Fast minimal triangulation algorithm using minimum degree criterion

Mauro Mezzini

April 2011

Abstract

We propose an algorithm for minimal triangulation which, using simple and efficient strategy, subdivides the input graph in different, almost non-overlapping, subgraphs. Using the technique of matrix multiplication for saturating the minimal separators, we show that the partition of the graph can be computed in time $O\left(n^{\alpha}\right)$ where n^{α} is the time required by the binary matrix multiplication. After saturating the minimal separators the same procedure is recursively applied on each subgraphs. We also present a variant of the algorithm in which the minimum degree criterion is used. In this way we obtain an algorithm that uses minimum degree criterion and at the same time produces a minimal triangulation, thus shedding new light on the effectiveness of the minimum degree heuristics.

Key words: Minimal triangulations; Chordal graphs; Minimum Degree;

1. Introduction

A graph is chordal if every cycle of length greater than three has a chord which is an edge of the graph joining two non adjacent vertices of the cycle. A triangulation of a graph G is a chordal graph obtained from G by adding to it a set of edges. Historically, the problem of finding a triangulation of a graph is related to the problem of computing the inverse of large sparse symmetric matrices [21, 12, 7]. Other important fields in which the triangulation problem applies is database management [22, 1], artificial intelligence and statistics [17, 9, 19], to cite few. In these applications one wants to find a triangulation of the input graph whose edge set is the minimum possible. But such minimum triangulation is difficult to obtain since this has been shown to be an NP-Hard problem [23]. However the problem of finding a minimal triangulation, that is, finding an inclusion minimal set of edges which added to the original graph makes it chordal, can be solved in polynomial time. Therefore much of the effort in the literature has been devoted in developing algorithms for finding minimal triangulations, as efficient as possible $[6,12,21,14,2,3,15,19,2,4,18]$.

Another approach, the one used in the Minimum Degree Algorithm (MDA) [11] tries to obtain a triangulation of a graph, not necessarily minimal, by employing the minimum degree heuristic. Such approach has been successful since the triangulations produced by the MDA are often minimal and, while the worst case complexity bounds of the MDA are much higher than other minimal triangulation algorithms, such complexity bounds are tight only for very dense graphs and are not often observed for problems that are solved in practice [5].

Here we present an algorithm that uses the minimum degree criterion and produces at the same time minimal triangulations. The idea is to divide the graph in different, almost non-overlapping, subgraphs and compute a minimal triangulation of each subgraph. We prove that if we add to the original graph the edges needed to obtain a minimal triangulation of each subgraph, then we produce a minimal triangulation of the original graph.

Thanks to this we will consider, among others, the possibility of recursively apply the same procedure on each subgraph, since each recursive call will spent time only on a non-overlapping part of the original graph.

We will show that all the tasks needed to obtain the partition of the graph, with the exception of the task of saturating the minimal separators, can be easily carried out and require time linear in the dimension
of the triangulated graph. As for the task of computing the set of edges needed to saturate a set of minimal separators, we may use the technique of matrix multiplication (such as that used in [14]) which has time complexity of $O\left(n^{\alpha}\right)$. Thus we obtain a partition of the graph with simple and very fast procedures.

We will see that we can partition the graph using the criterion of the minimum degree. While this approach does not always assure a balanced partition of the graph, i.e., does not assure that the algorithm terminates in a logarithmic number of steps, it seems the most natural and simplest choice. This is interesting also from a theoretical point of view. The fact that each subgraph of the partition can be triangulated separately of the other subgraphs, sheds new light on why the local minimum degree heuristic is so effective (and fast) in producing small or minimal triangulations on sparse graphs.

We made an implementation of our algorithm and realized various experiments. We tested our algorithm both on (pseudo) randomly generated graphs and on much of the symmetric squared sparse matrices from the Harwell-Boeing collection [8]. We compared the execution time of our algorithm with the execution time of the well-known MCS-M [2] algorithm. Although in building the implementation, we put our attention much on correctness and readability of the code and we did not implement the matrix multiplication technique for computing the minimal separators, the tests made, shown that our algorithm perform dramatically better than MCS-M. Furthermore the experiments made on the matrices of the Harwell-Boeing collection confirmed that, using the minimum degree criterion in the first iteration of the algorithm, the graphs broke in many (sometimes hundreds and even thousand), smaller subgraphs.

The work is organized as follows. In Section 2 we give some definitions and preliminary results. In Section 3 we describe the procedure for partitioning the graph in what we call quasi-split graphs. In Section 4 we give two algorithms to compute a minimal triangulation of two special cases of quasi-split graph, interesting on their own and useful in the subsequent parts. In Section 5 we detail the steps of a recursive algorithm. In Section 6 we report the results of our experimentation. Finally, in Section 7, we give some closing remarks and list possible future research issues.

2. Definitions and preliminaries

We consider simple undirected loopless graphs $G=(V(G), E(G))$, where $V(G)$ is a set of vertices and $E(G)$ is a set of pairs of distinct vertices. We denote, unless explicitly specified, $|V(G)|$ by n and $|E(G)|$ by m. A pair of distinct vertices $u v$ is called an edge; u and v are called the endpoints of $u v$ and are adjacent if $u v \in E(G)$. The neighborhood of a vertex v is the set of its adjacent vertices, denoted by $N_{G}(v)$. The degree of a vertex v is $d_{G}(v)=\left|N_{G}(v)\right|$. Given a set S of vertices the neighborhood of S is $N_{G}(S)=\cup_{v \in S} N_{G}(v) \backslash S$. The closed neighborhood of a vertex set S is $N_{G}[S]=N_{G}(S) \cup S$. The common neighborhood of two vertices u and v is $C N_{G}(u v)=N_{G}(u) \cap N_{G}(v)$. When it is clear from the context we omit the subscript and write $d(v), N(v)$ and $C N(u v)$. A path of length k is a sequence of distinct vertices $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ such that $v_{i} v_{i+1} \in E(G)$ for $0 \leq i<k$. A cycle of length k a sequence of vertices $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ such that $v_{i} v_{i+1} \in E(G)$ for $0 \leq i<k$ and only the first and the last vertex do coincide.

An independent set is a set of pairwise non adjacent vertices. A set of pairwise adjacent vertices is called a clique. When we saturate a set S of vertices we add an edge between every pair of non adjacent vertices of S.

The subgraph of G induced by a subset S of $V(G)$, denoted as $G[S]$ or simply by S when there is no ambiguity, is a graph with vertex set S and edge set $E(G[S])=\{u v \in E(G): u \in S \wedge v \in S\}$. Given a set S of vertices of a graph G, by $G-S$ we denote the subgraph of G induced by $V(G) \backslash S$. If S is a singleton, i.e. $S=\{v\}$, then we write $G-v$. Given a set F of edges, by $G+F$ we denote the graph with vertex set $V(G)$ and edge set $E(G) \cup F$.

Two vertices u and v are connected if there exists in G a path joining them, and disconnected otherwise. A maximal set C of pairwise connected vertices is a connected component or simply a component of G.

A set S is a uv-separator, for $u, v \notin S$, if u and v are connected in G, but disconnected in $G-S$, and is a minimal uv-separator if no proper subset S^{\prime} of S is a $u v$-separator. We say that S is a minimal separator when there exist two vertices u and v such that S is a minimal $u v$-separator. Given a vertex subset S, a component C of $G-S$ is full if $N_{G}(C)=S$. A vertex set S is a minimal separator if it has at least two full components [20].

A chord of a path (or a cycle) is an edge of $E(G)$ between a pair of non consecutive vertices of the path (or cycle). A graph is chordal or triangulated if every cycle of length greater than three has a chord. A triangulation of a graph G is a chordal graph $G+F$ obtained from G by adding a set F of edges. A triangulation $G+F$ is minimal if for no proper subset F^{\prime} of F we have that $G+F^{\prime}$ is chordal. The set F is called (minimal) fill-in.

Lemma 1 ([21]). Let G be a graph ad F be a minimal fill-in. Then every edge of F is a unique chord in a four cycle.

Lemma $2([\mathbf{1 9}, \mathbf{1 5]})$. A triangulation $G+F$ of a graph G is minimal if and only if for every uv $\in F$, $C N_{G+F}(u v)$ is not empty and is not a clique of $G+F$.

A vertex is simplicial if its neighborhood is a clique. A vertex v is LB-simplicial if every minimal separator included in $N_{G}(v)$ is a clique. Note that a vertex is LB-simplicial if and only if $N_{G}[v]$ is an m-convex set, that is, if it contains the vertices of every chordless path between vertices in $N_{G}[v][10]$.

Lemma 3 ($[\mathbf{1 0}, \mathbf{1 6}])$. A graph is chordal if and only if every vertex is $L B-$ simplicial.
Consider the following procedure called LB-TriAng [3]

```
Algorithm LB-Triang
input : A graph \(G\)
output : A minimal fill-in \(F\)
begin
    let \(v_{1}, \ldots, v_{n}\) be an (arbitrary) ordering of the vertices of \(G\);
    \(F \leftarrow \emptyset\);
    for \(i=1 \ldots, n\) do
    begin
        let \(F_{i}\) be the set of edges
            needed to make \(v_{i}\) LB-simplicial;
        \(F \leftarrow F \cup F_{i} ;\)
        delete \(v_{i}\);
    end
end
```

Lemma 4 ([3]). The algorithm LB-Triang produces a minimal fill-in F.
The following is a consequence of Lemma 2 and of the fact that a minimal separator has at least two full components

Lemma 5. Let G be a chordal graph and S a minimal separator of G. Then for every two distinct vertices u and v of S we have that $C N_{G}(u v)$ is not empty and is not a clique.

A graph G is bipartite if there exists a partition of its vertex set in two non empty sets (P, Q) such that both P and Q are independent sets. A bipartite graph with bipartition (P, Q) is a chain graph [23] if there exists an ordering $v_{1}, \ldots, v_{|Q|}$ of the vertices of Q, such that $N\left(v_{1}\right) \subseteq N\left(v_{2}\right) \subseteq \cdots \subseteq N\left(v_{|Q|}\right)$. Two edges $x y$ and $u v$ of a bipartite graph are said to be independent [23] if the subgraph induced by $\{x, y, u, v\}$ consists of exactly these two edges.

Lemma 6 ([23]). A graph is a chain graph if and only if it does not contain two independent edges.

A graph G is a quasi-split graph if its vertex set can be partitioned in two sets P and Q where P is a clique, $G[Q]$ is connected and each vertex v of Q (resp. of P) has at least one neighbor in P (resp. in Q).

Given a bipartite graph B (resp. quasi-split graph G) we refer to a partition (P, Q) of the vertices of B (resp. G) as a bipartition of B (resp. G) and denote it by (P, Q). In particular if G is a quasi-split graph then we denote by P the set of vertices of the bipartition which induces a clique, unless explicitly specified.

Lemma 7. Let G be a chordal graph and K a maximal clique of G. Each component of $G-K$ contains at least a simplicial vertex of G.

Proof: Suppose, by contradiction, that there exists a component C of $G-K$ such that every vertex of C is not a simplicial vertex of G. It is known (see Theorem 3.2 of [10]) that in a chordal graph, every non simplicial vertex lies on a chordless path between two simplicial vertices. Let $v \in C$. Since v is not simplicial in G then v lies on a chordless path between two simplicial vertices of $V(G) \backslash C$. Since $N_{G}(C) \subseteq K$ then v lies on a chordless path between two vertices of K. But this is impossible since K is a clique and it contains all the vertices of every chordless path between vertices of K (contradiction).

3. The partitioning of the graph

Here we describe the procedures for the partitioning of the graph.
We start with a BSF from a vertex denoted as ν of G and we compute for each vertex its distance from ν. Let us denote by δ the maximum distance from ν to any other vertex of G. For $l=0, \ldots, \delta$ denote by S_{l} the set of vertices at distance l from ν. We will refer to a vertex $v \in S_{l}$ as a vertex at distance l. Clearly if $0<l<\delta$ then $G-S_{l}$ has at least two connected components one of which contains ν and all the vertices of G with distance $l-1$ or less from ν; the others connected components contain vertices with distance $l+1$ or more from ν. We will refer to a connected component of $G-S_{l}$ not containing ν, as a connected component of level l and let us denote it as $C_{i}^{l}, l=1, \ldots, \delta-1$ and $i=1, \ldots, k_{l}$. Of course $N\left(C_{i}^{l}\right) \subseteq S_{l}$ and C_{i}^{0} is a connected component of $G-\nu$. Note that if $\{\nu\}$ is not a separator then there exists only one component C_{1}^{0} at level 0 . As the next step of the algorithm we saturate $N\left(C_{i}^{l}\right)$ for all $l=1, \ldots, \delta-1$ and for all $i=1, \ldots, k_{l}$. Denote by F the set of edges added in this step.

Definition 8. For each $l=0, \ldots, \delta-1$ and for each $i=1, \ldots, k_{l}$, if C_{i}^{l} is a component at level l let $P_{i}^{l}=N_{G}\left(C_{i}^{l}\right)$ and let $Q_{i}^{l}=C_{i}^{l} \cap S_{l+1}$ and denote by $H_{C_{i}^{l}}$ the subgraph of $G+F$ induced by $P_{i}^{l} \cup Q_{i}^{l}$.

We have that each graph $H_{C_{i}^{l}}$ is a quasi-split graph.
Example Consider the graph of Figure 1(a). In Figure 1(b) we saturate $N\left(C_{i}^{l}\right)$ for each component C_{i}^{l} and for all $l=1,2$. In Figure 2 are reported all the subgraphs $H_{C_{i}^{l}}$ for all $l=0,1,2$.

Figure 1: a) The original graph b) After saturating $N\left(C_{i}^{l}\right)$ for all $l=1, \ldots, \delta-1$ and $i=1, \ldots, k_{l}$.

Figure 2: The detail of all $H_{C_{i}^{l}}$ of the graph of Fig 1 b)

Remark 9. Note that $N_{G}\left(C_{i}^{l}\right)$ is a minimal separator of G since it has at least two full components for $l=1, \ldots, \delta-1$ and for $i=1, \ldots, k_{l}$.

Lemma 10. Let D be a set of edges, $D \cap E(G)=\emptyset$, such that for all uv $\in D$ either $\{u, v\} \subseteq N_{G}\left(C_{i}^{l}\right)$ or $u \in S_{l+1} \cap C_{i}^{l}$ and $v \in N_{G}\left(C_{i}^{l}\right)$. Then
i the set of vertices at distance l from ν in $G+D$ do coincide with S_{l} for all $l=0, \ldots, \delta$.
ii the component C_{i}^{l} is the same in G and $G+D$ for $l=0, \ldots, \delta-1, i=1, \ldots, k_{l}$.
iii $N_{G}\left(C_{i}^{l}\right)=N_{G+D}\left(C_{i}^{l}\right)$ for $l=0, \ldots, \delta-1, i=1, \ldots, k_{l}$.
Proof: Is sufficient to show that the above statements are true when $D=\{u v\}$ is a singleton.
(i) We show that the addition of the edge $u v$ does not change the distance of both u and v from ν. This implies also that the distances of all other vertices from ν remain unchanged in $G+D$. Suppose that both u and v are in $N_{G}\left(C_{i}^{l}\right)$. Any shortest path $\nu=v_{0}, \ldots, v_{l-1}, v_{l}=v$ not containing u has $v_{l-1} \in S_{l-1}$. Therefore v can decrease its distance from ν only for the existence of a shortest path $\nu=v_{0}, \ldots, v_{k}, u, v$ containing $u v$ as the last edge which is impossible since then there exist in G a shortest path from ν to u of distance less than $l-1$ contradicting the hypothesis that $u \in S_{l}$. The case when $u \in S_{l+1} \cap C_{i}^{l}$ and $v \in N_{G}\left(C_{i}^{l}\right)$ is similar and is omitted.
(ii) Clearly the statement is true for $l=\delta-1$. Suppose $l<\delta-1$ and consider first the case when $u \in S_{l+1} \cap C_{i}^{l}$ and $v \in N_{G}\left(C_{i}^{l}\right)$. All the components $C_{i}^{t^{*}}$ for all $l^{*}>l$ are unaffected by $u v$ and therefore are the same in G and $G+D$. We have that u and v are together in the same component C_{j}^{l-1} since v is adjacent to a vertex of C_{i}^{l}, say x, and x and u are in C_{i}^{l}. Therefore the edge $u v$ joins two vertices of the same component. Since u and v are contained also in each component $C_{k}^{l^{*}}$ containing C_{j}^{l-1} for all $l^{*}<l-1$ the statements follows. The case when $\{u, v\} \subseteq N_{G}\left(C_{i}^{l}\right)$ is similar to the first case and is omitted.
(iii) It can be demonstrated using argument similar to the cases (i) and (ii) and is omitted.

Lemma 11. Let C_{i}^{l} be a component at level $l, l=0, \ldots, \delta-1$. Then the subgraph of $G+F$ induced by $C_{i}^{l} \cap S_{l+1}$ is connected.

Proof: Let $Q=C_{i}^{l} \cap S_{l+1}$. This must be true if $l=\delta-1$. Suppose $0 \leq l<\delta-1$ and suppose by contradiction that there exist two connected components Q_{1} and Q_{2}, of $(G+F)[Q]$ and let $x \in Q_{1}$ and
$y \in Q_{2}$. Since Q_{1} and Q_{2} are not connected in $(G+F)[Q]$, then they are not connected in $G[Q]$. Since x and y belong to C_{i}^{l} there is a path $p=x, a_{1}, \ldots, a_{h}, y$ in $G\left[C_{i}^{l}\right]$ connecting them. Let a_{r} be the first vertex of p belonging to S_{l+2} and let a_{s} be the first vertex of p after a_{r} belonging to S_{l+1}. Clearly a_{r-1} and a_{s} belong to $N_{G}\left(C_{j}^{l+1}\right)$ for some C_{j}^{l+1} included in C_{i}^{l} and then the path $p^{\prime}=x, a_{1}, \ldots, a_{r-1}, a_{s}, \ldots, a_{h}, y$ is a path of $G+F$ connecting x to y. Furthermore a_{s} must belong to Q_{1}. If we repeat the above argument substituting x with a_{s} and substituting p with the subpath of p starting at a_{s} and ending in y, we eventually will find a path of $G+F$ with vertices all in $C_{i}^{l} \cap S_{l+1}$ connecting x to y (contradiction).

Lemma 12. If $G+F$ is not triangulated then any chordless cycle C is entirely contained in $H_{C_{i}^{l}}$ for some component C_{i}^{l}.
Proof: Suppose that $G+F$ is not chordal and let $C=a_{0}, a_{1}, \ldots, a_{z}, a_{0}$ be a chordless cycle not contained in some $H_{C_{i}^{l}}$. First we show that C must be contained in the subgraph of $G+F$ induced by S_{l} and S_{l+1} for some $0 \leq l<\delta$. In fact suppose, by contradiction, that C contains (at least) three vertices with distances respectively $l, l+1$ and $l+2$.

Suppose, w.l.o.g., that a_{0} has distance $l+2$. Let a_{p} be the first vertex of C after a_{0} having distance $l+1$ and let a_{q} be the last vertex of C having distance $l+1$. Note that a_{p} and a_{q} are not consecutive in C since, by hypothesis, there exists a vertex at distance l in C. Therefore a_{p-1} and a_{q+1} are connected with a path containing only vertices with distance $l+2$ or more. By (ii) of Lemma 10 we have that a_{p-1} and a_{q+1} are contained in a component C_{i}^{l+1} of $G+F$. It follows that a_{p} and a_{q} are in $N_{G+F}\left(C_{i}^{l+1}\right)$ and since a_{p} and a_{q} are not consecutive, $a_{p} a_{q}$ is a chord of C (contradiction).

Now if C is entirely contained in S_{l+1} for $l=1, \ldots, \delta$, then, by (ii) of Lemma 10 and Lemma 11 we have that C is contained in some $H_{C_{i}^{l}}$ (in particular C is contained in Q_{i}^{l}).

It remains to show that if C^{2} has a vertex in S_{l} and a vertex in S_{l+1} then it is entirely contained in $H_{C_{k}^{l}}$ for some C_{k}^{l}. Suppose not and suppose, w.l.o.g., that $a_{0} \in S_{l+1} \cap C_{k}^{l}$. Let a_{r} be the first vertex of C after a_{0} belonging to S_{l} and let a_{s} be the last vertex of C belonging to S_{l}. By (ii) of Lemma 10, we have that a_{r-1} and a_{s+1} belong together to the component C_{k}^{l} of $G+F$. It follows that a_{r} and a_{s} are in $N_{G+F}\left(C_{k}^{l}\right)$. If a_{r} and a_{s} are consecutive in C or do coincide, then C is entirely contained in $H_{C_{k}^{l}}$, otherwise $a_{r} a_{s}$ is a chord of C (contradiction).
Theorem 13. The graph $G+F$ is triangulated if and only if $H_{C_{i}^{l}}$ is triangulated for every C_{i}^{l} and every $l=0, \ldots, \delta-1$ and $i=1, \ldots, k_{l}$.
Proof: Since $H_{C_{i}^{l}}$ is an induced subgraph then we need only to show that if $H_{C_{i}^{l}}$ is triangulated for every $C_{i}^{l}, l=0 \ldots, k-1$ and $i=1, \ldots, k_{l}$, then $G+F$ is chordal. Suppose not and let C be a chordless cycle of $G+F$. By Lemma 12, C is entirely contained in the subgraph $H_{C_{i}^{l}}$ of $G+F$ contradicting the hypothesis that $H_{C_{i}^{l}}$ is chordal.

As a corollary of previous Theorem we have
Corollary 14. Given $G+F$ as above let F_{i}^{l} the set of edges such that $H_{C_{i}^{l}}+F_{i}^{l}$ is triangulated and let

$$
F^{\prime}=\bigcup_{\substack{l=0, \ldots, \delta-1 \\ i=1, \ldots, k_{l}}} F_{i}^{l}
$$

Then $G+F+F^{\prime}$ is a triangulation of G.
Then we have the following, stronger result
Theorem 15. Given $G+F$ as above let F_{i}^{l} the set of edges such that $H_{C_{i}^{l}}+F_{i}^{l}$ is a minimal triangulation of $H_{C_{i}^{l}}$ and let

$$
F^{\prime}=\bigcup_{\substack{l=0, \ldots, \delta-1 \\ i=1, \ldots, k_{l}}} F_{i}^{l}
$$

Then $G+F+F^{\prime}$ is a minimal triangulation of G.

Proof: By Corollary 14 we need only to show that $G^{+}=G+F+F^{\prime}$ is minimal. By Lemma 2, we shall show that, for each edge $u v$ of $F \cup F^{\prime}, C N_{G^{+}}(u v)$ is not empty and is not a clique.

By (ii) and (iii) of Lemma 10, $N_{G^{+}}\left(C_{i}^{l}\right)=N_{G}\left(C_{i}^{l}\right)$ and the vertex set of each connected component of $G^{+}-S_{l}$ do coincide with the vertex set of each connected component of $G-S_{l}$ for all $l=1, \ldots, \delta-1$ and $i=1 \ldots, k_{l}$. By Remark 9, we have that $N_{G^{+}}\left(C_{i}^{l}\right)$ is a minimal separator of G^{+}. Since G^{+}is chordal then, by Lemma $5, C N_{G^{+}}(u v)$ is not empty nor is a clique for every pair of vertices u, v of $N_{G^{+}}\left(C_{i}^{l}\right)$ and therefore for every $u v \in F$.

Now let $u v$ be an edge of F^{\prime} and let $H=H_{C_{i}^{l}}+F_{i}^{l}$ be the subgraph of $G+F+F^{\prime}$ containing $u v$. Since H is a minimal triangulation of $H_{C_{i}^{l}}$ then $C N_{H}(u v)$ is not empty and is not a clique. But since H is an induced subgraph of G^{\prime} then $C N_{H}(u v) \subseteq C N_{G^{+}}(u v)$ and $C N_{G^{+}}(u v)$ is not empty and is not a clique.

In order to obtain the graphs $H_{C_{i}^{l}}$ we have to saturate first $N_{G}\left(C_{i}^{l}\right)$ for all $l=0, \ldots, \delta-1$ and for all $i=1, \ldots, k_{l}$ which can be done with the technique of matrix multiplication as explained, for example, in [14]. Note that only separators at level l can overlap each other, while separators at different level obviously do not overlap. We may saturate $N_{G}\left(C_{i}^{l}\right)$ in reverse order starting from the top level down to the first level of the BFS. We compute all the quasi-split graphs at level l and saturate $N_{G}\left(C_{i}^{l}\right)$ for $i=1, \ldots, k_{l}$. This can be done by simply visiting all the connected components of $G+F$ induced by S_{l+1} since, by Lemma $11, Q_{i}^{l}$ is connected for $i=1, \ldots, k_{l}$. The set P_{i}^{l} can be computed by determining, for each vertex v of Q_{i}^{l} all the neighbors of v at the lower level.

4. Minimal triangulation of quasi-split graph

By Theorem 15 we have seen that we can obtain a minimal triangulation of a graph by finding a minimal triangulation of each $H_{C_{i}^{l}}, l=0, \ldots, \delta-1, i=1, \ldots, k_{l}$, which is a quasi-split graph. In the following we concentrate on the task of computing a minimal triangulation of a quasi-split graph.

4.1. Two special cases

Let G be a quasi-split graph with bipartition (P, Q). First we consider two special cases, which are interesting on their own and are useful in the subsequent discussion. The first case is when Q induces a clique. The second case is when we first compute a minimal triangulation of $G[Q]$ (using any minimal triangulation algorithm) or when $G[Q]$ is already chordal.

In the first case, let B_{G} be the bipartite graph obtained from G by deleting all the edges with both endpoints in Q and deleting all the edges with both endpoints in P. It was shown in [23] that any minimal chain completion of B_{G} is a minimal triangulation of G. In this case the problem of finding a minimal triangulation of G reduces to the problem of finding a minimal chain completion of a bipartite graph B, that is finding a minimal set of edges which added to B make it a chain graph. An algorithm for computing a minimal chain completion of B is as follows. We select at each step a vertex $v \in Q$ such that $d_{B}(v)$ is minimum. For each vertex $w \in N_{B}(v)$ we add to B the edge $w z$ for all $z \in Q \backslash v$. Then we delete v from Q and B. The algorithm ${ }^{1}$ MinChainCompletion is reported in Figure 3.

Lemma 16. The algorithm MinChainCompletion produces a minimal chain completion D of a bipartite graph B.

Proof: First we show that the algorithm produces a chain completion of D. Let v_{i} and D_{i} be, respectively the vertex examined and the set of edges added at the end of step $i, i=1, \ldots|Q|$, and let $D_{0}=\emptyset$. Clearly at the end of step i we have that $N_{B+D_{i}}\left(v_{i}\right) \subseteq N_{B+D_{i}}\left(v_{j}\right)$ for all $v_{j}, j>i$. Since after the step i the vertex

[^0]```
Algorithm MinChainCompletion
input : A bipartite graph B with bipartition (P,Q)
output : A minimal chain completion D of B
begin
 repeat
 let v\inQ, such that }\mp@subsup{d}{B}{}(v)\mathrm{ is minimum;
 for all z\inQ\v and for all w\inN
 if wz\not\inE(B)\cupD then add wz to B and D;
 delete v from Q and B;
 until Q is not empty;
end
```

Figure 3: The MinChainCompletion algorithm
$v_{i}$ is deleted, then its neighborhood remains unchanged in all subsequent steps of the algorithm. Therefore at the end of the algorithm we have that $N_{B+D}\left(v_{1}\right) \subseteq N_{B+D}\left(v_{2}\right) \cdots \subseteq N_{B+D}\left(v_{|Q|}\right)$, i.e., the graph $B+D$ is a chain graph.

Now we show the minimality. By Lemma 6 , it is sufficient to show that for every edge $x y \in D$ there exist two independent edges of $B$ in $B+(D \backslash\{x y\})$. Suppose that the edge $x y$ is added when the vertex $v_{i}$ is being considered. Suppose, w.l.o.g., that $x \in N_{B+D_{i-1}}\left(v_{i}\right)$ and that $y=v_{j}$ for some $j>i$. We have that $v_{i} x \in E(B)$ for otherwise if $v_{i} x \in D$ then $v_{i} x$ would have been added at step $i^{*}<i, x \in N_{B+D_{i^{*}-1}}\left(v_{i^{*}}\right)$ and then at the step $i^{*}$ also the edge $x v_{j}$ would have been added contradicting the hypothesis that $x v_{j}$ was added at step $i$. The vertex $v_{i}$ is selected at step $i$ because $d_{B+D_{i-1}}\left(v_{i}\right)$ is minimum and since $x \notin N_{B+D_{i-1}}\left(v_{j}\right)$ there must exist a vertex $z \in N_{B+D_{i-1}}\left(v_{j}\right) \backslash N_{B+D_{i-1}}\left(v_{i}\right)$. It follows that $v_{j} z \in E(B)$. We have that $v_{i} x$ and $v_{j} z$ are independent in $B+(D \backslash\{x y\})$, since at the end of step $i, v_{i}$ is deleted and the edge $z v_{i}$ will never be added to $D$.

In order to achieve a time complexity of $O(n+m+|D|)$ we propose the following implementation. The neighborhood of the vertex $v_{i}$ need not to be reconsidered in the subsequent steps since it is already included in the neighborhood of all the remaining vertices. Furthermore at step $i$ we can detect all the vertices $v_{j}$, $j>i$ such that $N_{B+D_{i-1}}\left(v_{j}\right)=N_{B+D_{i-1}}\left(v_{i}\right)$ without increasing the complexity. In fact in order to detect them we note that these vertices have the same degree of $v_{i}$ in $B+D_{i-1}$ and for all $w \in N_{B+D_{i-1}}\left(v_{i}\right)$ we have that $w v_{j}$ is an edge of $B+D_{i-1}$. Therefore at each step of the algorithm we delete all the neighborhood of $v_{i}$ and all vertices having the same neighborhood of $v_{i}$ in $B+D_{i-1}$. By the above discussion we can state the following

Lemma 17. The algorithm MinChainCompletion has time complexity of $O(n+m+|D|)$.
By Lemma 16 and Lemma 17 we are able to compute a minimal triangulation of a quasi-split graph $G$ in time linear in the dimension of the triangulated graph when $Q$ is a clique. If $Q$ does not induces a clique and $|P|=1$, in order to obtain a minimal triangulation of $G$ we have to compute a minimal triangulation of $G[Q]$.
Now we deal with the case in which either $G[Q]$ is triangulated or we compute first a minimal triangulation of it. Let $|P|>1$ and let $F_{1}$ be the fill-in of a minimal triangulation of $G[Q]$. We may obtain a minimal triangulation of $G$ with the following algorithm. We examine each vertex of $Q$ and at each step we add some edges (to be explained later) to the set variable $D_{i}$. At the beginning $D_{0} \leftarrow F_{1}$. We select, at each step, a vertex $v_{i}$ which is simplicial in $G[Q]+F_{1}$ and such that $\left|N_{G+D_{i-1}}\left(v_{i}\right) \cap P\right|$ is minimum. Then if $E_{i}$ is the set of edges needed to saturate $N_{G+D_{i-1}}\left(v_{i}\right)$ we set $D_{i} \leftarrow D_{i-1} \cup E_{i}$ and delete $v_{i}$ from $G+D_{i}$. The algorithm MinQSCompletion is reported in Figure 4. We now prove the correctness of the algorithm. First we have the following

Lemma 18. Let $G$ be a quasi-split graph with bipartition $(P, Q)$. Let $F_{1}$ be a set of edges such that $G[Q]+F_{1}$ is a minimal triangulation of $G[Q]$ and let $F_{2}$ be a set of edges such that $G+F_{1}+F_{2}$ is a minimal triangulation of $G+F_{1}$ and such that each edge of $F_{2}$ has one endpoint in $Q$ and the other endpoint in $P$. Then $G+F_{1}+F_{2}$ is a minimal triangulation of $G$.
Proof: Let $G^{+}=G+F_{1}+F_{2}$. Since each edge of $F_{2}$ has one endpoint in $P$ we have that $G^{+}[Q]=G[Q]+F_{1}$. Since $G^{+}$is a minimal triangulation of $G+F_{1}$, clearly each edge of $F_{2}$ is the unique chord of a four cycle of $G^{+}$. Suppose, by contradiction, that an edge $u v \in F_{1}$ is not a unique chord in a four cycle of $G^{+}$, that is, by Lemma $2, C N_{G^{+}}(u v)$ is either empty or is a clique of $G^{+}$. It follows that $C N_{G^{+}}(u v) \cap Q$ is either empty or is a clique. But since $G^{+}[Q]=G+F_{1}$ then $C N_{G^{+}}(u v) \cap Q=C N_{G[Q]+F_{1}}(u v)$ is either empty or is a clique contradicting the hypothesis that $G[Q]+F_{1}$ is a minimal triangulation of $G[Q]$.

```
Algorithm MinQSCompletion
input : A quasi-split graph \(G\)
output : A minimal triangulation of \(G\)
begin
 let \(G^{\prime}=G[Q]+F_{1}\) be a minimal triangulation of \(G[Q]\);
 \(D \leftarrow F_{1} ;\)
 repeat
 let \(v\) be a simplicial vertex of \(G^{\prime}\) such that \(\left|N_{G+D}(v) \cap P\right|\) is minimum;
 add to \(D\) the edges needed to saturate \(N_{G+D}(v)\);
 delete \(v\) from \(G+D\) and \(G^{\prime}\);
 until \(G^{\prime}\) is not empty;
end
```

Figure 4: The MinQSCompletion algorithm

Theorem 19. Let $G$ be a quasi-split graph with bipartition $(P, Q)$. The algorithm MinQSCompletion computes a set of edges $F_{2}$ such that $G+F_{1}+F_{2}$ is minimal triangulation of $G$.

Proof: Let $G^{\prime}=G[Q]+F_{1}$ and let $v_{i}$ be the vertex considered at the step $i$. Denote by $D$ the union of the edges added in all the steps before $i$. We shall show that the set of edges needed to saturate $N_{G+D}\left(v_{i}\right)$ are exactly those needed to make $v_{i}$ LB-simplicial.

Since $v_{i}$ is simplicial in $G^{\prime}$ then $K_{i}=N_{G+D}\left(v_{i}\right) \cap Q$ is a clique. Let $P_{i}=N_{G+D}\left(v_{i}\right) \cap P, S_{i}$ be the set of vertices of $K_{i}$ which are simplicial in $G^{\prime}$ and let $S_{i}^{\prime}=\left\{w \in S_{i}: N_{G+D}(w) \cap P=P_{i}\right\}$.

Since $v_{i}$ is chosen because it is simplicial in $G^{\prime}$ and $\left|N_{G+D}(v) \cap P\right|$ is minimum we have that each vertex in $P_{i} \cup\left(S_{i} \backslash S_{i}^{\prime}\right)$ is adjacent to at least one vertex of $P \backslash P_{i}$. We also have that each vertex of $K_{i} \backslash S_{i}$ is adjacent to at least one vertex of $Q \backslash K_{i}$. Let $C_{1}, \ldots, C_{h}$ be the connected components of the subgraph of $G+D$ induced by $V(G) \backslash N_{G+D}\left[v_{i}\right]$. For each $C_{j}$ we show that $P_{i} \subseteq N_{G+D}\left(C_{j}\right)$. In fact this is clearly true if $C_{j}$ contains $P \backslash P_{i}$. Otherwise if $C_{i}$ does not contain $P \backslash P_{i}$ then, by Lemma 7, it contains at least one simplicial vertex $u$ of $G^{\prime}$. By hypothesis each simplicial vertex $u$ of $G^{\prime}$ has $\left|N_{G+D}(u) \cap P\right| \geq\left|P_{i}\right|$ and since $u$ is not adjacent to any vertex of $P \backslash P_{i}$ then we have that $N_{G+D}(u) \cap P=P_{i}$.

Now note that by the above discussion the component $C_{j}$ containing $P \backslash P_{i}$ has $S_{i} \backslash S_{i}^{\prime} \subseteq N_{G+D}\left(C_{j}\right)$. Since each vertex of $K_{i} \backslash S_{i}$ has at least one vertex adjacent to $Q \backslash K_{i}$ then we have $\bigcup_{j=1 \ldots, h} N_{G+D}\left(C_{j}\right) \cap K_{i}=K_{i} \backslash S_{i}^{\prime}$. Therefore in order to saturate each $N_{G+D}\left(C_{j}\right)$ we have to add an edge between each vertex of $P_{i}$ to each vertex of $K_{i} \backslash S_{i}^{\prime}$. This is also sufficient since both $K_{i}$ and $P_{i}$ are cliques. Finally since each vertex of $S_{i}^{\prime}$ is connected to every other vertex of $P_{i} \cup K_{i}$ in order to make $v_{i}$ LB-simplicial it is sufficient to saturate $P_{i} \cup K_{i}=N_{G+D}\left(v_{i}\right)$.

By Lemma $4, D \backslash F_{1}$ is the set of edges needed to obtain a minimal triangulation of $G+F_{1}$. Since $v_{i}$ is simplicial in $G^{\prime}$, no edge being added for saturating $N_{G+D}\left(v_{i}\right)$ has both endpoints in $Q$. Finally note that when

```
Algorithm MinQS
input : A quasi-split graph \(G\)
output : A triangulation of \(G\)
begin
 \(D \leftarrow \emptyset ;\)
 repeat
 let \(v \in Q\) such that \(\left|N_{G+D}(v) \cap P\right|\) is minimum;
 add to \(D\) the edges needed to saturate \(N_{G+D}(v)\);
 delete \(v\) from \(G\)
 until \(Q\) is not empty;
end
```

Figure 5: The MinQS algorithm
we remove $v_{i}$ from $G+D$ the graph remains a quasi-split graph. The Theorem then follows by Lemma 18 .

Given a quasi-split graph $G$ with bipartition $(P, Q)$ it is interesting to note that we may obtain a triangulation of $G$ (not necessarily minimal) with the following simple algorithm. Repeatedly select a vertex of $Q$ such that $\left|N_{G}(v) \cap P\right|$ is minimum. Add to $G$ the edges needed to saturate $N_{G}(v)$ and delete $v$ (see Figure. 5). We have the following

Lemma 20. The algorithm MinQS produces a minimal triangulation if, when the vertex $v$ is selected, then $N(v) \cap Q$ does not contain any vertex $w$ such that $N(w) \cap P=N(v) \cap P$.

Proof: Let $w \in N(v) \cap Q$ and let $P^{\prime}=N(v) \cap P$. Since $N(w) \cap P \neq P^{\prime}$ and since $v$ is chosen because $\left|P^{\prime}\right|$ is minimum we have that there exist a $z \in N(w) \cap P$ such that $z \notin P^{\prime}$. Since this is valid for all $w \in N(v) \cap Q$ we have that $N\left(P \backslash P^{\prime}\right)$ contains $N(v) \cap Q$ and since $P$ is a clique then $N\left(P \backslash P^{\prime}\right)$ contains $N(v)$. Therefore in order to make $v$ LB-simplicial we have to saturate $N(v)$. The Lemma then follows from Lemma 4.

Note that in all the above algorithms choosing a vertex of minimum degree is not an option but a necessity if we want to find minimal triangulations. We think this is interesting from the theoretical point of view since this sheds a new light (together with [4]) on why the local minimum degree heuristic is so effective in finding minimal triangulations.

## 5. Minimal triangulation by recursion

In the previous section we have seen a simple algorithm for finding a minimal triangulation of a quasi-split graph, the MinQSCompletion algorithm. However in order to obtain a more efficient algorithm we may use the strategy of triangulating the graph $H_{C_{i}^{l}}$ by recursively apply to it the same partitioning procedures. That is, we execute again a BFS on each $H_{C_{i}^{l}}$ and recursively saturate the minimal separators. When $Q_{i}^{l}$ is a single vertex or a clique, we may stop the recursive calls or solve the problem using the algorithm MinChainCompletion.

However we have to be careful in order to do not revisit in each of the recursive call again those parts of the graph which overlap with the other quasi-split graphs. To this end, a quasi-split graph $G$ with bipartition $(P, Q)$, will be represented by the following data structure. We use adjacency lists $\operatorname{Adj}(v)$ for each vertex $v$. If $v \in Q$ then the adjacency list $\operatorname{Adj}(v)$ is equal to $N_{G}(v)$. If $v \in P$ then we set $\operatorname{Adj}(v)$ equal to $N_{G}(v) \cap Q$.

Now the recursive call can be done as follows. We have to chose a vertex $\nu \in P$. We visit all the vertices in $N_{G}(\nu) \cap Q$. Then we note that in a quasi-split graph, each vertex of $P$ is at distance at most two from any other vertex of $G$. Hence $\delta \leq 2$. If $\delta=1$, that is, $N_{G}(\nu) \cap Q=Q$, by Lemma 4 , we simply delete $\nu$
since it is already LB-simplicial. If every vertex of $P$ is adjacent to every vertex of $Q$, by Lemma 12 , we can continue the recursive call by finding a minimal triangulation of the subgraph of $G$ induced by $Q$.

Otherwise $\delta=2$. In this case we find the connected components of $G \backslash N_{G}(\nu)$ by starting a visit from any vertex of $Q \backslash N_{G}(\nu)$. Let $\mathcal{C}=\left\{C_{1} \ldots, C_{h}\right\}$ be the connected components of $G \backslash N_{G}(\nu)$. Then for each $C_{i}$ we obtain a quasi-split graph by taking the subgraph of $G$ induced by $C_{i} \cup N_{G}\left(C_{i}\right)$.

Let $F$ be the set of edges needed to saturate $N_{G}\left(C_{i}\right)$ for all $i=1, \ldots, h$. Since in a quasi-split graph no single vertex is a separator then there is only one component at level 0 . Therefore it remains to triangulate the quasi-split graph induced by $N_{G+F}[\nu]$. This means that we have to triangulate the subgraph $H$ of $G+F$ induced by $N_{G+F}(\nu)$ which is, by Lemma 11, connected. Note that there can be a vertex $w$ of $N_{G}(\nu) \cap Q$ that is not adjacent to any vertex of $P \backslash \nu$ nor adjacent to any vertex of $C_{i}$ for any $i=1, \ldots, h$. It follows that $H$ needs not to be a quasi-split graph.

We may visit $H$ without revisiting the edges with both endpoints in $P$, by using a slightly modified BFS. Recall that in the representation of $G$ the adjacency list of each vertex $w$ of $P$ contains only $N_{G}(w) \cap Q$. Taking this into consideration, we execute a BFS by initializing the FIFO queue ${ }^{2}$ with all the vertices of $P$. In this way we visit the graph $H$ without revisiting the edges with both endpoints in $P$.

By the discussion above we have that each recursive call spent time visiting only edges of a subgraph of $G$ which are non-overlapping with the edges of other subgraphs. The algorithm QSTriang is reported in Figure 8.

Example. Consider the quasi-split graph of Figure 6(a) with bipartition $P=\{a, b, c\}$ and $Q=\{d, e, f, g\}$. Its internal representation is shown in Figure 6 (b). We chose to start the BFS from vertex $a$. After this we have that there is only one component of $G-N_{G}(a)$ which is $C=\{g\}$ (see Figure 7(a)). We saturate $N_{G}(g)$ (without reinserting the edge $b c$ ) by adding to $G$ the set of edges $F=\{f b, f c\}$ (see Figure 7(a)). After this, we have that the subgraph of $G+F$ induced by $\{b, c, f, g\}$ is a quasi-split graph with bipartition $\left(P^{\prime}, Q^{\prime}\right)$ where $Q^{\prime}=\{g\}$ is a singleton and therefore is triangulated. So it remains to triangulate the subgraph of $G+F$ induced by $N_{G}(a)$, which is depicted in Figure 7(b). When we execute the recursive call we insert in the FIFO queue, at the beginning of the BFS, the vertices $b$ and $c$. After the BFS we have two quasi-split graphs depicted in Figure 7(c) and (d) where the edge $f d$ has been added. These two quasi-split graphs are already triangulated and the algorithm terminates. Note that the edges $a b, a c$ and $b c$ are never revisited during all steps of the algorithm.


Figure 6: (a) A quasi-split graph $G$ with bipartition $P=\{a, b, c$,$\} and Q=\{d, e, f, g\}$ (b) Its data representation.

## 6. Complexity and experimental results

In order to lower the complexity of the algorithm we have to partition the graph in a way that the largest graph $H_{C_{i}^{l}}$ has a dimension which is a fraction of the input graph at each recursive call. The dimension

[^1]

Figure 7: (a) After visiting $N_{G}(a)$ and after the set $F$ of dotted edges has been added (b) The subgraph $H$ of $G+F$ induced by $N_{G}(a)$. (c) and (d) the quasi-split graphs of $H$.
of the subgraphs heavily depend on the choice of the vertex from which start the BFS. In fact if, in every recursive call, the degree $d_{G}(\nu)$ of the vertex from which start the BFS satisfies

$$
\frac{n}{k} \leq d_{G}(\nu) \leq \frac{k-1}{k} n
$$

for some (small) constant $1<k<n$ we have, in the worst case, at least two quasi-split graphs: one in which $Q$ has $d_{G}(\nu)$ vertices and the other in which $Q$ has $|V(G)|-d_{G}(\nu)$ vertices. Since the visit of these graphs will be done without revisiting two or more time the overlapping edges, the algorithm terminates after a logarithmic number of steps.

The simplest choice is that of selecting, at the beginning of the algorithm and at each recursive calls, a vertex of minimum degree. We may hope that the selection of a vertex of minimum degree breaks the graph in many smaller subgraphs.

Such a choice, however, does not always assure a balanced partition as we can see in the following example. Suppose, in the worst case, that after the BFS we have only two subgraphs: $H_{C_{1}^{0}}$ and $H_{C_{1}^{1}}$ such that $P_{1}^{1}$ has $k$ vertices, with $k$ much smaller than $n$ and $Q_{1}^{1}$ has $n-k-1$ vertices. Then suppose again that in $P_{1}^{1}$ there is a vertex such that $\left|N_{G}(v) \cap Q_{1}^{1}\right|=k$ so that in the successive recursive call, this vertex is selected as the starting vertex of the BFS. And so on. The algorithm therefore will terminates after $O(n)$ recursive calls.
A better choice is that of finding at each recursive call a vertex $v$ whose degree is such that the absolute value $a b s\left(d_{G}(v)-|Q| / 2\right)$ is as minimum as possible. However such a vertex could not exist at all.

In fact it can happen that at any of the recursive calls, the graph has minimum degree of $n-k$ with $k$ much smaller than $n$. If $k$ is very small, that is, the graph is very dense, we may even change completely the strategy and could be convenient to find a minimal triangulation of the graph using recent minimal triangulation technique (such as those proposed in [19, 18]) which are very fast when the graph is dense.

Anyway, the choices discussed above do not seem, at first, to assure a balanced partition of the graph. For this reason we made an extensive experimentation, by building an implementation of the recursive algorithm. We executed a time test both on a set of random graphs and on most of the sparse symmetric matrices from the Harwell-Boeing collection [8] (HBC), comparing the execution time of our algorithm with the execution time of MCS-M. In both cases we found that, even without implementing the matrix multiplication technique for saturating the minimal separators and focusing exclusively on the correctness of the code rather than speed optimization, our algorithm performs dramatically better than MCS-M.

```
Algorithm QSTriang(G, L)
input : A connected graph G and a list L of vertices
 (in the initial call L contains only one vertex)
output : The fill F a minimal triangulation of G
begin
 F\leftarrow\emptyset;
 BFS(G,L);
 for l=\delta-1 down to 0 do
 begin
 for each quasi-split graph }\mp@subsup{H}{\mp@subsup{C}{i}{l}}{}\mathrm{ at level l do
 begin
 F}=\mathrm{ =REcursiveQS(}\mp@subsup{H}{\mp@subsup{C}{i}{l}}{})
 let F}\mp@subsup{F}{i}{}\mathrm{ be the set of edges needed to saturate P}\mp@subsup{P}{i}{l}\mathrm{ ;
 add F}\mp@subsup{F}{i}{}\mathrm{ to }G\mathrm{ ;
 F\leftarrowF\cup\mp@subsup{F}{}{\prime}\cupF
 end
 end
 return F;
end
RecursiveQS(G)
input : A quasi-split graph G with bipartition (P,Q)
output : The fill F a minimal triangulation of G
begin
 F}\leftarrow\emptyset
 if }|Q|=1\mathrm{ return F;
 let w be a vertex of P;
 for each quasi-split graph }\mp@subsup{H}{i}{}\mathrm{ determined by }\mp@subsup{N}{G}{}(w)\mathrm{ do
 begin
 F
 let F}\mp@subsup{F}{i}{}\mathrm{ be the set of edges needed to saturate }\mp@subsup{P}{i}{}\mathrm{ ;
 add }\mp@subsup{F}{i}{}\mathrm{ to }G\mathrm{ ;
 F\leftarrowF\cup\mp@subsup{F}{}{\prime}\cupF;}
 end
 let H}\mathrm{ be the subgraph of G induced by N}\mp@subsup{N}{G}{}(w)\mathrm{ ;
 F}=\mp@code{QSTriang(}H,P)
 return }F\cup\mp@subsup{F}{}{\prime}
end
```

We generated a number of pseudo random graphs of various dimension. In Table 1 we reported for each of the generated graphs the number of its vertices and edges. We also reported the fill produced by both algorithms and the execution time.

| n | m | Fill QS | QS | Fill MCS-M | MCS-M |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 800 | 7990 | 228189 | 2.372 | 234598 | 4.228 |
| 800 | 9588 | 246730 | 2.324 | 243498 | 4.648 |
| 800 | 11185 | 257483 | 2.309 | 250640 | 5.164 |
| 800 | 12784 | 261826 | 2.886 | 257466 | 5.320 |
| 800 | 14381 | 265641 | 3.292 | 262488 | 5.351 |
| 800 | 15980 | 265133 | 4.103 | 263835 | 5.632 |
| 900 | 10113 | 303993 | 2.793 | 299887 | 6.927 |
| 900 | 12136 | 327265 | 3.386 | 315491 | 7.707 |
| 900 | 14159 | 333731 | 3.510 | 319030 | 7.816 |
| 900 | 16182 | 332288 | 4.072 | 328661 | 7.738 |
| 900 | 18204 | 343652 | 5.148 | 331788 | 7.831 |
| 900 | 20227 | 343206 | 5.538 | 338643 | 8.736 |
| 1000 | 12487 | 389026 | 3.542 | 386072 | 10.405 |
| 1000 | 14985 | 395903 | 3.805 | 400220 | 10.764 |
| 1000 | 17482 | 412777 | 4.165 | 413503 | 11.498 |
| 1000 | 19980 | 418592 | 5.429 | 415421 | 11.763 |
| 1000 | 22477 | 432771 | 7.192 | 418214 | 12.168 |
| 1000 | 24975 | 422861 | 8.829 | 424977 | 12.168 |
| 1100 | 15111 | 485277 | 4.884 | 474137 | 14.150 |
| 1100 | 18133 | 499121 | 5.116 | 493601 | 15.678 |
| 1100 | 21155 | 516757 | 7.816 | 504854 | 16.380 |
| 1100 | 24178 | 514179 | 8.534 | 515573 | 17.083 |
| 1100 | 27200 | 518418 | 9.906 | 517819 | 17.800 |
| 1100 | 30222 | 519751 | 13.182 | 518798 | 19.344 |
| 1200 | 17985 | 598528 | 6.833 | 578007 | 21.497 |
| 1200 | 21582 | 605929 | 8.517 | 589538 | 22.667 |
| 1200 | 25178 | 609721 | 9.782 | 604516 | 23.837 |
| 1200 | 28776 | 617493 | 12.479 | 614348 | 23.681 |
| 1200 | 32372 | 621880 | 14.211 | 614822 | 25.568 |
| 1200 | 35970 | 620969 | 18.284 | 622795 | 26.535 |
| 1300 | 21108 | 697885 | 8.533 | 694875 | 28.642 |
| 1300 | 25330 | 715600 | 9.235 | 716900 | 32.402 |
| 1300 | 29552 | 728187 | 11.871 | 705216 | 32.792 |
| 1300 | 33774 | 730373 | 16.802 | 727819 | 36.582 |
| 1300 | 37995 | 740234 | 19.594 | 724023 | 37.580 |
| 1300 | 42217 | 739860 | 22.511 | 731216 | 39.218 |

Table 1: Data of the test on random generated graphs. The column $n$ and $m$ report, respectively, the number of vertices and of edges of the graph. Columns Fill $Q S$, Fill $M C S-M, Q S$ and $M C S-M$ report, respectively, the fill and the execution time (in seconds) of both algorithms.

We computed for the matrices of the HBC the number of quasi-split graphs obtained after the first iteration of the recursive algorithm. We tested two cases. In the first one we execute the first BFS, starting from a vertex of minimum degree. In the second case we execute the first BFS, starting from a vertex whose degree is median, that is, was the closest to $n / 2$. In Table 2 we report the number of quasi-split graphs produced for each of the two cases. Note that, selecting a vertex of minimum degree is in almost all cases, slightly better than selecting a vertex of median degree. We report also the execution time of QSTriang where, in the first BFS, is selected a vertex of minimum degree, while in the recursive calls a vertex of median degree is selected. Moreover the execution time of MCS-M is reported.

We also observed that, on average, at the end of the first BFS, the $44 \%$ of the fill edges are already added to $G$.

## 7. Conclusions

We presented an algorithm for computing a minimal triangulation of a graph which exploits a recursive partitioning of the graph on the basis of a BFS visit. Its computational complexity is shown to be strictly related to the complexity of boolean matrix multiplication. We also presented variants of this algorithm in which the minimum degree criterion is used thus shedding new light on the effectiveness of the minimum degree heuristic. Experimental results are provided showing that the computation time of the proposed algorithm is dramatically better than well known existing minimal triangulation techniques on sparse matrices.
There are several future research issues. The partitioning scheme based on the choice of the minimum degree vertex does not guarantee a balanced partition of the graph. We could investigate if there exists a different partitioning scheme that guarantees a balanced partition in order to obtain an algorithm whose complexity is $O\left(n^{\alpha} \log n\right)$. By Theorem 15 the problem of computing a minimal triangulation of a graph reduces to the problem of computing a minimal triangulation of a quasi-split graph. In the special case when, in a quasi-split graph with bipartition $(P, Q)$, the set $Q$ induces a clique, we are able to compute a minimal triangulation in time linear in the dimension of the triangulated graph (Lemma 17). We could investigate which is the complexity of existing minimal triangulation algorithms (e.g. MCS-M) when in a quasi-split graph the subgraph induced by $Q$ is already chordal. We could investigate both experimentally and theoretically the behavior of the MINQS algorithm: how is effective in computing minimal triangulations and which is its time complexity? We could investigate both experimentally and theoretically the possibility and the effectiveness of mixing the techniques used in $[18,19]$ with the QST algorithm for computing minimal triangulations of dense graphs.

## Acknowledgment

I wish to thank the anonymous referee for his comments.

| Matrix name | n | m | $\begin{gathered} \hline \mathrm{QS} \\ \mathrm{~min} \end{gathered}$ | $\begin{array}{r} \mathrm{QS} \\ \text { med } \end{array}$ | $\begin{array}{r} \mathrm{QS} \\ \text { (sec.) } \end{array}$ | $\begin{array}{r} \hline \hline \mathrm{MCS}-\mathrm{M} \\ (\mathrm{sec} .) \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bcspwr05.mtx | 443 | 590 | 215 | 217 | 0.016 | 0.078 |
| bcspwr06.mtx | 1454 | 1923 | 662 | 661 | 0.078 | 1.669 |
| bcspwr07.mtx | 1612 | 2106 | 798 | 793 | 0.093 | 2.028 |
| bcspwr08.mtx | 1624 | 2213 | 744 | 735 | 0.093 | 2.293 |
| bcspwr09.mtx | 1723 | 2394 | 762 | 764 | 0.109 | 2.793 |
| bcspwr10.mtx | 5300 | 8271 | 1165 | 1165 | 2.059 | 86.160 |
| bcsstk06.mtx | 420 | 3720 | 49 | 47 | 0.109 | 0.172 |
| bcsstk07.mtx | 420 | 3720 | 49 | 47 | 0.110 | 0.140 |
| bcsstk08.mtx | 1074 | 5943 | 53 | 52 | 3.792 | 5.210 |
| bcsstk09.mtx | 1083 | 8677 | 18 | 19 | 0.982 | 2.168 |
| bcsstk10.mtx | 1086 | 10492 | 71 | 69 | 0.156 | 0.873 |
| bcsstk11.mtx | 1473 | 16384 | 69 | 68 | 0.593 | 3.682 |
| bcsstk12.mtx | 1473 | 16384 | 69 | 68 | 0.640 | 3.650 |
| bcsstk13.mtx | 2003 | 40940 | 15 | 20 | 8.767 | 85.754 |
| bcsstk14.mtx | 1806 | 30824 | 24 | 21 | 3.573 | 19.453 |
| bcsstk15.mtx | 3948 | 56934 | 18 | 19 | 32.387 | 323.889 |
| bcsstk20.mtx | 485 | 1325 | 198 | 192 | 0.015 | 0.063 |
| bcsstk21.mtx | 3600 | 11500 | 107 | 105 | 2.527 | 25.991 |
| bcsstk23.mtx | 3134 | 21022 | 30 | 43 | 22.932 | 66.346 |
| bcsstk24.mtx | 3562 | 78174 | 46 | 44 | 5.912 | 90.247 |
| bcsstk25.mtx | 15439 | 118401 | 380 | 166 | 58.890 | 5564.509 |
| bcsstk26.mtx | 1922 | 14207 | 88 | 76 | 1.607 | 10.000 |
| bcsstk27.mtx | 1224 | 27451 | 36 | 34 | 0.359 | 3.166 |
| bcsstk28.mtx | 4410 | 107307 | 39 | 34 | 10.343 | 527.440 |
| bcsstm07.mtx | 420 | 3416 | 48 | 46 | 0.109 | 0.109 |
| bcsstm10.mtx | 1086 | 10503 | 71 | 69 | 0.156 | 0.952 |
| bcsstm12.mtx | 1473 | 9093 | 103 | 102 | 0.343 | 2.449 |
| bcsstm13.mtx | 2003 | 9970 | 6 | 7 | 0.827 | 5.991 |
| bcsstm27.mtx | 1224 | 27451 | 36 | 34 | 0.359 | 3.401 |
| bfw782b.mtx | 782 | 5200 | 77 | 76 | 0.047 | 0.406 |
| blckhole.mtx | 2132 | 6370 | 36 | 34 | 4.836 | 8.752 |
| dwt__419.mtx | 419 | 1572 | 19 | 22 | 0.125 | 0.125 |
| dwt__492.mtx | 492 | 1332 | 102 | 83 | 0.047 | 0.063 |
| dwt__503.mtx | 503 | 2762 | 27 | 16 | 0.171 | 0.375 |
| dwt__512.mtx | 512 | 1495 | 101 | 95 | 0.063 | 0.078 |
| dwt__592.mtx | 592 | 2256 | 45 | 41 | 0.140 | 0.156 |
| dwt__607.mtx | 607 | 2262 | 53 | 51 | 0.109 | 0.219 |
| dwt__758.mtx | 758 | 2618 | 111 | 105 | 0.079 | 0.281 |
| dwt__869.mtx | 869 | 3208 | 78 | 73 | 0.109 | 0.514 |
| dwt__878.mtx | 878 | 3285 | 47 | 30 | 0.141 | 0.593 |
| dwt__918.mtx | 918 | 3233 | 49 | 45 | 0.250 | 0.687 |
| dwt_-992.mtx | 992 | 7876 | 30 | 29 | 0.343 | 1.404 |
| dwt_1005.mtx | 1005 | 3808 | 43 | 41 | 0.453 | 1.014 |
| dwt_1007.mtx | 1007 | 3784 | 54 | 48 | 0.296 | 0.843 |
| dwt_1242.mtx | 1242 | 4592 | 36 | 42 | 1.139 | 1.513 |
| dwt_2680.mtx | 2680 | 11173 | 104 | 104 | 1.342 | 12.418 |
| s1rmq4m1.mtx | 5489 | 137811 | 30 | 29 | 20.093 | 700.257 |
| s1rmt3m1.mtx | 5489 | 107016 | 60 | 32 | 8.518 | 551.761 |
| s2rmq4m1.mtx | 5489 | 137811 | 30 | 29 | 20.593 | 678.574 |
| s2rmt3m1.mtx | 5489 | 107016 | 60 | 32 | 8.893 | 548.937 |
| s3rmq4m1.mtx | 5489 | 137811 | 30 | 29 | 20.764 | 695.577 |
| s3rmt3m1.mtx | 5489 | 107016 | 60 | 32 | 8.923 | 548.141 |
| s3rmt3m3.mtx | 5357 | 101169 | 58 | 38 | 7.442 | 274.312 |
| sstmodel.mtx | 3345 | 9702 | 338 | 323 | 0.562 | 19.312 |
| young1c.mtx | 841 | 3248 | 56 | 57 | 0.281 | 0.453 |
| young2c.mtx | 841 | 3248 | 56 | 57 | 0.188 | 0.484 |
| young3c.mtx | 841 | 3147 | 49 | 48 | 0.344 | 0.608 |
| young4c.mtx | 841 | 3248 | 56 | 57 | 0.234 | 0.514 |
| zenios.mtx | 2873 | 12159 | 253 | 241 | 0.172 | 11.029 |

Table 2: The column $n$ and $m$ contain, respectively, the number of vertices and the number of edges of the graph. The columns "QS min" and "QS med" contain the number of quasi-split graphs after the first BFS, when the BFS is started from a vertex of minimum degree in the first case and when the BFS is started from a vertex of median degree in the second case. The columns " $Q S$ " and "MCS-M" contain the execution time of the algorithm QSTRIANG and MCS-M, respectively. Only the result of the matrices with more than 400 vertices are reported

## References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database schemes. J. ACM, 30(3):479-513, 1983.
[2] A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton. Maximum cardinality search for computing minimal triangulations of graphs. Algorithmica, 39(4):287-298, 2004.
[3] A. Berry, J. P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-range algorithm for minimal triangulation from an arbitrary ordering. J. Algorithms, 58(1):33-66, 2006.
[4] A. Berry, E. Dahlhaus, P. Heggernes, and G. Simonet. Sequential and parallel triangulating algorithms for elimination game and new insights on minimum degree. Theor. Comput. Sci., 409(3):601-616, 2008.
[5] A. Berry, P. Heggernes, and G. Simonet. The minimum degree heuristic and the minimal triangulation process. In H. L. Bodlaender, editor, WG, volume 2880 of Lecture Notes in Computer Science, pages 58-70. Springer, 2003.
[6] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making filled graphs minimal. Theor. Comput. Sci., 250(1-2):125-141, 2001.
[7] J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique trees. In J. A. George, J. R. Gilbert, and J. W. H. Liu, editors, Sparse Matrix Computations: Graph Theory Issues and Algorithms. Springer Verlag. IMA Volumes in Mathematics and its Applications, 56:1-30, 1993.
[8] R. Boisvert, R. Pozo, K. Remington, B. Miller, and R. Lipman. NIST MatrixMarket, http://math.nist.gov/MatrixMarket/index.html.
[9] A. Deshpande, M. N. Garofalakis, and M. I. Jordan. Efficient stepwise selection in decomposable models. In UAI, pages 128-135, 2001.
[10] M. Farber and R. E. Jamison. Convexity in graphs and hypergraphs. SIAM J. Algebraic Discrete Methods, 7(3):433-444, 1986.
[11] A. George and J. W. Liu. The evolution of the minimum degree ordering algorithm. SIAM Review, 31(1):1-19, 1989.
[12] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics, 306(3):297-317, 2006.
[13] P. Heggernes and C. Papadopoulos. Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions. Theor. Comput. Sci., 410(1):1-15, 2009.
[14] P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in time $o\left(n^{\alpha} \log n\right)=o\left(n^{2.376}\right)$. SIAM J. Discret. Math., 19(4):900-913, 2005.
[15] L. Ibarra. Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms, 4(4):1-20, 2008.
16] C. G. Lekkerkerker and J. C. Boland. Representation of a finite graph by a set of intervals on the real line. Fund. Math., 51:45-64, 1962.
[17] F. Malvestuto. Approximating discrete probability distributions with decomposable models. IEEE Transactions on Systems, Man and Cybernetics,, 21(5):1287-1294, 1991.
[18] M. Mezzini. Fully dynamich algorithm for chordal graph with $O(1)$ query time and $O\left(n^{2}\right)$ update-time. submitted, 2011.
[19] M. Mezzini and M. Moscarini. Simple algorithms for minimal triangulation of a graph and backward selection of a decomposable markov network. Theor. Comput. Sci., 411(7-9):958-966, 2010.
[20] A. Parra and P. Scheffler. Characterizations and algorithmic applications of chordal graph embeddings. Discrete Applied Mathematics, 79(1-3):171-188, 1997.
[21] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing, 5(2):266-283, 1976.
[22] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput., 13(3):566-579, 1984.
[23] M. Yannakakis. Computing the minimum fill-in is np-complete. SIAM. J. on Algebraic and Discrete Methods, 2(1):77-79, 1981.


[^0]:    ${ }^{1}$ The algorithm given in [13] for finding a minimal chain completion of a bipartite graph is quite different from the one given here. However since our algorithm is based on the choice of a minimum degree vertex we think it is safer to use ours instead of theirs.

[^1]:    ${ }^{2}$ Recall that the BFS algorithm uses a FIFO queue to select at each step the next vertex to visit. Normally in the BFS algorithm this queue is initialized by inserting in it only one vertex, that is the starting vertex of the visit.

