
Fast minimal triangulation algorithm using minimum degree criterion

Mauro Mezzini

April 2011

Abstract

We propose an algorithm for minimal triangulation which, using simple and efficient strategy, subdivides the
input graph in different, almost non-overlapping, subgraphs. Using the technique of matrix multiplication
for saturating the minimal separators, we show that the partition of the graph can be computed in time
O(nα) where nα is the time required by the binary matrix multiplication. After saturating the minimal
separators the same procedure is recursively applied on each subgraphs. We also present a variant of the
algorithm in which the minimum degree criterion is used. In this way we obtain an algorithm that uses
minimum degree criterion and at the same time produces a minimal triangulation, thus shedding new light
on the effectiveness of the minimum degree heuristics.

Key words: Minimal triangulations; Chordal graphs; Minimum Degree;

1. Introduction

A graph is chordal if every cycle of length greater than three has a chord which is an edge of the graph
joining two non adjacent vertices of the cycle. A triangulation of a graph G is a chordal graph obtained from
G by adding to it a set of edges. Historically, the problem of finding a triangulation of a graph is related
to the problem of computing the inverse of large sparse symmetric matrices [21, 12, 7]. Other important
fields in which the triangulation problem applies is database management [22, 1], artificial intelligence and
statistics [17, 9, 19], to cite few. In these applications one wants to find a triangulation of the input graph
whose edge set is the minimum possible. But such minimum triangulation is difficult to obtain since this
has been shown to be an NP-Hard problem [23]. However the problem of finding a minimal triangulation,
that is, finding an inclusion minimal set of edges which added to the original graph makes it chordal, can
be solved in polynomial time. Therefore much of the effort in the literature has been devoted in developing
algorithms for finding minimal triangulations, as efficient as possible [6, 12, 21, 14, 2, 3, 15, 19, 2, 4, 18].

Another approach, the one used in the Minimum Degree Algorithm (MDA) [11] tries to obtain a trian-
gulation of a graph, not necessarily minimal, by employing the minimum degree heuristic. Such approach
has been successful since the triangulations produced by the MDA are often minimal and, while the worst
case complexity bounds of the MDA are much higher than other minimal triangulation algorithms, such
complexity bounds are tight only for very dense graphs and are not often observed for problems that are
solved in practice [5].

Here we present an algorithm that uses the minimum degree criterion and produces at the same time
minimal triangulations. The idea is to divide the graph in different, almost non-overlapping, subgraphs and
compute a minimal triangulation of each subgraph. We prove that if we add to the original graph the edges
needed to obtain a minimal triangulation of each subgraph, then we produce a minimal triangulation of the
original graph.

Thanks to this we will consider, among others, the possibility of recursively apply the same procedure
on each subgraph, since each recursive call will spent time only on a non-overlapping part of the original
graph.

We will show that all the tasks needed to obtain the partition of the graph, with the exception of the
task of saturating the minimal separators, can be easily carried out and require time linear in the dimension

of the triangulated graph. As for the task of computing the set of edges needed to saturate a set of minimal
separators, we may use the technique of matrix multiplication (such as that used in [14]) which has time
complexity of O(nα). Thus we obtain a partition of the graph with simple and very fast procedures.

We will see that we can partition the graph using the criterion of the minimum degree. While this
approach does not always assure a balanced partition of the graph, i.e., does not assure that the algorithm
terminates in a logarithmic number of steps, it seems the most natural and simplest choice. This is interesting
also from a theoretical point of view. The fact that each subgraph of the partition can be triangulated
separately of the other subgraphs, sheds new light on why the local minimum degree heuristic is so effective
(and fast) in producing small or minimal triangulations on sparse graphs.

We made an implementation of our algorithm and realized various experiments. We tested our algorithm
both on (pseudo) randomly generated graphs and on much of the symmetric squared sparse matrices from the
Harwell-Boeing collection [8]. We compared the execution time of our algorithm with the execution time of
the well-known MCS-M [2] algorithm. Although in building the implementation, we put our attention much
on correctness and readability of the code and we did not implement the matrix multiplication technique
for computing the minimal separators, the tests made, shown that our algorithm perform dramatically
better than MCS-M. Furthermore the experiments made on the matrices of the Harwell-Boeing collection
confirmed that, using the minimum degree criterion in the first iteration of the algorithm, the graphs broke
in many (sometimes hundreds and even thousand), smaller subgraphs.

The work is organized as follows. In Section 2 we give some definitions and preliminary results. In Section
3 we describe the procedure for partitioning the graph in what we call quasi-split graphs. In Section 4 we
give two algorithms to compute a minimal triangulation of two special cases of quasi-split graph, interesting
on their own and useful in the subsequent parts. In Section 5 we detail the steps of a recursive algorithm. In
Section 6 we report the results of our experimentation. Finally, in Section 7, we give some closing remarks
and list possible future research issues.

2. Definitions and preliminaries

We consider simple undirected loopless graphs G = (V (G), E(G)), where V (G) is a set of vertices and
E(G) is a set of pairs of distinct vertices. We denote, unless explicitly specified, |V (G)| by n and |E(G)| by
m. A pair of distinct vertices uv is called an edge; u and v are called the endpoints of uv and are adjacent if
uv ∈ E(G). The neighborhood of a vertex v is the set of its adjacent vertices, denoted by NG(v). The degree
of a vertex v is dG(v) = |NG(v)|. Given a set S of vertices the neighborhood of S is NG(S) = ∪v∈SNG(v)\S.
The closed neighborhood of a vertex set S is NG[S] = NG(S)∪S. The common neighborhood of two vertices
u and v is CNG(uv) = NG(u) ∩ NG(v). When it is clear from the context we omit the subscript and
write d(v), N(v) and CN(uv). A path of length k is a sequence of distinct vertices (v0, v1, . . . , vk) such
that vivi+1 ∈ E(G) for 0 ≤ i < k. A cycle of length k a sequence of vertices (v0, v1, . . . , vk) such that
vivi+1 ∈ E(G) for 0 ≤ i < k and only the first and the last vertex do coincide.

An independent set is a set of pairwise non adjacent vertices. A set of pairwise adjacent vertices is called
a clique. When we saturate a set S of vertices we add an edge between every pair of non adjacent vertices
of S.

The subgraph of G induced by a subset S of V (G), denoted as G[S] or simply by S when there is no
ambiguity, is a graph with vertex set S and edge set E(G[S]) = {uv ∈ E(G) : u ∈ S ∧ v ∈ S}. Given a set
S of vertices of a graph G, by G− S we denote the subgraph of G induced by V (G) \ S. If S is a singleton,
i.e. S = {v}, then we write G − v. Given a set F of edges, by G + F we denote the graph with vertex set
V (G) and edge set E(G) ∪ F .

Two vertices u and v are connected if there exists in G a path joining them, and disconnected otherwise.
A maximal set C of pairwise connected vertices is a connected component or simply a component of G.

A set S is a uv-separator, for u, v /∈ S, if u and v are connected in G, but disconnected in G− S, and is
a minimal uv-separator if no proper subset S′ of S is a uv-separator. We say that S is a minimal separator

when there exist two vertices u and v such that S is a minimal uv-separator. Given a vertex subset S, a
component C of G− S is full if NG(C) = S. A vertex set S is a minimal separator if it has at least two full
components [20].

2

A chord of a path (or a cycle) is an edge of E(G) between a pair of non consecutive vertices of the
path (or cycle). A graph is chordal or triangulated if every cycle of length greater than three has a chord.
A triangulation of a graph G is a chordal graph G + F obtained from G by adding a set F of edges. A
triangulation G+ F is minimal if for no proper subset F ′ of F we have that G+ F ′ is chordal. The set F
is called (minimal) fill-in.

Lemma 1 ([21]). Let G be a graph ad F be a minimal fill-in. Then every edge of F is a unique chord in

a four cycle.

Lemma 2 ([19, 15]). A triangulation G + F of a graph G is minimal if and only if for every uv ∈ F ,

CNG+F (uv) is not empty and is not a clique of G+ F .

A vertex is simplicial if its neighborhood is a clique. A vertex v is LB-simplicial if every minimal
separator included in NG(v) is a clique. Note that a vertex is LB-simplicial if and only if NG[v] is an
m-convex set, that is, if it contains the vertices of every chordless path between vertices in NG[v] [10].

Lemma 3 ([10, 16]). A graph is chordal if and only if every vertex is LB − simplicial.

Consider the following procedure called LB-Triang [3]

Algorithm LB-Triang
input : A graph G
output : A minimal fill-in F
begin

let v1, . . . , vn be an (arbitrary) ordering of the vertices of G;
F ← ∅;
for i = 1 . . . , n do
begin

let Fi be the set of edges
needed to make vi LB-simplicial;

F ← F ∪ Fi;
delete vi;

end
end

Lemma 4 ([3]). The algorithm LB-Triang produces a minimal fill-in F .

The following is a consequence of Lemma 2 and of the fact that a minimal separator has at least two full
components

Lemma 5. Let G be a chordal graph and S a minimal separator of G. Then for every two distinct vertices

u and v of S we have that CNG(uv) is not empty and is not a clique.

A graph G is bipartite if there exists a partition of its vertex set in two non empty sets (P,Q) such that
both P and Q are independent sets. A bipartite graph with bipartition (P,Q) is a chain graph [23] if there
exists an ordering v1, . . . , v|Q| of the vertices of Q, such that N(v1) ⊆ N(v2) ⊆ · · · ⊆ N(v|Q|). Two edges xy
and uv of a bipartite graph are said to be independent [23] if the subgraph induced by {x, y, u, v} consists
of exactly these two edges.

Lemma 6 ([23]). A graph is a chain graph if and only if it does not contain two independent edges.

3

A graph G is a quasi-split graph if its vertex set can be partitioned in two sets P and Q where P is a
clique, G[Q] is connected and each vertex v of Q (resp. of P) has at least one neighbor in P (resp. in Q).

Given a bipartite graph B (resp. quasi-split graph G) we refer to a partition (P,Q) of the vertices of B
(resp. G) as a bipartition of B (resp. G) and denote it by (P,Q). In particular if G is a quasi-split graph
then we denote by P the set of vertices of the bipartition which induces a clique, unless explicitly specified.

Lemma 7. Let G be a chordal graph and K a maximal clique of G. Each component of G−K contains at

least a simplicial vertex of G.

Proof: Suppose, by contradiction, that there exists a component C of G −K such that every vertex of C
is not a simplicial vertex of G. It is known (see Theorem 3.2 of [10]) that in a chordal graph, every non
simplicial vertex lies on a chordless path between two simplicial vertices. Let v ∈ C. Since v is not simplicial
in G then v lies on a chordless path between two simplicial vertices of V (G) \ C. Since NG(C) ⊆ K then v
lies on a chordless path between two vertices of K. But this is impossible since K is a clique and it contains
all the vertices of every chordless path between vertices of K (contradiction). �

3. The partitioning of the graph

Here we describe the procedures for the partitioning of the graph.

We start with a BSF from a vertex denoted as ν of G and we compute for each vertex its distance from
ν. Let us denote by δ the maximum distance from ν to any other vertex of G. For l = 0, . . . , δ denote by Sl

the set of vertices at distance l from ν. We will refer to a vertex v ∈ Sl as a vertex at distance l. Clearly if
0 < l < δ then G − Sl has at least two connected components one of which contains ν and all the vertices
of G with distance l − 1 or less from ν; the others connected components contain vertices with distance
l + 1 or more from ν. We will refer to a connected component of G − Sl not containing ν, as a connected
component of level l and let us denote it as Cl

i , l = 1, . . . , δ − 1 and i = 1, . . . , kl. Of course N(Cl
i) ⊆ Sl

and C0
i is a connected component of G − ν. Note that if {ν} is not a separator then there exists only one

component C0
1 at level 0. As the next step of the algorithm we saturate N(Cl

i) for all l = 1, . . . , δ − 1 and
for all i = 1, . . . , kl. Denote by F the set of edges added in this step.

Definition 8. For each l = 0, . . . , δ − 1 and for each i = 1, . . . , kl, if Cl
i is a component at level l let

P l
i = NG(C

l
i) and let Ql

i = Cl
i ∩ Sl+1 and denote by HCl

i

the subgraph of G+ F induced by P l
i ∪Ql

i.

We have that each graph HCl

i

is a quasi-split graph.

Example Consider the graph of Figure 1(a). In Figure 1(b) we saturate N(Cl
i) for each component Cl

i

and for all l = 1, 2. In Figure 2 are reported all the subgraphs HCl

i

for all l = 0, 1, 2.

1 2 3 4 5

7 8 9 10 6

v

S(1)

S(2) 11

12S(3)

7 8 9 10 6 11

12

1 2 3 4 5

va) b)

Figure 1: a) The original graph b) After saturating N(Cl
i
) for all l = 1, . . . , δ − 1 and i = 1, . . . , kl.

4

7 10

12

1 2 3

7 8 9 10

1 3 4 5

6

4 5

11

1 2 3 4 5

v

2
1C

H
1
1C

H

1
2C

H
1
3C

H

0
1C

H

Figure 2: The detail of all H
Cl

i

of the graph of Fig 1 b)

Remark 9. Note that NG(C
l
i) is a minimal separator of G since it has at least two full components for

l = 1, . . . , δ − 1 and for i = 1, . . . , kl.

Lemma 10. Let D be a set of edges, D ∩ E(G) = ∅, such that for all uv ∈ D either {u, v} ⊆ NG(C
l
i) or

u ∈ Sl+1 ∩ Cl
i and v ∈ NG(C

l
i). Then

i the set of vertices at distance l from ν in G+D do coincide with Sl for all l = 0, . . . , δ.

ii the component Cl
i is the same in G and G+D for l = 0, . . . , δ − 1, i = 1, . . . , kl.

iii NG(C
l
i) = NG+D(Cl

i) for l = 0, . . . , δ − 1, i = 1, . . . , kl.

Proof: Is sufficient to show that the above statements are true when D = {uv} is a singleton.
(i) We show that the addition of the edge uv does not change the distance of both u and v from ν. This
implies also that the distances of all other vertices from ν remain unchanged in G+D. Suppose that both u
and v are in NG(C

l
i). Any shortest path ν = v0, . . . , vl−1, vl = v not containing u has vl−1 ∈ Sl−1. Therefore

v can decrease its distance from ν only for the existence of a shortest path ν = v0, . . . , vk, u, v containing uv
as the last edge which is impossible since then there exist in G a shortest path from ν to u of distance less
than l− 1 contradicting the hypothesis that u ∈ Sl. The case when u ∈ Sl+1 ∩C

l
i and v ∈ NG(C

l
i) is similar

and is omitted.
(ii) Clearly the statement is true for l = δ−1. Suppose l < δ−1 and consider first the case when u ∈ Sl+1∩C

l
i

and v ∈ NG(C
l
i). All the components Cl∗

i for all l∗ > l are unaffected by uv and therefore are the same in G
and G+D. We have that u and v are together in the same component Cl−1

j since v is adjacent to a vertex

of Cl
i , say x, and x and u are in Cl

i . Therefore the edge uv joins two vertices of the same component. Since
u and v are contained also in each component Cl∗

k containing Cl−1
j for all l∗ < l− 1 the statements follows.

The case when {u, v} ⊆ NG(C
l
i) is similar to the first case and is omitted.

(iii) It can be demonstrated using argument similar to the cases (i) and (ii) and is omitted. �

Lemma 11. Let Cl
i be a component at level l, l = 0, . . . , δ − 1. Then the subgraph of G + F induced by

Cl
i ∩ Sl+1 is connected.

Proof: Let Q = Cl
i ∩ Sl+1. This must be true if l = δ − 1. Suppose 0 ≤ l < δ − 1 and suppose by

contradiction that there exist two connected components Q1 and Q2, of (G + F)[Q] and let x ∈ Q1 and
5

y ∈ Q2. Since Q1 and Q2 are not connected in (G + F)[Q], then they are not connected in G[Q]. Since x
and y belong to Cl

i there is a path p = x, a1, . . . , ah, y in G[Cl
i] connecting them. Let ar be the first vertex of

p belonging to Sl+2 and let as be the first vertex of p after ar belonging to Sl+1. Clearly ar−1 and as belong
to NG(C

l+1
j) for some Cl+1

j included in Cl
i and then the path p′ = x, a1, . . . , ar−1, as, . . . , ah, y is a path of

G+F connecting x to y. Furthermore as must belong to Q1. If we repeat the above argument substituting
x with as and substituting p with the subpath of p starting at as and ending in y, we eventually will find a
path of G+ F with vertices all in Cl

i ∩ Sl+1 connecting x to y (contradiction). �

Lemma 12. If G+ F is not triangulated then any chordless cycle C is entirely contained in HCl

i

for some

component Cl
i .

Proof: Suppose that G+ F is not chordal and let C = a0, a1, . . . , az, a0 be a chordless cycle not contained
in some HCl

i

. First we show that C must be contained in the subgraph of G+F induced by Sl and Sl+1 for

some 0 ≤ l < δ. In fact suppose, by contradiction, that C contains (at least) three vertices with distances
respectively l, l + 1 and l + 2.

Suppose, w.l.o.g., that a0 has distance l+2. Let ap be the first vertex of C after a0 having distance l+1
and let aq be the last vertex of C having distance l+1. Note that ap and aq are not consecutive in C since,
by hypothesis, there exists a vertex at distance l in C. Therefore ap−1 and aq+1 are connected with a path
containing only vertices with distance l + 2 or more. By (ii) of Lemma 10 we have that ap−1 and aq+1 are
contained in a component Cl+1

i of G+F . It follows that ap and aq are in NG+F (C
l+1
i) and since ap and aq

are not consecutive, apaq is a chord of C (contradiction).
Now if C is entirely contained in Sl+1 for l = 1, . . . , δ, then, by (ii) of Lemma 10 and Lemma 11 we have

that C is contained in some HCl

i

(in particular C is contained in Ql
i).

It remains to show that if C has a vertex in Sl and a vertex in Sl+1 then it is entirely contained in HCl

k

for some Cl
k. Suppose not and suppose, w.l.o.g., that a0 ∈ Sl+1 ∩ Cl

k. Let ar be the first vertex of C after
a0 belonging to Sl and let as be the last vertex of C belonging to Sl. By (ii) of Lemma 10, we have that
ar−1 and as+1 belong together to the component Cl

k of G+ F . It follows that ar and as are in NG+F (C
l
k).

If ar and as are consecutive in C or do coincide, then C is entirely contained in HCl

k

, otherwise aras is a

chord of C (contradiction). �

Theorem 13. The graph G + F is triangulated if and only if HCl

i

is triangulated for every Cl
i and every

l = 0, . . . , δ − 1 and i = 1, . . . , kl.

Proof: Since HCl

i

is an induced subgraph then we need only to show that if HCl

i

is triangulated for every

Cl
i , l = 0 . . . , k − 1 and i = 1, . . . , kl, then G+ F is chordal. Suppose not and let C be a chordless cycle of

G+ F . By Lemma 12, C is entirely contained in the subgraph HCl

i

of G+ F contradicting the hypothesis
that HCl

i

is chordal. �

As a corollary of previous Theorem we have

Corollary 14. Given G+ F as above let F l
i the set of edges such that HCl

i

+ F l
i is triangulated and let

F ′ =
⋃

l=0,...,δ−1
i=1,...,kl

F l
i

Then G+ F + F ′ is a triangulation of G.

Then we have the following, stronger result

Theorem 15. Given G+ F as above let F l
i the set of edges such that HCl

i

+ F l
i is a minimal triangulation

of HCl

i

and let

F ′ =
⋃

l=0,...,δ−1
i=1,...,kl

F l
i

Then G+ F + F ′ is a minimal triangulation of G.

6

Proof: By Corollary 14 we need only to show that G+ = G + F + F ′ is minimal. By Lemma 2, we shall
show that, for each edge uv of F ∪ F ′, CNG+(uv) is not empty and is not a clique.

By (ii) and (iii) of Lemma 10, NG+(Cl
i) = NG(C

l
i) and the vertex set of each connected component of

G+ − Sl do coincide with the vertex set of each connected component of G− Sl for all l = 1, . . . , δ − 1 and
i = 1 . . . , kl. By Remark 9, we have that NG+(Cl

i) is a minimal separator of G+. Since G+ is chordal then,
by Lemma 5, CNG+(uv) is not empty nor is a clique for every pair of vertices u, v of NG+(Cl

i) and therefore
for every uv ∈ F .

Now let uv be an edge of F ′ and let H = HCl

i

+ F l
i be the subgraph of G + F + F ′ containing uv.

Since H is a minimal triangulation of HCl

i

then CNH(uv) is not empty and is not a clique. But since H

is an induced subgraph of G′ then CNH(uv) ⊆ CNG+(uv) and CNG+(uv) is not empty and is not a clique. �

In order to obtain the graphs HCl

i

we have to saturate first NG(C
l
i) for all l = 0, . . . , δ − 1 and for all

i = 1, . . . , kl which can be done with the technique of matrix multiplication as explained, for example, in
[14]. Note that only separators at level l can overlap each other, while separators at different level obviously
do not overlap. We may saturate NG(C

l
i) in reverse order starting from the top level down to the first level

of the BFS. We compute all the quasi-split graphs at level l and saturate NG(C
l
i) for i = 1, . . . , kl. This

can be done by simply visiting all the connected components of G + F induced by Sl+1 since, by Lemma
11, Ql

i is connected for i = 1, . . . , kl. The set P l
i can be computed by determining, for each vertex v of Ql

i

all the neighbors of v at the lower level.

4. Minimal triangulation of quasi-split graph

By Theorem 15 we have seen that we can obtain a minimal triangulation of a graph by finding a minimal
triangulation of each HCl

i

, l = 0, . . . , δ − 1, i = 1, . . . , kl, which is a quasi-split graph. In the following we
concentrate on the task of computing a minimal triangulation of a quasi-split graph.

4.1. Two special cases

Let G be a quasi-split graph with bipartition (P,Q). First we consider two special cases, which are inter-
esting on their own and are useful in the subsequent discussion. The first case is when Q induces a clique.
The second case is when we first compute a minimal triangulation of G[Q] (using any minimal triangulation
algorithm) or when G[Q] is already chordal.

In the first case, let BG be the bipartite graph obtained from G by deleting all the edges with both
endpoints in Q and deleting all the edges with both endpoints in P . It was shown in [23] that any minimal
chain completion of BG is a minimal triangulation of G. In this case the problem of finding a minimal
triangulation of G reduces to the problem of finding a minimal chain completion of a bipartite graph B,
that is finding a minimal set of edges which added to B make it a chain graph. An algorithm for computing
a minimal chain completion of B is as follows. We select at each step a vertex v ∈ Q such that dB(v) is
minimum. For each vertex w ∈ NB(v) we add to B the edge wz for all z ∈ Q \ v. Then we delete v from Q
and B. The algorithm1 MinChainCompletion is reported in Figure 3.

Lemma 16. The algorithm MinChainCompletion produces a minimal chain completion D of a bipartite

graph B.

Proof: First we show that the algorithm produces a chain completion of D. Let vi and Di be, respectively
the vertex examined and the set of edges added at the end of step i, i = 1, . . . |Q|, and let D0 = ∅. Clearly
at the end of step i we have that NB+Di

(vi) ⊆ NB+Di
(vj) for all vj , j > i. Since after the step i the vertex

1The algorithm given in [13] for finding a minimal chain completion of a bipartite graph is quite different from the one given
here. However since our algorithm is based on the choice of a minimum degree vertex we think it is safer to use ours instead
of theirs.

7

Algorithm MinChainCompletion
input : A bipartite graph B with bipartition (P,Q)
output : A minimal chain completion D of B
begin

repeat
let v ∈ Q, such that dB(v) is minimum;
for all z ∈ Q \ v and for all w ∈ NB(v) do

if wz /∈ E(B) ∪D then add wz to B and D ;
delete v from Q and B;

until Q is not empty;
end

Figure 3: The MinChainCompletion algorithm

vi is deleted, then its neighborhood remains unchanged in all subsequent steps of the algorithm. Therefore
at the end of the algorithm we have that NB+D(v1) ⊆ NB+D(v2) · · · ⊆ NB+D(v|Q|), i.e., the graph B +D
is a chain graph.

Now we show the minimality. By Lemma 6, it is sufficient to show that for every edge xy ∈ D there
exist two independent edges of B in B + (D \ {xy}). Suppose that the edge xy is added when the vertex vi
is being considered. Suppose, w.l.o.g., that x ∈ NB+Di−1

(vi) and that y = vj for some j > i. We have that
vix ∈ E(B) for otherwise if vix ∈ D then vix would have been added at step i∗ < i, x ∈ NB+Di∗−1

(vi∗) and
then at the step i∗ also the edge xvj would have been added contradicting the hypothesis that xvj was added
at step i. The vertex vi is selected at step i because dB+Di−1

(vi) is minimum and since x /∈ NB+Di−1
(vj)

there must exist a vertex z ∈ NB+Di−1
(vj) \ NB+Di−1

(vi). It follows that vjz ∈ E(B). We have that vix
and vjz are independent in B + (D \ {xy}), since at the end of step i, vi is deleted and the edge zvi will
never be added to D. �

In order to achieve a time complexity of O(n + m + |D|) we propose the following implementation. The
neighborhood of the vertex vi need not to be reconsidered in the subsequent steps since it is already included
in the neighborhood of all the remaining vertices. Furthermore at step i we can detect all the vertices vj ,
j > i such that NB+Di−1

(vj) = NB+Di−1
(vi) without increasing the complexity. In fact in order to detect

them we note that these vertices have the same degree of vi in B +Di−1 and for all w ∈ NB+Di−1
(vi) we

have that wvj is an edge of B+Di−1. Therefore at each step of the algorithm we delete all the neighborhood
of vi and all vertices having the same neighborhood of vi in B+Di−1. By the above discussion we can state
the following

Lemma 17. The algorithm MinChainCompletion has time complexity of O(n+m+ |D|).

By Lemma 16 and Lemma 17 we are able to compute a minimal triangulation of a quasi-split graph G
in time linear in the dimension of the triangulated graph when Q is a clique. If Q does not induces a clique
and |P | = 1, in order to obtain a minimal triangulation of G we have to compute a minimal triangulation
of G[Q].
Now we deal with the case in which either G[Q] is triangulated or we compute first a minimal triangulation
of it. Let |P | > 1 and let F1 be the fill-in of a minimal triangulation of G[Q]. We may obtain a minimal
triangulation of G with the following algorithm. We examine each vertex of Q and at each step we add some
edges (to be explained later) to the set variable Di. At the beginning D0 ← F1. We select, at each step, a
vertex vi which is simplicial in G[Q]+F1 and such that |NG+Di−1

(vi)∩P | is minimum. Then if Ei is the set
of edges needed to saturate NG+Di−1

(vi) we set Di ← Di−1 ∪Ei and delete vi from G+Di. The algorithm
MinQSCompletion is reported in Figure 4. We now prove the correctness of the algorithm. First we have
the following

8

Lemma 18. Let G be a quasi-split graph with bipartition (P,Q). Let F1 be a set of edges such that G[Q]+F1

is a minimal triangulation of G[Q] and let F2 be a set of edges such that G+F1+F2 is a minimal triangulation

of G+F1 and such that each edge of F2 has one endpoint in Q and the other endpoint in P . Then G+F1+F2

is a minimal triangulation of G.

Proof: Let G+ = G+F1+F2. Since each edge of F2 has one endpoint in P we have that G+[Q] = G[Q]+F1.
Since G+ is a minimal triangulation of G + F1, clearly each edge of F2 is the unique chord of a four cycle
of G+. Suppose, by contradiction, that an edge uv ∈ F1 is not a unique chord in a four cycle of G+, that
is, by Lemma 2, CNG+(uv) is either empty or is a clique of G+. It follows that CNG+(uv) ∩ Q is either
empty or is a clique. But since G+[Q] = G+ F1 then CNG+(uv) ∩Q = CNG[Q]+F1

(uv) is either empty or
is a clique contradicting the hypothesis that G[Q] + F1 is a minimal triangulation of G[Q]. �

Algorithm MinQSCompletion
input : A quasi-split graph G
output : A minimal triangulation of G
begin

let G′ = G[Q] + F1 be a minimal triangulation of G[Q];
D ← F1;
repeat

let v be a simplicial vertex of G′ such that |NG+D(v) ∩ P | is minimum;
add to D the edges needed to saturate NG+D(v);
delete v from G+D and G′;

until G′ is not empty;
end

Figure 4: The MinQSCompletion algorithm

Theorem 19. Let G be a quasi-split graph with bipartition (P,Q). The algorithm MinQSCompletion
computes a set of edges F2 such that G+ F1 + F2 is minimal triangulation of G.

Proof: Let G′ = G[Q] +F1 and let vi be the vertex considered at the step i. Denote by D the union of the
edges added in all the steps before i. We shall show that the set of edges needed to saturate NG+D(vi) are
exactly those needed to make vi LB-simplicial.

Since vi is simplicial in G′ then Ki = NG+D(vi) ∩Q is a clique. Let Pi = NG+D(vi) ∩ P , Si be the set
of vertices of Ki which are simplicial in G′ and let S′

i = {w ∈ Si : NG+D(w) ∩ P = Pi}.
Since vi is chosen because it is simplicial in G′ and |NG+D(v)∩P | is minimum we have that each vertex

in Pi ∪ (Si \ S
′
i) is adjacent to at least one vertex of P \ Pi. We also have that each vertex of Ki \ Si is

adjacent to at least one vertex of Q \Ki. Let C1, . . . , Ch be the connected components of the subgraph of
G+D induced by V (G) \NG+D[vi]. For each Cj we show that Pi ⊆ NG+D(Cj). In fact this is clearly true
if Cj contains P \ Pi. Otherwise if Ci does not contain P \ Pi then, by Lemma 7, it contains at least one
simplicial vertex u of G′. By hypothesis each simplicial vertex u of G′ has |NG+D(u) ∩ P | ≥ |Pi| and since
u is not adjacent to any vertex of P \ Pi then we have that NG+D(u) ∩ P = Pi.

Now note that by the above discussion the component Cj containing P \Pi has Si\S
′
i ⊆ NG+D(Cj). Since

each vertex ofKi\Si has at least one vertex adjacent toQ\Ki then we have
⋃

j=1...,h NG+D(Cj)∩Ki = Ki\S
′
i.

Therefore in order to saturate each NG+D(Cj) we have to add an edge between each vertex of Pi to each
vertex of Ki \ S

′
i. This is also sufficient since both Ki and Pi are cliques. Finally since each vertex of S′

i

is connected to every other vertex of Pi ∪ Ki in order to make vi LB-simplicial it is sufficient to saturate
Pi ∪Ki = NG+D(vi).

By Lemma 4, D\F1 is the set of edges needed to obtain a minimal triangulation of G+F1. Since vi is sim-
plicial in G′, no edge being added for saturating NG+D(vi) has both endpoints in Q. Finally note that when

9

Algorithm MinQS
input : A quasi-split graph G
output : A triangulation of G
begin

D ← ∅;
repeat

let v ∈ Q such that |NG+D(v) ∩ P | is minimum;
add to D the edges needed to saturate NG+D(v);
delete v from G;

until Q is not empty;
end

Figure 5: The MinQS algorithm

we remove vi from G+D the graph remains a quasi-split graph. The Theorem then follows by Lemma 18. �

Given a quasi-split graph G with bipartition (P,Q) it is interesting to note that we may obtain a
triangulation of G (not necessarily minimal) with the following simple algorithm. Repeatedly select a vertex
of Q such that |NG(v) ∩ P | is minimum. Add to G the edges needed to saturate NG(v) and delete v (see
Figure. 5). We have the following

Lemma 20. The algorithm MinQS produces a minimal triangulation if, when the vertex v is selected, then

N(v) ∩Q does not contain any vertex w such that N(w) ∩ P = N(v) ∩ P .

Proof: Let w ∈ N(v)∩Q and let P ′ = N(v)∩P . Since N(w)∩P 6= P ′ and since v is chosen because |P ′| is
minimum we have that there exist a z ∈ N(w)∩P such that z /∈ P ′. Since this is valid for all w ∈ N(v)∩Q
we have that N(P \P ′) contains N(v)∩Q and since P is a clique then N(P \P ′) contains N(v). Therefore
in order to make v LB-simplicial we have to saturate N(v). The Lemma then follows from Lemma 4. �

Note that in all the above algorithms choosing a vertex of minimum degree is not an option but a
necessity if we want to find minimal triangulations. We think this is interesting from the theoretical point
of view since this sheds a new light (together with [4]) on why the local minimum degree heuristic is so
effective in finding minimal triangulations.

5. Minimal triangulation by recursion

In the previous section we have seen a simple algorithm for finding a minimal triangulation of a quasi-split
graph, the MinQSCompletion algorithm. However in order to obtain a more efficient algorithm we may
use the strategy of triangulating the graph HCl

i

by recursively apply to it the same partitioning procedures.

That is, we execute again a BFS on each HCl

i

and recursively saturate the minimal separators. When Ql
i

is a single vertex or a clique, we may stop the recursive calls or solve the problem using the algorithm
MinChainCompletion.

However we have to be careful in order to do not revisit in each of the recursive call again those parts of
the graph which overlap with the other quasi-split graphs. To this end, a quasi-split graph G with bipartition
(P,Q), will be represented by the following data structure. We use adjacency lists Adj(v) for each vertex v.
If v ∈ Q then the adjacency list Adj(v) is equal to NG(v). If v ∈ P then we set Adj(v) equal to NG(v) ∩Q.

Now the recursive call can be done as follows. We have to chose a vertex ν ∈ P . We visit all the vertices
in NG(ν) ∩ Q. Then we note that in a quasi-split graph, each vertex of P is at distance at most two from
any other vertex of G. Hence δ ≤ 2. If δ = 1, that is, NG(ν) ∩ Q = Q, by Lemma 4, we simply delete ν

10

since it is already LB-simplicial. If every vertex of P is adjacent to every vertex of Q, by Lemma 12, we can
continue the recursive call by finding a minimal triangulation of the subgraph of G induced by Q.

Otherwise δ = 2. In this case we find the connected components of G \ NG(ν) by starting a visit from
any vertex of Q \NG(ν). Let C = {C1 . . . , Ch} be the connected components of G \NG(ν). Then for each
Ci we obtain a quasi-split graph by taking the subgraph of G induced by Ci ∪NG(Ci).

Let F be the set of edges needed to saturate NG(Ci) for all i = 1, . . . , h. Since in a quasi-split graph no
single vertex is a separator then there is only one component at level 0. Therefore it remains to triangulate
the quasi-split graph induced by NG+F [ν]. This means that we have to triangulate the subgraph H of G+F
induced by NG+F (ν) which is, by Lemma 11, connected. Note that there can be a vertex w of NG(ν) ∩Q
that is not adjacent to any vertex of P \ ν nor adjacent to any vertex of Ci for any i = 1, . . . , h. It follows
that H needs not to be a quasi-split graph.

We may visit H without revisiting the edges with both endpoints in P , by using a slightly modified BFS.
Recall that in the representation of G the adjacency list of each vertex w of P contains only NG(w) ∩ Q.
Taking this into consideration, we execute a BFS by initializing the FIFO queue2 with all the vertices of P .
In this way we visit the graph H without revisiting the edges with both endpoints in P .

By the discussion above we have that each recursive call spent time visiting only edges of a subgraph of
G which are non-overlapping with the edges of other subgraphs. The algorithm QSTriang is reported in
Figure 8.

Example. Consider the quasi-split graph of Figure 6(a) with bipartition P = {a, b, c} and Q = {d, e, f, g}.
Its internal representation is shown in Figure 6 (b). We chose to start the BFS from vertex a. After this we
have that there is only one component of G−NG(a) which is C = {g} (see Figure 7(a)). We saturate NG(g)
(without reinserting the edge bc) by adding to G the set of edges F = {fb, fc} (see Figure 7(a)). After this,
we have that the subgraph of G + F induced by {b, c, f, g} is a quasi-split graph with bipartition (P ′, Q′)
where Q′ = {g} is a singleton and therefore is triangulated. So it remains to triangulate the subgraph of
G+F induced by NG(a), which is depicted in Figure 7(b). When we execute the recursive call we insert in
the FIFO queue, at the beginning of the BFS, the vertices b and c. After the BFS we have two quasi-split
graphs depicted in Figure 7(c) and (d) where the edge fd has been added. These two quasi-split graphs are
already triangulated and the algorithm terminates. Note that the edges ab, ac and bc are never revisited
during all steps of the algorithm.

a b c

d e f g

a b c

d e f g

(a) (b)

Figure 6: (a) A quasi-split graph G with bipartition P = {a, b, c, } and Q = {d, e, f, g} (b) Its data representation.

6. Complexity and experimental results

In order to lower the complexity of the algorithm we have to partition the graph in a way that the largest
graph HCl

i

has a dimension which is a fraction of the input graph at each recursive call. The dimension

2Recall that the BFS algorithm uses a FIFO queue to select at each step the next vertex to visit. Normally in the BFS
algorithm this queue is initialized by inserting in it only one vertex, that is the starting vertex of the visit.

11

a

b cd e f

g

b c

d

e

f

d

e

f b c

df

(a) (b)

(c) (d)

Figure 7: (a) After visiting NG(a) and after the set F of dotted edges has been added (b) The subgraph H of G+ F induced
by NG(a). (c) and (d) the quasi-split graphs of H.

of the subgraphs heavily depend on the choice of the vertex from which start the BFS. In fact if, in every
recursive call, the degree dG(ν) of the vertex from which start the BFS satisfies

n

k
≤ dG(ν) ≤

k − 1

k
n

for some (small) constant 1 < k < n we have, in the worst case, at least two quasi-split graphs: one in which
Q has dG(ν) vertices and the other in which Q has |V (G)| − dG(ν) vertices. Since the visit of these graphs
will be done without revisiting two or more time the overlapping edges, the algorithm terminates after a
logarithmic number of steps.

The simplest choice is that of selecting, at the beginning of the algorithm and at each recursive calls, a
vertex of minimum degree. We may hope that the selection of a vertex of minimum degree breaks the graph
in many smaller subgraphs.

Such a choice, however, does not always assure a balanced partition as we can see in the following
example. Suppose, in the worst case, that after the BFS we have only two subgraphs: HC0

1
and HC1

1
such

that P 1
1 has k vertices, with k much smaller than n and Q1

1 has n− k− 1 vertices. Then suppose again that
in P 1

1 there is a vertex such that |NG(v) ∩ Q1
1| = k so that in the successive recursive call, this vertex is

selected as the starting vertex of the BFS. And so on. The algorithm therefore will terminates after O(n)
recursive calls.
A better choice is that of finding at each recursive call a vertex v whose degree is such that the absolute
value abs(dG(v)− |Q|/2) is as minimum as possible. However such a vertex could not exist at all.

In fact it can happen that at any of the recursive calls, the graph has minimum degree of n− k with k
much smaller than n. If k is very small, that is, the graph is very dense, we may even change completely
the strategy and could be convenient to find a minimal triangulation of the graph using recent minimal
triangulation technique (such as those proposed in [19, 18]) which are very fast when the graph is dense.

Anyway, the choices discussed above do not seem, at first, to assure a balanced partition of the graph.
For this reason we made an extensive experimentation, by building an implementation of the recursive
algorithm. We executed a time test both on a set of random graphs and on most of the sparse symmetric
matrices from the Harwell-Boeing collection [8] (HBC), comparing the execution time of our algorithm
with the execution time of MCS-M. In both cases we found that, even without implementing the matrix
multiplication technique for saturating the minimal separators and focusing exclusively on the correctness
of the code rather than speed optimization, our algorithm performs dramatically better than MCS-M.

12

Algorithm QSTriang(G, L)
input : A connected graph G and a list L of vertices

(in the initial call L contains only one vertex)
output : The fill F a minimal triangulation of G
begin

F ← ∅;
BFS(G,L);
for l = δ − 1 down to 0 do
begin

for each quasi-split graph HCl

i

at level l do

begin
F ′ =RecursiveQS(HCl

i

);

let Fi be the set of edges needed to saturate P l
i ;

add Fi to G;
F ← F ∪ F ′ ∪ Fi;

end
end
return F ;

end

RecursiveQS(G)
input : A quasi-split graph G with bipartition (P,Q)
output : The fill F a minimal triangulation of G
begin

F ← ∅;
if |Q| = 1 return F ;
let w be a vertex of P ;
for each quasi-split graph Hi determined by NG(w) do
begin

F ′ =RecursiveQS(Hi);
let Fi be the set of edges needed to saturate Pi;
add Fi to G;
F ← F ∪ F ′ ∪ Fi;

end
let H be the subgraph of G induced by NG(w);
F ′ =QSTriang(H,P);
return F ∪ F ′;

end

Figure 8: The QSTriang algorithm

13

We generated a number of pseudo random graphs of various dimension. In Table 1 we reported for each
of the generated graphs the number of its vertices and edges. We also reported the fill produced by both
algorithms and the execution time.

n m Fill QS QS Fill MCS-M MCS-M

800 7990 228189 2.372 234598 4.228
800 9588 246730 2.324 243498 4.648
800 11185 257483 2.309 250640 5.164
800 12784 261826 2.886 257466 5.320
800 14381 265641 3.292 262488 5.351
800 15980 265133 4.103 263835 5.632
900 10113 303993 2.793 299887 6.927
900 12136 327265 3.386 315491 7.707
900 14159 333731 3.510 319030 7.816
900 16182 332288 4.072 328661 7.738
900 18204 343652 5.148 331788 7.831
900 20227 343206 5.538 338643 8.736

1000 12487 389026 3.542 386072 10.405
1000 14985 395903 3.805 400220 10.764
1000 17482 412777 4.165 413503 11.498
1000 19980 418592 5.429 415421 11.763
1000 22477 432771 7.192 418214 12.168
1000 24975 422861 8.829 424977 12.168
1100 15111 485277 4.884 474137 14.150
1100 18133 499121 5.116 493601 15.678
1100 21155 516757 7.816 504854 16.380
1100 24178 514179 8.534 515573 17.083
1100 27200 518418 9.906 517819 17.800
1100 30222 519751 13.182 518798 19.344
1200 17985 598528 6.833 578007 21.497
1200 21582 605929 8.517 589538 22.667
1200 25178 609721 9.782 604516 23.837
1200 28776 617493 12.479 614348 23.681
1200 32372 621880 14.211 614822 25.568
1200 35970 620969 18.284 622795 26.535
1300 21108 697885 8.533 694875 28.642
1300 25330 715600 9.235 716900 32.402
1300 29552 728187 11.871 705216 32.792
1300 33774 730373 16.802 727819 36.582
1300 37995 740234 19.594 724023 37.580
1300 42217 739860 22.511 731216 39.218

Table 1: Data of the test on random generated graphs. The column n and m report, respectively, the number of vertices and
of edges of the graph. Columns Fill QS, Fill MCS-M, QS and MCS-M report, respectively, the fill and the execution time (in
seconds) of both algorithms.

We computed for the matrices of the HBC the number of quasi-split graphs obtained after the first
iteration of the recursive algorithm. We tested two cases. In the first one we execute the first BFS, starting
from a vertex of minimum degree. In the second case we execute the first BFS, starting from a vertex whose
degree is median, that is, was the closest to n/2. In Table 2 we report the number of quasi-split graphs
produced for each of the two cases. Note that, selecting a vertex of minimum degree is in almost all cases,
slightly better than selecting a vertex of median degree. We report also the execution time of QSTriang
where, in the first BFS, is selected a vertex of minimum degree, while in the recursive calls a vertex of
median degree is selected. Moreover the execution time of MCS-M is reported.

We also observed that, on average, at the end of the first BFS, the 44% of the fill edges are already
added to G.

14

7. Conclusions

We presented an algorithm for computing a minimal triangulation of a graph which exploits a recursive
partitioning of the graph on the basis of a BFS visit. Its computational complexity is shown to be strictly
related to the complexity of boolean matrix multiplication. We also presented variants of this algorithm in
which the minimum degree criterion is used thus shedding new light on the effectiveness of the minimum
degree heuristic. Experimental results are provided showing that the computation time of the proposed
algorithm is dramatically better than well known existing minimal triangulation techniques on sparse ma-
trices.
There are several future research issues. The partitioning scheme based on the choice of the minimum degree
vertex does not guarantee a balanced partition of the graph. We could investigate if there exists a different
partitioning scheme that guarantees a balanced partition in order to obtain an algorithm whose complexity
is O(nα log n). By Theorem 15 the problem of computing a minimal triangulation of a graph reduces to
the problem of computing a minimal triangulation of a quasi-split graph. In the special case when, in a
quasi-split graph with bipartition (P,Q), the set Q induces a clique, we are able to compute a minimal
triangulation in time linear in the dimension of the triangulated graph (Lemma 17). We could investigate
which is the complexity of existing minimal triangulation algorithms (e.g. MCS-M) when in a quasi-split
graph the subgraph induced by Q is already chordal. We could investigate both experimentally and theo-
retically the behavior of the MinQS algorithm: how is effective in computing minimal triangulations and
which is its time complexity? We could investigate both experimentally and theoretically the possibility and
the effectiveness of mixing the techniques used in [18, 19] with the QST algorithm for computing minimal
triangulations of dense graphs.

Acknowledgment

I wish to thank the anonymous referee for his comments.

15

Matrix n m QS QS QS MCS-M
name min med (sec.) (sec.)

bcspwr05.mtx 443 590 215 217 0.016 0.078
bcspwr06.mtx 1454 1923 662 661 0.078 1.669
bcspwr07.mtx 1612 2106 798 793 0.093 2.028
bcspwr08.mtx 1624 2213 744 735 0.093 2.293
bcspwr09.mtx 1723 2394 762 764 0.109 2.793
bcspwr10.mtx 5300 8271 1165 1165 2.059 86.160
bcsstk06.mtx 420 3720 49 47 0.109 0.172
bcsstk07.mtx 420 3720 49 47 0.110 0.140
bcsstk08.mtx 1074 5943 53 52 3.792 5.210
bcsstk09.mtx 1083 8677 18 19 0.982 2.168
bcsstk10.mtx 1086 10492 71 69 0.156 0.873
bcsstk11.mtx 1473 16384 69 68 0.593 3.682
bcsstk12.mtx 1473 16384 69 68 0.640 3.650
bcsstk13.mtx 2003 40940 15 20 8.767 85.754
bcsstk14.mtx 1806 30824 24 21 3.573 19.453
bcsstk15.mtx 3948 56934 18 19 32.387 323.889
bcsstk20.mtx 485 1325 198 192 0.015 0.063
bcsstk21.mtx 3600 11500 107 105 2.527 25.991
bcsstk23.mtx 3134 21022 30 43 22.932 66.346
bcsstk24.mtx 3562 78174 46 44 5.912 90.247
bcsstk25.mtx 15439 118401 380 166 58.890 5564.509
bcsstk26.mtx 1922 14207 88 76 1.607 10.000
bcsstk27.mtx 1224 27451 36 34 0.359 3.166
bcsstk28.mtx 4410 107307 39 34 10.343 527.440
bcsstm07.mtx 420 3416 48 46 0.109 0.109
bcsstm10.mtx 1086 10503 71 69 0.156 0.952
bcsstm12.mtx 1473 9093 103 102 0.343 2.449
bcsstm13.mtx 2003 9970 6 7 0.827 5.991
bcsstm27.mtx 1224 27451 36 34 0.359 3.401
bfw782b.mtx 782 5200 77 76 0.047 0.406
blckhole.mtx 2132 6370 36 34 4.836 8.752
dwt 419.mtx 419 1572 19 22 0.125 0.125
dwt 492.mtx 492 1332 102 83 0.047 0.063
dwt 503.mtx 503 2762 27 16 0.171 0.375
dwt 512.mtx 512 1495 101 95 0.063 0.078
dwt 592.mtx 592 2256 45 41 0.140 0.156
dwt 607.mtx 607 2262 53 51 0.109 0.219
dwt 758.mtx 758 2618 111 105 0.079 0.281
dwt 869.mtx 869 3208 78 73 0.109 0.514
dwt 878.mtx 878 3285 47 30 0.141 0.593
dwt 918.mtx 918 3233 49 45 0.250 0.687
dwt 992.mtx 992 7876 30 29 0.343 1.404
dwt 1005.mtx 1005 3808 43 41 0.453 1.014
dwt 1007.mtx 1007 3784 54 48 0.296 0.843
dwt 1242.mtx 1242 4592 36 42 1.139 1.513
dwt 2680.mtx 2680 11173 104 104 1.342 12.418
s1rmq4m1.mtx 5489 137811 30 29 20.093 700.257
s1rmt3m1.mtx 5489 107016 60 32 8.518 551.761
s2rmq4m1.mtx 5489 137811 30 29 20.593 678.574
s2rmt3m1.mtx 5489 107016 60 32 8.893 548.937
s3rmq4m1.mtx 5489 137811 30 29 20.764 695.577
s3rmt3m1.mtx 5489 107016 60 32 8.923 548.141
s3rmt3m3.mtx 5357 101169 58 38 7.442 274.312
sstmodel.mtx 3345 9702 338 323 0.562 19.312
young1c.mtx 841 3248 56 57 0.281 0.453
young2c.mtx 841 3248 56 57 0.188 0.484
young3c.mtx 841 3147 49 48 0.344 0.608
young4c.mtx 841 3248 56 57 0.234 0.514
zenios.mtx 2873 12159 253 241 0.172 11.029

Table 2: The column n and m contain, respectively, the number of vertices and the number of edges of the graph. The columns
“QS min” and “QS med” contain the number of quasi-split graphs after the first BFS, when the BFS is started from a vertex
of minimum degree in the first case and when the BFS is started from a vertex of median degree in the second case. The
columns “QS” and “MCS-M” contain the execution time of the algorithm QSTRiang and MCS-M, respectively. Only the
result of the matrices with more than 400 vertices are reported

16

References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database schemes. J. ACM, 30(3):479–513,
1983.

[2] A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton. Maximum cardinality search for computing minimal triangulations
of graphs. Algorithmica, 39(4):287–298, 2004.

[3] A. Berry, J. P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-range algorithm for minimal triangulation
from an arbitrary ordering. J. Algorithms, 58(1):33–66, 2006.

[4] A. Berry, E. Dahlhaus, P. Heggernes, and G. Simonet. Sequential and parallel triangulating algorithms for elimination
game and new insights on minimum degree. Theor. Comput. Sci., 409(3):601–616, 2008.

[5] A. Berry, P. Heggernes, and G. Simonet. The minimum degree heuristic and the minimal triangulation process. In H. L.
Bodlaender, editor, WG, volume 2880 of Lecture Notes in Computer Science, pages 58–70. Springer, 2003.

[6] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making filled graphs minimal. Theor. Comput.

Sci., 250(1-2):125–141, 2001.
[7] J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique trees. In J. A. George, J. R. Gilbert,

and J. W. H. Liu, editors, Sparse Matrix Computations: Graph Theory Issues and Algorithms. Springer Verlag. IMA

Volumes in Mathematics and its Applications, 56:1–30, 1993.
[8] R. Boisvert, R. Pozo, K. Remington, B. Miller, and R. Lipman. NIST MatrixMarket,

http://math.nist.gov/MatrixMarket/index.html.
[9] A. Deshpande, M. N. Garofalakis, and M. I. Jordan. Efficient stepwise selection in decomposable models. In UAI, pages

128–135, 2001.
[10] M. Farber and R. E. Jamison. Convexity in graphs and hypergraphs. SIAM J. Algebraic Discrete Methods, 7(3):433–444,

1986.
[11] A. George and J. W. Liu. The evolution of the minimum degree ordering algorithm. SIAM Review, 31(1):1–19, 1989.
[12] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics, 306(3):297–317, 2006.
[13] P. Heggernes and C. Papadopoulos. Single-edge monotonic sequences of graphs and linear-time algorithms for minimal

completions and deletions. Theor. Comput. Sci., 410(1):1–15, 2009.
[14] P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in time o(nα logn) = o(n2.376). SIAM J.

Discret. Math., 19(4):900–913, 2005.
[15] L. Ibarra. Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms, 4(4):1–20, 2008.
[16] C. G. Lekkerkerker and J. C. Boland. Representation of a finite graph by a set of intervals on the real line. Fund. Math.,

51:45–64, 1962.
[17] F. Malvestuto. Approximating discrete probability distributions with decomposable models. IEEE Transactions on

Systems, Man and Cybernetics,, 21(5):1287–1294, 1991.
[18] M. Mezzini. Fully dynamich algorithm for chordal graph with O(1) query time and O(n2) update-time. submitted, 2011.
[19] M. Mezzini and M. Moscarini. Simple algorithms for minimal triangulation of a graph and backward selection of a

decomposable markov network. Theor. Comput. Sci., 411(7-9):958–966, 2010.
[20] A. Parra and P. Scheffler. Characterizations and algorithmic applications of chordal graph embeddings. Discrete Applied

Mathematics, 79(1-3):171–188, 1997.
[21] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on

Computing, 5(2):266–283, 1976.
[22] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs,

and selectively reduce acyclic hypergraphs. SIAM J. Comput., 13(3):566–579, 1984.
[23] M. Yannakakis. Computing the minimum fill-in is np-complete. SIAM. J. on Algebraic and Discrete Methods, 2(1):77–79,

1981.

17

