Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Computing simple-path convex hulls in hypergraphs

Francesco M. Malvestuto*, Mauro Mezzini, Marina Moscarini

Computer Science Dept., Sapienza University of Rome, Italy

ARTICLE INFO

Article history: Received 12 May 2010 Received in revised form 30 November 2010 Accepted 30 November 2010 Available online 3 December 2010 Communicated by J. Torán

Keywords: Graph algorithms Simple-path convexity Simple-path convex hull Totally balanced hypergraphs

1. Introduction

While several convexity notions exist for graphs (e.g., g-convexity [7], m-convexity [5,7], ap-convexity [4], tpconvexity [3], Steiner convexity [2,10]), fewer convexity notions have been defined explicitly for hypergraphs. The first hypergraph convexity that has been introduced is simple-path convexity (sp-convexity, for short) [7], which is a generalization of *ap*-convexity. Recently [8], *m*-convexity has been generalized to hypergraphs and another hypergraph convexity, which is stronger than *m*-convexity and is called *c-convexity*, has been introduced; moreover, efficient algorithms to compute *m*-convex and *c*-convex hulls have been given [8]. On the other hand, no result on the complexity of the problem of computing the sp-convex hull of a vertex set exists except for the case that the family of sp-convex sets is a convex geometry, in which case an efficient algorithm can be easily derived from well-known properties of totally balanced hypergraphs [1,7]. In this paper we state a characterization of sp-convex sets, which leads to solve the sp-convex hull problem in an arbitrary hypergraph in $O(n^3ms)$ time where *n* is the number of its

* Corresponding author. *E-mail address:* malvestuto@di.uniroma1.it (F.M. Malvestuto).

ABSTRACT

In a connected hypergraph a vertex set *X* is *simple-path convex* (*sp-convex*, for short) if either $|X| \leq 1$ or *X* contains every vertex on every simple path between two vertices in *X* (Faber and Jamison, 1986 [7]), and the *sp-convex hull* of a vertex set *X* is the minimal superset of *X* that is *sp*-convex. In this paper, we give a polynomial algorithm to compute *sp*-convex hulls in an arbitrary hypergraph.

© 2010 Elsevier B.V. All rights reserved.

vertices, *m* is the number of its edges and *s* is the sum of the cardinalities of its edges.

The rest of the paper is organized as follows. Section 2 contains basic notions on hypergraphs and simple-path convexity. In Section 3 we present an *sp*-convex hull algorithm for totally balanced hypergraphs. In Section 4 we first state a characterization of *sp*-convex sets in an arbitrary hypergraph and, then, give our *sp*-convex hull algorithm.

2. Definitions

In this section we recall some hypergraph-theoretic definitions from [6].

A hypergraph is a (possibly empty) set H of nonempty sets; the elements of H are called the (hyper)edges of Hand their union the vertex set of H, denoted by V(H). The degree of a vertex of H is the number of edges containing it.

A hypergraph is *trivial* if it has only one edge, and *non-trivial* otherwise. A *partial hypergraph* of hypergraph H is a nonempty subset of H.

The subhypergraph of **H** induced by a nonempty subset X of $V(\mathbf{H})$ is the hypergraph $\{A \cap X : A \in \mathbf{H}\} \setminus \{\emptyset\}$.

A path between two vertices a and b of H is a sequence $\pi = (a_0, A_1, a_1, \dots, A_k, a_k), k \ge 0$, where $a_0 = a, a_k = b$, and if $k \ge 1$ the a_i 's are pairwise distinct vertices of H, the

^{0020-0190/\$ –} see front matter $\ \textcircled{C}$ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2010.11.026

 A_i 's are pairwise distinct edges of H, and $\{a_{i-1}, a_i\} \subseteq A_i$ for $1 \leq i \leq k$; by $V(\pi)$ and $H(\pi)$ we denote the set of vertices and edges on the path π , respectively, that is, $V(\pi) = \{a_0, a_1, \ldots, a_k\}$ and $H(\pi) = \{A_1, \ldots, A_k\}$. If H is a graph (i.e., every edge has cardinality less than 3), then path $\pi = (a_0, A_1, a_1, \ldots, A_k, a_k)$ will be written simply as (a_0, a_1, \ldots, a_k) and is *chordless* if no two non-consecutive vertices are adjacent in H.

Two vertices a and b of a hypergraph are *connected* if there exists a path between a and b. A hypergraph is *connected* if every two vertices are connected. The *connected components* of a hypergraph are its maximal connected partial hypergraphs.

A path π in **H** is simple [7] if $|A \cap V(\pi)| = 2$ for each edge A of $H(\pi)$. Note that in a graph every path is simple.

Remark 1. Let $\pi = (a_0, A_1, a_1, ..., A_k, a_k)$ be a path between *a* and *b* in **H**. Let $i(1) = \max\{h \le k: a_0 \in A_h\}$. Then, $\pi_1 = (a_0, A_{i(1)}, a_{i(1)}, ..., A_k, a_k)$ is a path between *a* and *b* in **H**. If i(1) = k then π_1 is a simple path between *a* and *b* in **H**. Otherwise, let $i(2) = \max\{i(1) \le h \le k: a_{i(1)} \in A_h\}$. Then, $\pi_2 = (a_0, A_{i(1)}, a_{i(1)}, A_{i(2)}, a_{i(2)}, ..., A_k, a_k)$ is a path between *a* and *b* in **H**. If i(2) = k then π_2 is a simple path between *a* and *b* in **H**. And so on. Thus, we can construct a simple path between *a* and *b* in **H**.

Remark 2. Let $\pi = (a_0, A_1, a_1, \dots, A_k, a_k)$ be a simple path in H. If $H(\pi)$ contains a vertex c that is not in $V(\pi)$ and has degree 2 or more, then c is on the simple path $\pi' = (a_0, A_1, a_1, \dots, A_{i'}, c, A_{i''}, a_{i''}, \dots, A_k, a_k)$ where $i' = \min\{h \leq k: c \in A_h\}$ and $i'' = \max\{h \leq k: c \in A_h\}$.

A simple circuit [7] is a sequence $(a_0, A_1, a_1, \ldots, A_{k-1}, a_{k-1}, A_k, a_0)$, $k \ge 2$, where $(a_0, A_1, a_1, \ldots, A_{k-1}, a_{k-1})$ is a simple path and $A_k \cap \{a_0, a_1, \ldots, a_{k-1}\} = \{a_0, a_{k-1}\}$; the *length* of the simple circuit is the number *k* of its edges. A hypergraph **H** is *totally balanced* if **H** contains no simple circuit of length greater than 2.

A vertex of a hypergraph is a *nest vertex* [7] (corresponding to a *simple row* [1] of the vertex-edge incidence matrix of H) if the edges containing it form a nested (that is, totally ordered with respect to set-inclusion) family of sets. A hypergraph is totally balanced if and only if every induced subhypergraph of H has a nest vertex [1,7]. Based on this characterization of totally balanced hypergraphs, Anstee and Farber [1] gave a recognition algorithm for totally balanced hypergraphs, which runs in $O(n^2m)$ time if the input hypergraph has n vertices and m edges and consists in recursively deleting nest vertices.

Let **H** be a connected hypergraph. The *sp-interval* between two vertices a and b of **H** is the set I(a, b) which consists of every vertex on any simple path between aand b. A subset X of $V(\mathbf{H})$ is *sp-convex* if either X is empty or X contains I(a, b) for every two vertices in X. The *spconvex* hull of a subset X of $V(\mathbf{H})$ is the minimal superset of X that is *sp*-convex.

Let X be an sp-convex set of **H**. A vertex v in X is an *extreme point* of X if the set $X \setminus \{v\}$ is sp-convex. The family of sp-convex sets of **H** is a *convex geometry* if every sp-convex set equals the sp-convex hull of the set of its extreme points. In [7] it was proven that this is the case if and only if H is totally balanced.

3. Background

A brute-force method for constructing the *sp*-convex hull of a vertex set $X \subseteq V(\mathbf{H})$ begins by setting Y := X; then, till we can no longer enlarge Y, we repeatedly add to Y the set I(a, b) for every two vertices a and b in Y. Unfortunately, this procedure is not efficient because, for a given value of Y it is NP-hard to compute I(a, b) for two given vertices a and b in Y. To see it, let G(H) be the bipartite graph with bipartition (V(H), H) where there is an arc (a, A), $a \in V(\mathbf{H})$ and $A \in \mathbf{H}$, if and only if $a \in A$. For convenience, we call the elements of $V(\mathbf{H})$ and \mathbf{H} the vertex-nodes and edge-nodes of $G(\mathbf{H})$, respectively. Note that a path in **H** is simple if and only if it is a chordless path in $G(\mathbf{H})$, that is, no edge-node on the path is adjacent to three vertex-nodes on the path. As proven in [9], given three vertices *a*, *b* and *c* of a bipartite graph it is NPcomplete to decide whether or not *c* is on a chordless path between a and b. In other words, it is NP-complete to decide whether or not c belongs to I(a, b).

In the special case that H is a totally balanced hypergraph (in which case the family of *sp*-convex sets of H is a convex geometry), the following result easily entails the problem of computing *sp*-convex hulls is polynomial.

Proposition 1. (See Corollary 5.8 in [7].) Let \mathbf{H} be a totally balanced and connected hypergraph. A subset X of $V(\mathbf{H})$, is sp-convex if and only if there is an ordering a_1, a_2, \ldots, a_m of the vertices in $V(\mathbf{H}) \setminus X$ such that, for all $i = 1, \ldots, m, a_i$ is a nest vertex of the subhypergraph of \mathbf{H} induced by $X \cup \{a_i, a_{i+1}, \ldots, a_m\}$.

Corollary 1. Let H be a totally balanced and connected hypergraph with n vertices and m edges, and let X be a subset of V(H). The sp-convex hull of X can be constructed in $O(n^2m)$ time.

Proof. By Proposition 1, the *sp*-convex hull of *X* can be obtained by repeatedly deleting the nest vertices of *H* that do not belong to *X*. Therefore, the *sp*-convex hull problem reduces to a selective deletion of nest vertices of *H*, which can be done in $O(n^2m)$ time using the above-mentioned Anstee–Farber algorithm. \Box

4. Computing sp-convex hulls

In this section we shall state a characterization of *sp*convex sets which leads to a polynomial algorithm for finding the *sp*-convex hull of a given vertex set in an arbitrary hypergraph. To achieve this, we need the following definition.

Let X be a subset of V(H). Two edges A and B of **H** are *connected outside* X (X-connected, for short), written $A \equiv_X B$, if

$$A = B \quad \text{or} \\ (A \cap B) \setminus X \neq \emptyset$$

or

there exists an edge C of **H** such that

$$(A \cap C) \setminus X \neq \emptyset$$
 and $C \equiv_X B$.

The edge relation \equiv_X is an equivalence relation; the classes of the resultant partition of H will be referred to as the *X*-connected components of H, and H is *X*-connected if it has exactly one *X*-connected component. For an *X*-connected component C of H, we call the set $X \cap V(C)$ the boundary of C. In what follows, given two distinct vertices a and b in $X \cap V(C)$, by $C_{a,b}$ we denote the hypergraph obtained from C by deleting the vertices in $X \setminus \{a, b\}$ and the edges that contain both a and b. Note that $C_{a,b}$ need not contain a (or b) (see the example below).

Theorem 1. A vertex set X is sp-convex if and only if either $|X| \leq 1$ or, for every nontrivial X-connected component **C** of **H** with $|X \cap V(\mathbf{C})| > 1$ and for every two distinct vertices a and b in the boundary of **C**, there exists no path between a and b in $\mathbf{C}_{a,b}$.

Proof. (only if) Assume that *X* is *sp*-convex. Let *C* be any nontrivial *X*-connected component of *H* with $|X \cap V(C)| > 1$, and let *a* and *b* be two distinct vertices in the boundary of *C*. If *a* or *b* is not a vertex of $C_{a,b}$ then trivially there exists no path between *a* and *b* in $C_{a,b}$. Assume that both *a* and *b* are vertices of $C_{a,b}$. By construction of $C_{a,b}$, *a* and *b* are not adjacent in $C_{a,b}$. Moreover, if *a* and *b* were connected in $C_{a,b}$, then by Remark 1 there would exist a simple path $\pi_{a,b} = (a_0, B_1, a_1, \ldots, B_k, a_k), k \ge 2$, between *a* and *b* in $C_{a,b}$. Therefore, there would exist a simple path $\pi = (a_0, A_1, a_1, \ldots, A_k, a_k)$ between *a* and *b* in *H* where A_h is an edge of *C* being the disjoint union of B_h with some subset of $X \setminus \{a, b\}$, for all *h*. But then one would have $V(\pi) \setminus X \neq \emptyset$ which contradicts the hypothesis that *X* is *sp*-convex.

(if) Assume that, for every nontrivial *X*-connected component **C** of **H** with $|X \cap V(\mathbf{C})| > 1$ and for every two distinct vertices *a* and *b* in the boundary of **C**, there exists no path between *a* and *b* in $C_{a,b}$. Suppose by contradiction that *X* is not *sp*-convex. Then, there would exist a simple path π between two vertices *a* and *b* in *X* in **H** such that $V(\pi) \setminus X \neq \emptyset$. Let *c* be a vertex on π that does not belong to *X*, let *u* be the last vertex on π that is in *X* and precedes *c* in π and let *v* be the first vertex on π that is in *X* and follows *c*. Then *u*, *v* and *c* are vertices of some nontrivial *X*-connected component **C** of **H**; furthermore, *u* and *v* belong to the boundary of **C** and are connected in $C_{u,v}$, which contradicts the hypothesis. \Box

Example. Let $H = \{A_1, A_2, A_3, A_4, A_5\}$ where $A_1 = \{1, 2\}$, $A_2 = \{1, 2, 3\}$, $A_3 = \{3, 4\}$, $A_4 = \{3, 4, 5\}$. The hypergraph H is shown in Fig. 1.

Let $X = \{1, 3, 4\}$. The X-components of **H** are shown in Fig. 2 and **C** is the only the X-component of **H** that is not a trivial hypergraph. The boundary of **C** is $\{1, 3\}$. The hypergraph C_{13} is shown in Fig. 3.

Since 3 is not a vertex of C_{13} , there exists no path joining 1 and 3 in C_{13} . By Theorem 1 the set *X* is *sp*-convex, which is confirmed by the fact that the only simple paths joining two vertices in *X* are: $(1, A_2, 3), (1, A_2, 3, A_3, 4), (1, A_2, 3, A_4, 4), (3, A_3, 4), (3, A_4, 4).$

Using Theorem 1 we easily obtain a polynomial algorithm for computing the *sp*-convex hull of a given vertex set *X*. However, we can speed up the construction of the *sp*-convex hull of *X* using Remark 2. Suppose that **C** is a nontrivial *X*-connected component of **H** and $\pi = (a_0, A_1, a_1, A_2, \ldots, A_k, a_k)$ is a simple path between two distinct vertices *a* and *b* in the boundary of **C** and assume that $C_{a,b}(\pi)$ contains a vertex *c* of degree 2 or more which is not in *X*. From Remark 2 we know that another simple path between *a* and *b* in $C_{a,b}$ is given by $\pi' = (a_0, A_1, a_1, \ldots, A_{i'}, c, A_{i''}, a_{i''}, \ldots, A_k, a_k)$ where $i' = \min\{h \leq k: c \in A_h\}$ and $h'' = \max\{h \leq k: c \in A_h\}$. Thus, we obtain the following algorithm.

SPCH algorithm

Input: a connected hypergraph H and a subset X of V(H). **Output**: the *sp*-convex hull of X in the variable Y. **begin**

~
$Y := \emptyset;$
Z := X;
while $Y \neq Z$ do
begin
Y := Z;
for every nontrivial Y-connected component C of H do
for every two distinct vertices <i>a</i> and <i>b</i> in the bound-
ary of C that are connected in $C_{a,b}$ do
begin
find a simple path π between a and b in $C_{a,b}$;
add to Z the vertices of $C_{a,b}(\pi)$ with degree 2 or
more
end
end
end

We will evaluate the complexity of the SPCH algorithm in terms of the number *n* of vertices of *H*, of the number *m* of edges of *H* and of the size $s = \sum_{A \in H} |A|$ of *H*. We make use of the bipartite graph G(H) to represent H. Thus, G(H) is connected and has m + n nodes and s arcs.

For a given value of Y, we mark the vertex-nodes of $G(\mathbf{H})$ that belong to Y. Then, we can construct the Y-connected components of **H** with their boundaries in O(s) time and their number is O(m). For a given Yconnected component **C** of **H** there exist $O(n^2)$ pair of vertices in the boundary of **C**. Let $\{a, b\}$ be a pair of vertices in the boundary of **C**. In the bipartite graph $G(\mathbf{C})$ we unmark a and b and we mark the edge-nodes adjacent to both *a* and *b*. Thus, we can construct $G(\mathbf{C}_{a,b})$ by ignoring the marked nodes of $G(\mathbf{C})$ and, if *a* and *b* are connected in $G(\mathbf{C}_{a,b})$, in O(s) time we can construct a shortest path π between *a* and *b* in $G(\mathbf{C}_{a,b})$ and find the set Y' of vertexnodes of $G(\mathbf{C}_{a,b}(\pi))$ with degree 2 or more. Note that π is also a chordless path in $G(\mathbf{C}_{a,b})$ and, hence, a simple path between a and b in $C_{a,b}$. Finally, we can add Y' to Z in O(n) time. Therefore, since n < s, processing a given value of Y requires $O(n^2ms)$ time. Since Y can assume O(n) distinct values the complexity of the SPCH algorithm is $O(n^3ms)$.

References

- R.P. Anstee, M. Farber, Characterization of totally balanced matrices, J. Algorithms 5 (1984) 215–230.
- [2] J. Cáceres, A. Márquez, M.L. Puertas, Steiner distance and convexity in graphs, European J. Combin. 29 (2008) 726–736.
- [3] M. Changat, J. Mathew, On triangle path convexity, Discrete Math. 206 (1999) 91–95.
- [4] M. Changat, S. Klavzar, H.H. Mulder, The all paths transit function on a graph, Czechoslovak Math. J. 126 (2001) 439–448.
- [5] P. Duchet, Convex sets in graphs II: Minimal path convexity, J. Combin. Theory Ser. B 44 (1988) 307–316.
- [6] P. Duchet, Hypergraphs, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, vol. I, North-Holland, 1995, pp. 381–432.
- [7] M. Farber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic and Discrete Methods 7 (1986) 433–444.
- [8] F.M. Malvestuto, Canonical and monophonic convexities in hypergraphs, Discrete Math. 309 (2009) 4287–4298.
- [9] M. Mezzini, On the complexity of finding chordless paths in bipartite graphs and some interval operators in graphs and hypergraphs, Theoret. Comput. Sci. 411 (2010) 1212–1220.
- [10] M.H. Nelsen, O.R. Oellermann, Steiner tree and convex geometries, SIAM J. Discrete Math. 23 (2009) 680–693.