [1,7]. In this paper we state a characterization of $s p$-convex sets, which leads to solve the $s p$-convex hull problem in an arbitrary hypergraph in $O\left(n^{3} \mathrm{~ms}\right)$ time where n is the number of its

[^0]vertices, m is the number of its edges and s is the sum of the cardinalities of its edges.

The rest of the paper is organized as follows. Section 2 contains basic notions on hypergraphs and simple-path convexity. In Section 3 we present an $s p$-convex hull algorithm for totally balanced hypergraphs. In Section 4 we first state a characterization of $s p$-convex sets in an arbitrary hypergraph and, then, give our $s p$-convex hull algorithm.

2. Definitions

In this section we recall some hypergraph-theoretic definitions from [6].

A hypergraph is a (possibly empty) set \boldsymbol{H} of nonempty sets; the elements of \boldsymbol{H} are called the (hyper)edges of \boldsymbol{H} and their union the vertex set of \boldsymbol{H}, denoted by $V(\boldsymbol{H})$. The degree of a vertex of \boldsymbol{H} is the number of edges containing it.

A hypergraph is trivial if it has only one edge, and nontrivial otherwise. A partial hypergraph of hypergraph \boldsymbol{H} is a nonempty subset of \boldsymbol{H}.

The subhypergraph of \boldsymbol{H} induced by a nonempty subset X of $V(\boldsymbol{H})$ is the hypergraph $\{A \cap X: A \in \boldsymbol{H}\} \backslash\{\varnothing\}$.

A path between two vertices a and b of \boldsymbol{H} is a sequence $\pi=\left(a_{0}, A_{1}, a_{1}, \ldots, A_{k}, a_{k}\right), k \geqslant 0$, where $a_{0}=a, a_{k}=b$, and if $k \geqslant 1$ the a_{i} 's are pairwise distinct vertices of \boldsymbol{H}, the
A_{i} 's are pairwise distinct edges of \boldsymbol{H}, and $\left\{a_{i-1}, a_{i}\right\} \subseteq A_{i}$ for $1 \leqslant i \leqslant k$; by $V(\pi)$ and $\boldsymbol{H}(\pi)$ we denote the set of vertices and edges on the path π, respectively, that is, $V(\pi)=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ and $\boldsymbol{H}(\pi)=\left\{A_{1}, \ldots, A_{k}\right\}$. If \boldsymbol{H} is a graph (i.e., every edge has cardinality less than 3), then path $\pi=\left(a_{0}, A_{1}, a_{1}, \ldots, A_{k}, a_{k}\right)$ will be written simply as ($a_{0}, a_{1}, \ldots, a_{k}$) and is chordless if no two non-consecutive vertices are adjacent in \boldsymbol{H}.

Two vertices a and b of a hypergraph are connected if there exists a path between a and b. A hypergraph is connected if every two vertices are connected. The connected components of a hypergraph are its maximal connected partial hypergraphs.

A path π in \boldsymbol{H} is simple [7] if $|A \cap V(\pi)|=2$ for each edge A of $\boldsymbol{H}(\pi)$. Note that in a graph every path is simple.

Remark 1. Let $\pi=\left(a_{0}, A_{1}, a_{1}, \ldots, A_{k}, a_{k}\right)$ be a path between a and b in \boldsymbol{H}. Let $i(1)=\max \left\{h \leqslant k: a_{0} \in A_{h}\right\}$. Then, $\pi_{1}=\left(a_{0}, A_{i(1)}, a_{i(1)}, \ldots, A_{k}, a_{k}\right)$ is a path between a and b in \boldsymbol{H}. If $i(1)=k$ then π_{1} is a simple path between a and b in \boldsymbol{H}. Otherwise, let $i(2)=\max \left\{i(1) \leqslant h \leqslant k: a_{i(1)} \in A_{h}\right\}$. Then, $\pi_{2}=\left(a_{0}, A_{i(1)}, a_{i(1)}, A_{i(2)}, a_{i(2)}, \ldots, A_{k}, a_{k}\right)$ is a path between a and b in \boldsymbol{H}. If $i(2)=k$ then π_{2} is a simple path between a and b in \boldsymbol{H}. And so on. Thus, we can construct a simple path between a and b in \boldsymbol{H}.

Remark 2. Let $\pi=\left(a_{0}, A_{1}, a_{1}, \ldots, A_{k}, a_{k}\right)$ be a simple path in \boldsymbol{H}. If $\boldsymbol{H}(\pi)$ contains a vertex c that is not in $V(\pi)$ and has degree 2 or more, then c is on the simple path $\pi^{\prime}=\left(a_{0}, A_{1}, a_{1}, \ldots, A_{i^{\prime}}, c, A_{i^{\prime \prime}}, a_{i^{\prime \prime}}, \ldots, A_{k}, a_{k}\right)$ where $i^{\prime}=$ $\min \left\{h \leqslant k: c \in A_{h}\right\}$ and $i^{\prime \prime}=\max \left\{h \leqslant k: c \in A_{h}\right\}$.

A simple circuit [7] is a sequence $\left(a_{0}, A_{1}, a_{1}, \ldots, A_{k-1}\right.$, $\left.a_{k-1}, A_{k}, a_{0}\right), k \geqslant 2$, where $\left(a_{0}, A_{1}, a_{1}, \ldots, A_{k-1}, a_{k-1}\right)$ is a simple path and $A_{k} \cap\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}=\left\{a_{0}, a_{k-1}\right\}$; the length of the simple circuit is the number k of its edges. A hypergraph \boldsymbol{H} is totally balanced if \boldsymbol{H} contains no simple circuit of length greater than 2.

A vertex of a hypergraph is a nest vertex [7] (corresponding to a simple row [1] of the vertex-edge incidence matrix of \boldsymbol{H}) if the edges containing it form a nested (that is, totally ordered with respect to set-inclusion) family of sets. A hypergraph is totally balanced if and only if every induced subhypergraph of \boldsymbol{H} has a nest vertex [1,7]. Based on this characterization of totally balanced hypergraphs, Anstee and Farber [1] gave a recognition algorithm for totally balanced hypergraphs, which runs in $O\left(n^{2} m\right)$ time if the input hypergraph has n vertices and m edges and consists in recursively deleting nest vertices.

Let \boldsymbol{H} be a connected hypergraph. The sp-interval between two vertices a and b of \boldsymbol{H} is the set $I(a, b)$ which consists of every vertex on any simple path between a and b. A subset X of $V(\boldsymbol{H})$ is sp-convex if either X is empty or X contains $I(a, b)$ for every two vertices in X. The spconvex hull of a subset X of $V(\boldsymbol{H})$ is the minimal superset of X that is $s p$-convex.

Let X be an $s p$-convex set of \boldsymbol{H}. A vertex v in X is an extreme point of X if the set $X \backslash\{v\}$ is sp-convex. The family of $s p$-convex sets of \boldsymbol{H} is a convex geometry if every $s p$-convex set equals the $s p$-convex hull of the set of its
extreme points. In [7] it was proven that this is the case if and only if \boldsymbol{H} is totally balanced.

3. Background

A brute-force method for constructing the $s p$-convex hull of a vertex set $X \subseteq V(\boldsymbol{H})$ begins by setting $Y:=X$; then, till we can no longer enlarge Y, we repeatedly add to Y the set $I(a, b)$ for every two vertices a and b in Y. Unfortunately, this procedure is not efficient because, for a given value of Y it is NP-hard to compute $I(a, b)$ for two given vertices a and b in Y. To see it, let $G(\boldsymbol{H})$ be the bipartite graph with bipartition $(V(\boldsymbol{H}), \boldsymbol{H})$ where there is an $\operatorname{arc}(a, A), a \in V(\boldsymbol{H})$ and $A \in \boldsymbol{H}$, if and only if $a \in A$. For convenience, we call the elements of $V(\boldsymbol{H})$ and \boldsymbol{H} the vertex-nodes and edge-nodes of $G(\boldsymbol{H})$, respectively. Note that a path in \boldsymbol{H} is simple if and only if it is a chordless path in $G(\boldsymbol{H})$, that is, no edge-node on the path is adjacent to three vertex-nodes on the path. As proven in [9], given three vertices a, b and c of a bipartite graph it is NPcomplete to decide whether or not c is on a chordless path between a and b. In other words, it is NP-complete to decide whether or not c belongs to $I(a, b)$.

In the special case that \boldsymbol{H} is a totally balanced hypergraph (in which case the family of $s p$-convex sets of \boldsymbol{H} is a convex geometry), the following result easily entails the problem of computing sp-convex hulls is polynomial.

Proposition 1. (See Corollary 5.8 in [7].) Let \boldsymbol{H} be a totally balanced and connected hypergraph. A subset X of $V(\boldsymbol{H})$, is sp-convex if and only if there is an ordering $a_{1}, a_{2}, \ldots, a_{m}$ of the vertices in $V(\boldsymbol{H}) \backslash X$ such that, for all $i=1, \ldots, m, a_{i}$ is a nest vertex of the subhypergraph of \boldsymbol{H} induced by $X \cup$ $\left\{a_{i}, a_{i+1}, \ldots, a_{m}\right\}$.

Corollary 1. Let \boldsymbol{H} be a totally balanced and connected hypergraph with n vertices and m edges, and let X be a subset of $V(\boldsymbol{H})$. The sp-convex hull of X can be constructed in $O\left(n^{2} m\right)$ time.

Proof. By Proposition 1, the $s p$-convex hull of X can be obtained by repeatedly deleting the nest vertices of \boldsymbol{H} that do not belong to X. Therefore, the $s p$-convex hull problem reduces to a selective deletion of nest vertices of \boldsymbol{H}, which can be done in $O\left(n^{2} m\right)$ time using the above-mentioned Anstee-Farber algorithm.

4. Computing sp-convex hulls

In this section we shall state a characterization of $s p$ convex sets which leads to a polynomial algorithm for finding the $s p$-convex hull of a given vertex set in an arbitrary hypergraph. To achieve this, we need the following definition.

Let X be a subset of $V(H)$. Two edges A and B of \boldsymbol{H} are connected outside X (X-connected, for short), written $A \equiv{ }_{X} B$, if
$A=B \quad$ or
$(A \cap B) \backslash X \neq \varnothing$ or
there exists an edge C of \boldsymbol{H} such that

$$
(A \cap C) \backslash X \neq \varnothing \quad \text { and } \quad C \equiv_{X} B
$$

The edge relation \equiv_{X} is an equivalence relation; the classes of the resultant partition of \boldsymbol{H} will be referred to as the X-connected components of \boldsymbol{H}, and \boldsymbol{H} is X-connected if it has exactly one X-connected component. For an X connected component \mathbf{C} of \boldsymbol{H}, we call the set $X \cap V(\boldsymbol{C})$ the boundary of \mathbf{C}. In what follows, given two distinct vertices a and b in $X \cap V(\mathbf{C})$, by $\boldsymbol{C}_{a, b}$ we denote the hypergraph obtained from C by deleting the vertices in $X \backslash\{a, b\}$ and the edges that contain both a and b. Note that $\boldsymbol{C}_{a, b}$ need not contain a (or b) (see the example below).

Theorem 1. A vertex set X is sp-convex if and only if either $|X| \leqslant 1$ or, for every nontrivial X-connected component \mathbf{C} of \boldsymbol{H} with $|X \cap V(\mathbf{C})|>1$ and for every two distinct vertices a and b in the boundary of \mathbf{C}, there exists no path between a and b in $\boldsymbol{C}_{a, b}$.

Proof. (only if) Assume that X is $s p$-convex. Let C be any nontrivial X-connected component of \boldsymbol{H} with $\mid X \cap$ $V(\mathbf{C}) \mid>1$, and let a and b be two distinct vertices in the boundary of \boldsymbol{C}. If a or b is not a vertex of $\boldsymbol{C}_{a, b}$ then trivially there exists no path between a and b in $\boldsymbol{C}_{a, b}$. Assume that both a and b are vertices of $\boldsymbol{C}_{a, b}$. By construction of $\boldsymbol{C}_{a, b}$, a and b are not adjacent in $\boldsymbol{C}_{a, b}$. Moreover, if a and b were connected in $\boldsymbol{C}_{a, b}$, then by Remark 1 there would exist a simple path $\pi_{a, b}=\left(a_{0}, B_{1}, a_{1}, \ldots, B_{k}, a_{k}\right), k \geqslant 2$, between a and b in $\boldsymbol{C}_{a, b}$. Therefore, there would exist a simple path $\pi=\left(a_{0}, A_{1}, a_{1}, \ldots, A_{k}, a_{k}\right)$ between a and b in \boldsymbol{H} where A_{h} is an edge of \boldsymbol{C} being the disjoint union of B_{h} with some subset of $X \backslash\{a, b\}$, for all h. But then one would have $V(\pi) \backslash X \neq \varnothing$ which contradicts the hypothesis that X is $s p$-convex.
(if) Assume that, for every nontrivial X-connected component \boldsymbol{C} of \boldsymbol{H} with $|X \cap V(\boldsymbol{C})|>1$ and for every two distinct vertices a and b in the boundary of \boldsymbol{C}, there exists no path between a and b in $\boldsymbol{C}_{a, b}$. Suppose by contradiction that X is not $s p$-convex. Then, there would exist a simple path π between two vertices a and b in X in \boldsymbol{H} such that $V(\pi) \backslash X \neq \varnothing$. Let c be a vertex on π that does not belong to X, let u be the last vertex on π that is in X and precedes c in π and let v be the first vertex on π that is in X and follows c. Then u, v and c are vertices of some nontrivial X-connected component \mathbf{C} of \boldsymbol{H}; furthermore, u and v belong to the boundary of \boldsymbol{C} and are connected in $\boldsymbol{C}_{u, v}$, which contradicts the hypothesis.

Example. Let $\boldsymbol{H}=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ where $A_{1}=\{1,2\}$, $A_{2}=\{1,2,3\}, A_{3}=\{3,4\}, A_{4}=\{3,4,5\}$. The hypergraph \boldsymbol{H} is shown in Fig. 1.

Let $X=\{1,3,4\}$. The X-components of \boldsymbol{H} are shown in Fig. 2 and \boldsymbol{C} is the only the X-component of \boldsymbol{H} that is not a trivial hypergraph. The boundary of \boldsymbol{C} is $\{1,3\}$. The hypergraph \boldsymbol{C}_{13} is shown in Fig. 3.

Since 3 is not a vertex of \boldsymbol{C}_{13}, there exists no path joining 1 and 3 in \boldsymbol{C}_{13}. By Theorem 1 the set X is $s p$-convex, which is confirmed by the fact that the only simple paths joining two vertices in X are: $\left(1, A_{2}, 3\right),\left(1, A_{2}, 3, A_{3}, 4\right)$, $\left(1, A_{2}, 3, A_{4}, 4\right),\left(3, A_{3}, 4\right),\left(3, A_{4}, 4\right)$.

Fig. 1.

Fig. 2.

Fig. 3.

Using Theorem 1 we easily obtain a polynomial algorithm for computing the $s p$-convex hull of a given vertex set X. However, we can speed up the construction of the sp-convex hull of X using Remark 2 . Suppose that \boldsymbol{C} is a nontrivial X-connected component of \boldsymbol{H} and $\pi=$ ($a_{0}, A_{1}, a_{1}, A_{2}, \ldots, A_{k}, a_{k}$) is a simple path between two distinct vertices a and b in the boundary of C and assume that $\boldsymbol{C}_{a, b}(\pi)$ contains a vertex c of degree 2 or more which is not in X. From Remark 2 we know that another simple path between a and b in $C_{a, b}$ is given by $\pi^{\prime}=\left(a_{0}, A_{1}, a_{1}, \ldots, A_{i^{\prime}}, c, A_{i^{\prime \prime}}, a_{i^{\prime \prime}}, \ldots, A_{k}, a_{k}\right)$ where $i^{\prime}=$ $\min \left\{h \leqslant k: c \in A_{h}\right\}$ and $h^{\prime \prime}=\max \left\{h \leqslant k: c \in A_{h}\right\}$. Thus, we obtain the following algorithm.

SPCH algorithm

Input: a connected hypergraph \boldsymbol{H} and a subset X of $V(\boldsymbol{H})$. Output: the $s p$-convex hull of X in the variable Y.

begin

$Y:=\varnothing$;

$Z:=X$;
while $Y \neq Z$ do
begin
$Y:=Z$;
for every nontrivial Y-connected component \boldsymbol{C} of \boldsymbol{H} do for every two distinct vertices a and b in the boundary of \boldsymbol{C} that are connected in $\boldsymbol{C}_{a, b}$ do begin
find a simple path π between a and b in $\boldsymbol{C}_{a, b}$; add to Z the vertices of $\boldsymbol{C}_{a, b}(\pi)$ with degree 2 or more
end
end
end

We will evaluate the complexity of the SPCH algorithm in terms of the number n of vertices of \boldsymbol{H}, of the number m of edges of \boldsymbol{H} and of the size $s=\sum_{A \in \boldsymbol{H}}|A|$ of \boldsymbol{H}.

We make use of the bipartite graph $G(\boldsymbol{H})$ to represent \boldsymbol{H}. Thus, $G(\boldsymbol{H})$ is connected and has $m+n$ nodes and s arcs.

For a given value of Y, we mark the vertex-nodes of $G(\boldsymbol{H})$ that belong to Y. Then, we can construct the Y-connected components of \boldsymbol{H} with their boundaries in $O(s)$ time and their number is $O(m)$. For a given Y connected component \mathbf{C} of \boldsymbol{H} there exist $O\left(n^{2}\right)$ pair of vertices in the boundary of \boldsymbol{C}. Let $\{a, b\}$ be a pair of vertices in the boundary of \boldsymbol{C}. In the bipartite graph $G(\boldsymbol{C})$ we unmark a and b and we mark the edge-nodes adjacent to both a and b. Thus, we can construct $G\left(\boldsymbol{C}_{a, b}\right)$ by ignoring the marked nodes of $G(\mathbf{C})$ and, if a and b are connected in $G\left(\boldsymbol{C}_{a, b}\right)$, in $O(s)$ time we can construct a shortest path π between a and b in $G\left(\boldsymbol{C}_{a, b}\right)$ and find the set Y^{\prime} of vertexnodes of $G\left(\boldsymbol{C}_{a, b}(\pi)\right)$ with degree 2 or more. Note that π is also a chordless path in $G\left(\boldsymbol{C}_{a, b}\right)$ and, hence, a simple path between a and b in $\boldsymbol{C}_{a, b}$. Finally, we can add Y^{\prime} to Z in $O(n)$ time. Therefore, since $n<s$, processing a given value of Y requires $O\left(n^{2} m s\right)$ time. Since Y can assume $O(n)$ distinct values the complexity of the SPCH algorithm is $O\left(n^{3} \mathrm{~ms}\right)$.

References

[1] R.P. Anstee, M. Farber, Characterization of totally balanced matrices, J. Algorithms 5 (1984) 215-230.
[2] J. Cáceres, A. Márquez, M.L. Puertas, Steiner distance and convexity in graphs, European J. Combin. 29 (2008) 726-736.
[3] M. Changat, J. Mathew, On triangle path convexity, Discrete Math. 206 (1999) 91-95.
[4] M. Changat, S. Klavzar, H.H. Mulder, The all paths transit function on a graph, Czechoslovak Math. J. 126 (2001) 439-448.
[5] P. Duchet, Convex sets in graphs II: Minimal path convexity, J. Combin. Theory Ser. B 44 (1988) 307-316.
[6] P. Duchet, Hypergraphs, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, vol. I, North-Holland, 1995, pp. 381-432.
[7] M. Farber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic and Discrete Methods 7 (1986) 433-444.
[8] F.M. Malvestuto, Canonical and monophonic convexities in hypergraphs, Discrete Math. 309 (2009) 4287-4298.
[9] M. Mezzini, On the complexity of finding chordless paths in bipartite graphs and some interval operators in graphs and hypergraphs, Theoret. Comput. Sci. 411 (2010) 1212-1220.
[10] M.H. Nelsen, O.R. Oellermann, Steiner tree and convex geometries, SIAM J. Discrete Math. 23 (2009) 680-693.

[^0]: * Corresponding author.

 E-mail address: malvestuto@di.uniroma1.it (F.M. Malvestuto).

