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In a connected hypergraph a vertex set X is simple-path convex (sp-convex, for short) if
either |X| � 1 or X contains every vertex on every simple path between two vertices in
X (Faber and Jamison, 1986 [7]), and the sp-convex hull of a vertex set X is the minimal
superset of X that is sp-convex. In this paper, we give a polynomial algorithm to compute
sp-convex hulls in an arbitrary hypergraph.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

While several convexity notions exist for graphs (e.g.,
g-convexity [7], m-convexity [5,7], ap-convexity [4], tp-
convexity [3], Steiner convexity [2,10]), fewer convexity
notions have been defined explicitly for hypergraphs. The
first hypergraph convexity that has been introduced is
simple-path convexity (sp-convexity, for short) [7], which is
a generalization of ap-convexity. Recently [8], m-convexity
has been generalized to hypergraphs and another hyper-
graph convexity, which is stronger than m-convexity and is
called c-convexity, has been introduced; moreover, efficient
algorithms to compute m-convex and c-convex hulls have
been given [8]. On the other hand, no result on the com-
plexity of the problem of computing the sp-convex hull of
a vertex set exists except for the case that the family of
sp-convex sets is a convex geometry, in which case an ef-
ficient algorithm can be easily derived from well-known
properties of totally balanced hypergraphs [1,7]. In this pa-
per we state a characterization of sp-convex sets, which
leads to solve the sp-convex hull problem in an arbitrary
hypergraph in O (n3ms) time where n is the number of its
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vertices, m is the number of its edges and s is the sum of
the cardinalities of its edges.

The rest of the paper is organized as follows. Section 2
contains basic notions on hypergraphs and simple-path
convexity. In Section 3 we present an sp-convex hull al-
gorithm for totally balanced hypergraphs. In Section 4 we
first state a characterization of sp-convex sets in an arbi-
trary hypergraph and, then, give our sp-convex hull algo-
rithm.

2. Definitions

In this section we recall some hypergraph-theoretic def-
initions from [6].

A hypergraph is a (possibly empty) set H of nonempty
sets; the elements of H are called the (hyper)edges of H
and their union the vertex set of H , denoted by V (H). The
degree of a vertex of H is the number of edges containing
it.

A hypergraph is trivial if it has only one edge, and non-
trivial otherwise. A partial hypergraph of hypergraph H is a
nonempty subset of H .

The subhypergraph of H induced by a nonempty subset
X of V (H) is the hypergraph {A ∩ X: A ∈ H}\{∅}.

A path between two vertices a and b of H is a sequence
π = (a0, A1,a1, . . . , Ak,ak),k � 0, where a0 = a, ak = b,
and if k � 1 the ai ’s are pairwise distinct vertices of H , the
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Ai ’s are pairwise distinct edges of H , and {ai−1,ai} ⊆ Ai
for 1 � i � k; by V (π) and H(π) we denote the set of
vertices and edges on the path π , respectively, that is,
V (π) = {a0,a1, . . . ,ak} and H(π) = {A1, . . . , Ak}. If H is
a graph (i.e., every edge has cardinality less than 3), then
path π = (a0, A1,a1, . . . , Ak,ak) will be written simply as
(a0,a1, . . . ,ak) and is chordless if no two non-consecutive
vertices are adjacent in H .

Two vertices a and b of a hypergraph are connected if
there exists a path between a and b. A hypergraph is con-
nected if every two vertices are connected. The connected
components of a hypergraph are its maximal connected
partial hypergraphs.

A path π in H is simple [7] if |A ∩ V (π)| = 2 for each
edge A of H(π). Note that in a graph every path is simple.

Remark 1. Let π = (a0, A1,a1, . . . , Ak,ak) be a path be-
tween a and b in H . Let i(1) = max{h � k: a0 ∈ Ah}. Then,
π1 = (a0, Ai(1),ai(1), . . . , Ak,ak) is a path between a and b
in H . If i(1) = k then π1 is a simple path between a and
b in H . Otherwise, let i(2) = max{i(1) � h � k: ai(1) ∈ Ah}.
Then, π2 = (a0, Ai(1),ai(1), Ai(2),ai(2), . . . , Ak,ak) is a path
between a and b in H . If i(2) = k then π2 is a simple path
between a and b in H . And so on. Thus, we can construct
a simple path between a and b in H .

Remark 2. Let π = (a0, A1,a1, . . . , Ak,ak) be a simple path
in H . If H(π) contains a vertex c that is not in V (π)

and has degree 2 or more, then c is on the simple path
π ′ = (a0, A1,a1, . . . , Ai′ , c, Ai′′ ,ai′′ , . . . , Ak,ak) where i′ =
min{h � k: c ∈ Ah} and i′′ = max{h � k: c ∈ Ah}.

A simple circuit [7] is a sequence (a0, A1,a1, . . . , Ak−1,

ak−1, Ak,a0), k � 2, where (a0, A1,a1, . . . , Ak−1,ak−1) is a
simple path and Ak ∩ {a0,a1, . . . ,ak−1} = {a0,ak−1}; the
length of the simple circuit is the number k of its edges.
A hypergraph H is totally balanced if H contains no simple
circuit of length greater than 2.

A vertex of a hypergraph is a nest vertex [7] (corre-
sponding to a simple row [1] of the vertex-edge incidence
matrix of H) if the edges containing it form a nested (that
is, totally ordered with respect to set-inclusion) family of
sets. A hypergraph is totally balanced if and only if every
induced subhypergraph of H has a nest vertex [1,7]. Based
on this characterization of totally balanced hypergraphs,
Anstee and Farber [1] gave a recognition algorithm for to-
tally balanced hypergraphs, which runs in O (n2m) time if
the input hypergraph has n vertices and m edges and con-
sists in recursively deleting nest vertices.

Let H be a connected hypergraph. The sp-interval be-
tween two vertices a and b of H is the set I(a,b) which
consists of every vertex on any simple path between a
and b. A subset X of V (H) is sp-convex if either X is empty
or X contains I(a,b) for every two vertices in X . The sp-
convex hull of a subset X of V (H) is the minimal superset
of X that is sp-convex.

Let X be an sp-convex set of H . A vertex v in X is
an extreme point of X if the set X\{v} is sp-convex. The
family of sp-convex sets of H is a convex geometry if every
sp-convex set equals the sp-convex hull of the set of its
extreme points. In [7] it was proven that this is the case if
and only if H is totally balanced.

3. Background

A brute-force method for constructing the sp-convex
hull of a vertex set X ⊆ V (H) begins by setting Y := X ;
then, till we can no longer enlarge Y , we repeatedly add
to Y the set I(a,b) for every two vertices a and b in Y .
Unfortunately, this procedure is not efficient because, for a
given value of Y it is NP-hard to compute I(a,b) for two
given vertices a and b in Y . To see it, let G(H) be the
bipartite graph with bipartition (V (H), H) where there is
an arc (a, A), a ∈ V (H) and A ∈ H , if and only if a ∈ A.
For convenience, we call the elements of V (H) and H
the vertex-nodes and edge-nodes of G(H), respectively. Note
that a path in H is simple if and only if it is a chordless
path in G(H), that is, no edge-node on the path is adja-
cent to three vertex-nodes on the path. As proven in [9],
given three vertices a,b and c of a bipartite graph it is NP-
complete to decide whether or not c is on a chordless path
between a and b. In other words, it is NP-complete to de-
cide whether or not c belongs to I(a,b).

In the special case that H is a totally balanced hyper-
graph (in which case the family of sp-convex sets of H is
a convex geometry), the following result easily entails the
problem of computing sp-convex hulls is polynomial.

Proposition 1. (See Corollary 5.8 in [7].) Let H be a totally
balanced and connected hypergraph. A subset X of V (H), is
sp-convex if and only if there is an ordering a1,a2, . . . ,am
of the vertices in V (H)\X such that, for all i = 1, . . . ,m,ai
is a nest vertex of the subhypergraph of H induced by X ∪
{ai,ai+1, . . . ,am}.

Corollary 1. Let H be a totally balanced and connected hyper-
graph with n vertices and m edges, and let X be a subset of
V (H). The sp-convex hull of X can be constructed in O (n2m)

time.

Proof. By Proposition 1, the sp-convex hull of X can be
obtained by repeatedly deleting the nest vertices of H that
do not belong to X . Therefore, the sp-convex hull problem
reduces to a selective deletion of nest vertices of H , which
can be done in O (n2m) time using the above-mentioned
Anstee–Farber algorithm. �
4. Computing sp-convex hulls

In this section we shall state a characterization of sp-
convex sets which leads to a polynomial algorithm for
finding the sp-convex hull of a given vertex set in an ar-
bitrary hypergraph. To achieve this, we need the following
definition.

Let X be a subset of V (H). Two edges A and B of H
are connected outside X (X-connected, for short), written
A ≡X B , if

A = B or

(A ∩ B)\X 	= ∅ or
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there exists an edge C of H such that

(A ∩ C)\X 	= ∅ and C ≡X B.

The edge relation ≡X is an equivalence relation; the
classes of the resultant partition of H will be referred to
as the X-connected components of H , and H is X-connected
if it has exactly one X-connected component. For an X-
connected component C of H , we call the set X ∩ V (C) the
boundary of C . In what follows, given two distinct vertices
a and b in X ∩ V (C), by Ca,b we denote the hypergraph
obtained from C by deleting the vertices in X\{a,b} and
the edges that contain both a and b. Note that Ca,b need
not contain a (or b) (see the example below).

Theorem 1. A vertex set X is sp-convex if and only if either
|X | � 1 or, for every nontrivial X-connected component C of H
with |X ∩ V (C)| > 1 and for every two distinct vertices a and
b in the boundary of C , there exists no path between a and b
in Ca,b.

Proof. (only if) Assume that X is sp-convex. Let C be
any nontrivial X-connected component of H with |X ∩
V (C)| > 1, and let a and b be two distinct vertices in the
boundary of C . If a or b is not a vertex of Ca,b then trivially
there exists no path between a and b in Ca,b . Assume that
both a and b are vertices of Ca,b . By construction of Ca,b ,
a and b are not adjacent in Ca,b . Moreover, if a and b were
connected in Ca,b , then by Remark 1 there would exist a
simple path πa,b = (a0, B1,a1, . . . , Bk,ak), k � 2, between
a and b in Ca,b . Therefore, there would exist a simple path
π = (a0, A1,a1, . . . , Ak,ak) between a and b in H where
Ah is an edge of C being the disjoint union of Bh with
some subset of X\{a,b}, for all h. But then one would have
V (π)\X 	= ∅ which contradicts the hypothesis that X is
sp-convex.

(if) Assume that, for every nontrivial X-connected com-
ponent C of H with |X ∩ V (C)| > 1 and for every two
distinct vertices a and b in the boundary of C , there exists
no path between a and b in Ca,b . Suppose by contradiction
that X is not sp-convex. Then, there would exist a simple
path π between two vertices a and b in X in H such that
V (π)\X 	= ∅. Let c be a vertex on π that does not belong
to X , let u be the last vertex on π that is in X and pre-
cedes c in π and let v be the first vertex on π that is
in X and follows c. Then u, v and c are vertices of some
nontrivial X-connected component C of H ; furthermore, u
and v belong to the boundary of C and are connected in
C u,v , which contradicts the hypothesis. �
Example. Let H = {A1, A2, A3, A4, A5} where A1 = {1,2},
A2 = {1,2,3}, A3 = {3,4}, A4 = {3,4,5}. The hypergraph
H is shown in Fig. 1.

Let X = {1,3,4}. The X-components of H are shown
in Fig. 2 and C is the only the X-component of H that is
not a trivial hypergraph. The boundary of C is {1, 3}. The
hypergraph C 13 is shown in Fig. 3.

Since 3 is not a vertex of C 13, there exists no path join-
ing 1 and 3 in C 13. By Theorem 1 the set X is sp-convex,
which is confirmed by the fact that the only simple paths
joining two vertices in X are: (1, A2,3), (1, A2,3, A3,4),

(1, A2,3, A4,4), (3, A3,4), (3, A4,4).
Fig. 1.

Fig. 2.

Fig. 3.

Using Theorem 1 we easily obtain a polynomial algo-
rithm for computing the sp-convex hull of a given ver-
tex set X . However, we can speed up the construction
of the sp-convex hull of X using Remark 2. Suppose that
C is a nontrivial X-connected component of H and π =
(a0, A1,a1, A2, . . . , Ak,ak) is a simple path between two
distinct vertices a and b in the boundary of C and as-
sume that Ca,b(π) contains a vertex c of degree 2 or more
which is not in X . From Remark 2 we know that an-
other simple path between a and b in Ca,b is given by
π ′ = (a0, A1,a1, . . . , Ai′ , c, Ai′′ ,ai′′ , . . . , Ak,ak) where i′ =
min{h � k: c ∈ Ah} and h′′ = max{h � k: c ∈ Ah}. Thus, we
obtain the following algorithm.

SPCH algorithm
Input: a connected hypergraph H and a subset X of V (H).
Output: the sp-convex hull of X in the variable Y .
begin
Y := ∅;
Z := X;
while Y 	= Z do

begin
Y := Z ;
for every nontrivial Y -connected component C of H do

for every two distinct vertices a and b in the bound-
ary of C that are connected in Ca,b do
begin
find a simple path π between a and b in Ca,b;
add to Z the vertices of Ca,b(π) with degree 2 or

more
end

end
end

We will evaluate the complexity of the SPCH algorithm
in terms of the number n of vertices of H , of the num-
ber m of edges of H and of the size s = ∑

A∈H |A| of H .
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We make use of the bipartite graph G(H) to represent H .
Thus, G(H) is connected and has m + n nodes and s arcs.

For a given value of Y , we mark the vertex-nodes
of G(H) that belong to Y . Then, we can construct the
Y -connected components of H with their boundaries in
O (s) time and their number is O (m). For a given Y -
connected component C of H there exist O (n2) pair of
vertices in the boundary of C . Let {a,b} be a pair of ver-
tices in the boundary of C . In the bipartite graph G(C) we
unmark a and b and we mark the edge-nodes adjacent to
both a and b. Thus, we can construct G(Ca,b) by ignoring
the marked nodes of G(C) and, if a and b are connected in
G(Ca,b), in O (s) time we can construct a shortest path π
between a and b in G(Ca,b) and find the set Y ′ of vertex-
nodes of G(Ca,b(π)) with degree 2 or more. Note that π
is also a chordless path in G(Ca,b) and, hence, a simple
path between a and b in Ca,b . Finally, we can add Y ′ to
Z in O (n) time. Therefore, since n < s, processing a given
value of Y requires O (n2ms) time. Since Y can assume
O (n) distinct values the complexity of the SPCH algorithm
is O (n3ms).
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