
ARTICLE  IN  PRESS
Theoretical Computer Science ( ) –

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Simple algorithms for minimal triangulation of a graph and backward
selection of a decomposable Markov network
Mauro Mezzini ∗, Marina Moscarini
Department of Computer Science, Sapienza University of Rome, Italy1

a r t i c l e i n f o

Article history:
Received 30 December 2008
Received in revised form 7 October 2009
Accepted 8 October 2009
Communicated by G. Ausiello

Keywords:
Chordal graphs
Minimal triangulations
Markov networks
Learning decomposable models

a b s t r a c t

In this paper we propose a simple algorithm called CliqueMinTriang for computing a
minimal triangulation of a graph. If F is the set of edges that is added to G to make it
a complete graph Kn then the asymptotic complexity of CliqueMinTriang is O(|F |(δ2 +
|F |)) where δ is the degree of the subgraph of Kn induced by F . Therefore our algorithm
performs well when G is a dense graph. We also show how to exploit the existing
minimal triangulation techniques in conjunction with CliqueMinTriang to efficiently find
a minimal triangulation of nondense graphs. Finally we show how the algorithm can be
adapted to perform a backward stepwise selection of decomposableMarkov networks; the
resulting procedure has the same time complexity as that of existing similar algorithms.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Computing a triangulation of a graph has several important applications in different areas such as nondense matrix
computations [16], database management [1,19] and artificial intelligence [18,7,14]. A triangulation of a graph G is a chordal
graph (i.e., a graph that contains no induced chordless cycle on four or more vertices) that has G as a subgraph (see [5] for a
tutorial on chordal graphs).
For example large symmetric systems of equations arise in many engineering areas. Here the standard linear algebra

method of the Gaussian elimination is employed to solve these systems. During the Gaussian elimination some cells of the
matrix which are zero become non-zero. The number of cells that become non-zero heavily depends on the order in which
the pivots are chosen in each step of the elimination. Some orderings insert much less non-zero entries than others thus
saving space and reducing the computation effort needed for the Gaussian elimination. Given a symmetric matrix one can
construct an undirected graph in which an edge ij with i 6= j corresponds to a non-zero entry at the column i and row j of
the matrix. Then one can simulate the Gaussian elimination on this graph by choosing at each step a vertex v and adding
edges in the neighborhood of v until it becomes a clique before eliminating v from the graph. The added edges correspond
to the entries of the matrix that become non-zero and this process is called Elimination Game. Thus the problem here is to
find an ordering of the vertices of G such that the number of edges added during Elimination Game, is minimum. The graph
produced by Elimination Game is a triangulation of the input graph.
In general, in all the above applications we are interested in solving theminimum triangulation problem, i.e. the problem

of finding a triangulationH of a given graph G such that the difference between the number of edges ofH and G is minimum.
Unfortunately the minimum triangulation problem is NP-hard [20]. Therefore, one can try to find a minimal triangulation
[2–4,9,10,16], that is, a minimal (w.r.t. set inclusion) set F of edges which added to a graph Gmakes it a chordal graph. This
problem is solvable in polynomial time and has been widely studied in the past thirty years [9].
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Chordal graphs are also studied in the field of artificial intelligence and machine learning [14,8,18,7]. In this context one
wants to estimate an n-dimensional discrete probability distribution from a finite set of given marginals in order to use a
small amount of machine memory.
To this aim, one models joint probability distributions of n discrete random variables by Markov networks (also called

graphical models). Such models use undirected graphs to capture conditional dependencies among subsets of the n random
variables involved. Particular Markov networks, called decomposable Markov networks (DMNs), use chordal graphs. DMNs
enjoy a number of desirable properties, one of which is that the approximate distribution has a simple ‘product form’ [15].
Therefore, given a joint probability distribution, one is interested in finding an approximation of it which is a decomposable
Markov network. A possible approach, called backward selection, to solve this problem is the following: starting from the
complete graph on n vertices (no assumption of independence among the random variables of the joint distribution ismade)
one recursively removes an edge from the graph while chordality is preserved.
The contribution of this paper is threefold. First, we present a simple algorithm for finding a minimal triangulation of

a graph that performs well when the graph is dense (i.e, the difference between the edges of the complete graph and the
edges of the input graph is small). Second we show how to use the above algorithm in conjunction with existing minimal
triangulation techniques to efficiently find a minimal triangulation of a nondense graph. Third, we show that the algorithm
can be easily adapted to get a backward selection procedure in order to find a DMN (of a given joint probability distribution)
that minimizes the use of memory space and, at the same time, approximates the original distribution with a small error.
Our algorithm has the same time complexity as previous similar algorithms [7,8] but it is simpler to understand and easier
to implement.
Thework is organized as follows. In Section 2we give definitions and preliminaries. In Section 3we describe ourminimal

triangulation algorithm, prove its correctness and discuss its implementation and its time complexity. In Section 4 we
show how to use our algorithm in conjunction with existing minimal triangulation techniques to efficiently find a minimal
triangulation of a nondense graph. In Section 5 we reports the data of experimental tests of our algorithm. In Section 6 we
show how to use the algorithm to efficiently perform backward selection.

2. Definition and preliminaries

Let G be an undirected loopless simple graph. The vertex set and the edge set of G are denoted by V (G) and E(G),
respectively; furthermore n = |V (G)| andm = |E(G)|. A clique of G is a set of pairwise adjacent vertices. A graph is complete
if its vertex set is a clique. The complete graph on n vertices is denoted by Kn. If F is a subset of E(G), VF denotes the set
{x ∈ e : e ∈ F}, i.e. the set of vertices of G that are end points of an edge in F .
A graph H is a subgraph of G if V (H) is a subset of V (G) and E(H) is a subset of E(G). A graph G is a supergraph of H if H is

a subgraph of G. Let U be a subset of V (G) and F a subset of E(G). By G(U) and G(F)we denote the subgraphs of G induced by
U and F respectively; G−U and G− F denote the subgraphs G(V (G)−U) and (V (G), E(G)− F), respectively. Furthermore,
if F is a subset of E(Kn), G+ F denotes the graph (V (G), E(G) ∪ F).
The neighborhood of a vertex u in G is denoted by NG(u) = {v : uv ∈ E(G)}. The common neighborhood in G of an edge uv,

denoted by CNG(uv), is the set NG(u) ∩ NG(v). The degree of a graph, denoted by δ(G) ismax{|NG(u)| : u ∈ V (G)}.
A cycle in a graph is a sequence (v1, . . . , vk) of at least four vertices, which are all distinct except the first and the last

which do coincide, and such that vivi+1 is an edge of G, for 1 ≤ i < k. The length of a cycle is the number of its distinct
vertices. A chord of a cycle is an edge joining two non-consecutive vertices of the cycle.
A graph is chordal or triangulated if every cycle of length four or more has a chord. A triangulation of a graph G is a chordal

supergraph H of Gwith the same vertex set as G; a triangulation H of G isminimal if no subgraph of H is a triangulation of G.
Definition 1. Let G be a chordal graph. An edge uv is removable from G if it is not the unique chord of any 4-cycle of G.
Lemma 1 ([16]). Let H be a triangulation of G. Then E(H)− E(G) has at least one removable edge if and only if H is not minimal.
Lemma 2 ([12]). Let G be a chordal graph and uv an edge of G. Then uv is removable if and only if CNG(uv) either is empty or is
a clique of G.

3. A minimal triangulation algorithm

In this section we propose an algorithm that exploits Lemma 1 in order to compute a minimal triangulation of a graph G
with n vertices starting from Kn and repeatedly deleting a removable edge not belonging to E(G) until no more edge can be
removed.

3.1. The algorithm

The input of the algorithm is the graph G and the set F of edges that added to Gmake it a complete graph. The output is
a set F ′ ⊆ F such that G+ F ′ is a minimal triangulation of G.
During the execution of the algorithm the set variable F ′ contains the edges in F not yet removed. By Lemma 2, an edge

uv of F ′ is removable if and only if CNG+F ′(uv) is a clique or is empty.
Observe that if CNG+F ′(uv) is a clique or is empty then CNG+F ′(uv) ∩ VF is a clique or is empty. On the other hand, owing

to the fact that only edges in F are removed, if CNG+F ′(uv) is not empty and is not a clique, then CNG+F ′(uv) ∩ VF is not
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empty and is not a clique. Therefore, in order to check if an edge uv is removable, it is sufficient to test if CNG+F ′(uv) ∩ VF
is a clique or is empty. To this aim, the algorithm associates with each edge uv of F a variable Tuv that contains the edges
in F − F ′ (that is, the set of removed edges) that have both end points in CNG+F ′(uv) ∩ VF and simply tests whether Tuv is
empty (uv is removable) or not (uv is not removable).
When an edge uv is removed from F ′ it is necessary to add it in every Trs such that u, v ∈ CNG+F ′(rs) ∩ VF . Furthermore,

observe that if an edge uz has both end points in CNG+F ′(vx) ∩ VF (and, hence, is in Tvx), after the removal of uv it has only
one end point in CNG+F ′(vx) ∩ VF . Therefore, when uv is removed every edge uz having both end points in CNG+F ′(vx) ∩ VF
must be removed from Tvx and, analogously, every edge vz having both end points in CNG+F ′(ux) ∩ VF must be removed
from Tux.
Finally, observe that if neither u nor v is in CNG+F ′(xy)∩ VF or {x, y} ∩ {u, v} = ∅ then the set of edges in F − F ′ that have

both end points in CNG+F ′(xy)∩ VF (i.e. Txy) does not change, or at least does not decrease, when uv is removed. The scheme
of our algorithm is showed in Fig. 1. By the above discussion and by Lemmas 1 and 2 we can state the following

Theorem 1. Let F be a subset of E(Kn). The algorithm CliqueMinTriang correctly computes a set of edges F ′ ⊆ F such that
(Kn − F)+ F ′ is a minimal triangulation of Kn − F .

Algorithm CliqueMinTriang
input: A graph G and the edge set F such that G = Kn − F
output: A set F ′ ⊆ F such that G+ F ′ is a minimal triangulation of G

begin
F ′ := F ;
for every uv ∈ F ′ do Tuv := ∅;
while there exists an edge uv in F ′ such that Tuv = ∅ (i.e. uv is removable ) do
begin
for every rs such that u, v ∈ CNG+F ′(rs) ∩ VF do Trs := Trs ∪ {uv};
for every x ∈ CNG+F ′(uv) ∩ VF such that either ux, vx ∈ F ′ do

begin
if vx ∈ F ′ then for every uz ∈ Tvx do Tvx := Tvx − {uz};
if ux ∈ F ′ then for every vz ∈ Tux do Tux := Tux − {vz};

end
F ′ := F ′ − {uv};

end
end

Fig. 1. The algorithm CliqueMinTriang

3.2. Implementation details and complexity

In the following let f = |F | and let δ = δ(Kn(F)). We may store in a variable Suv the elements of CNG+F ′(uv) ∩ VF during
all the steps of the algorithm. At the beginning, we set Suv = CNKn(uv)∩ VF = VF − {u, v} for each uv ∈ F . After deleting an
edge uv we need to delete u from Svx and v from Sux for all x ∈ Suv and for all ux ∈ F ′, vx ∈ F ′.
Let us analyze the complexity of CliqueMinTriang. Computing all sets Suv = CNKn(uv)∩VF for all uv of F requires a global

O(|VF |f ) time. Thewhile loop is executed at most f times. The first for loop statement finds all the sets Srs that contain both
end points of the edge uv and it adds uv to Trs. All this requires O(f ) time .
The second for loop statement removes from every Tvx (resp. Tux) such that x ∈ Suv and vx ∈ F ′ (resp. ux ∈ F ′) all the

edges uz (resp. vz) such that uz ∈ Tvx (resp. vz ∈ Tux). All this requires O(δ2) time.
Deleting the vertex u and v from Svx and Sux respectively, for all x ∈ Suv requires O(δ) time. Therefore we can state the

following

Theorem 2. CliqueMinTriang has O(f (δ2 + f )) time complexity.

Although the complexity ofCliqueMinTriang is greater than the complexity (O(n2.376) [11]) of the fastest knownminimal
triangulation algorithm, CliqueMinTriang can be indeed very fast if the difference between the number of edges of the
complete graph on |V (G)| vertices and the number of edges of G is small, i.e., when G is dense.
In general we can see our algorithm as a dynamic procedure that, starting from the complete graph, deletes edges while

preserving chordality. The complexity of our algorithm is comparable to that of existing procedures. In fact it requires O(1)
time to find an edge that can be removed from the graph while preserving the chordality and requires O(n2 + m) time to
remove it. Therefore it works better than the algorithmproposed by Ibarra [12] that requiresO(nm) time to find a removable
edge and O(n) time to remove it. In fact, if we want to remove k edges then the overall complexity of our algorithm is
O(k(n2 +m)) = O(kn2)while the algorithm of Ibarra requires O(knm) = O(kn3).
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Example 1. Consider the graph G with E(G) = {ab, bc, cd}. Then the set of edges needed to make the graph complete is
F = {ac, bd, ad} and VF = {a, b, c, d}. The sets Suv at the beginning of the while loop are reported in the following table.

uv Suv

ac b, d
bd a, c
ad b, c

The algorithm chooses to remove first ac. Then it adds ac to Tbd since Sbd is the only set that contains both a and c. Next it
removes c from the set Sad. After this the algorithm stops the first iteration of the while loop, since all Scx are empty. At the
second iteration of the while loop the only edge that can be removed is the edge ad. No set Sxy contains the end points of the
edge ad so the procedure eliminates a from Sbd and deletes ac from Tbd. After the elimination of ac , Tbd becomes empty. So
the edge bd at the end of the second while loop iteration becomes again removable. At the third iteration of the while loop
the only removable edge is bd. It will be removed and the algorithm terminates. �

4. Minimal triangulation of nondense graphs

As we discussed above, CliqueMinTriang performs well when the difference between the number of edges of the
complete graph and the number of edges of the graph to be triangulated is small but may have poor performance
when this difference is big. To overcome this difficulty we propose to use an existing minimal triangulation algorithm,
MinimalChordal [4], in conjunction with CliqueMinTriang. For ease of understanding, we report MinimalChordal in
Fig. 2; we refer the reader to [4] for all the details.
Initially, MinimalChordal computes a triangulation of the input graph G, using the Elimination Game (EG) algorithm,

which we recall below.
EG, given a graphG and an orderingα = (v1, . . . , vn) of its vertices, examines the vertices ofG followingα and recursively

performs the following steps:

• let Fi be the set of edges not in G necessary to make NG(vi) a clique.
• add Fi to G
• delete vi from G

Let G+α = (V (G), E(G) ∪ F), where F = ∪ni=1Fi, denotes the graph produced by EG with input G and α and Ci =
NG+α (vi) ∩ {vi+1 . . . , vn}. The edges of F are called fill edges.
After computing G+α ,MinimalChordal analyzes the edges in F in reverse order (i.e., the edges in Fi are considered before

the edges in Fj, j = i− 1, . . . , 1) and removes from G+α every removable edge.
Let Mi be the graph obtained by the algorithm at the beginning of step i. The algorithm puts in Candidate(i) all the

removable edges of Fi, that is, all the edges of Fi that are not the unique chord on any 4-cycle ofMi. Then it removes fromMi
the set of edges Candidate(i)−Keepfill(i), where Keepfill(i) is the set of edges of aminimal triangulation of the graph obtained
by removing all edges in Candidate(i) from the subgraph ofMi induced by V (Candidate(i)). Such aminimal triangulation can
be computed using any MinimalTriangulation algorithm. In particular in [4] the authors propose the use of Lex-M [16],
whose time complexity is O(nm), and show that with this choice the complexity ofMinimalChordal is O(f (m+ f )).
Note that since Ci is a clique ofMi and V (Candidate(i)) is a subset of Ci then V (Candidate(i)) is a clique. So we propose to

compute the set Keepfill(i) by using CliqueMinTriang instead of Lex-M.
Now let∆ = maxi{δ(Mi(Candidate(i)))} ≤ maxi{|Ci|} and f = |F |; we have the following complexity result.

Theorem 3. If in MinimalChordal the MinimalTriangulation algorithm is CliqueMinTriang then the complexity of
MinimalChordal is O(f (n+∆2 + f )).

Proof. At step i of MinimalChordal to check if the edge uv ∈ Fi is removable requires O( |CNMi(uv) ∩ {vi+1, . . . , vn}|);
furthermore CliqueMinTriang removes a single edge in O( |Candidate(i)| + δ(Mi(Candidate(i)))2) time. Since each fill edge
is examined at most once, and since |Candidate(i)| ≤ |Fi| ≤ f , δ(G(Candidate(i))) ≤ ∆ and |CNMi(uv) ∩ {vi+1, . . . , vn}| ≤ n
we have that the overall complexity of the algorithm is O(f (n+∆2 + f )) �

Therefore, in order to compute a minimal triangulation in MinimalChordal it is convenient to use CliqueMinTriang
instead of Lex-Mwhen∆2 is smaller thanm.Moreover ifni = |V (Candidate(i))|, δi = δ(Mi(Candidate(i))), fi = |Candidate(i)|
andmi = ni(ni−1)/2− fi we can devise a smarter algorithm that execute CliqueMinTriangwhenever fiδ2i + f

2
i is less than

nimi and Lex-M otherwise.

Example 2. Consider the graph of Fig. 3(a) and let α = (a, b, . . . , f ). In Fig. 3(b) the chordal graph G+α is shown. We have
that F = F1. The set Candidate(1) = {bd, be, ce} since the edge de is not removable (because af is not an edge of G+α ). Then
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AlgorithmMinimalChordal
input: a graph G and an ordering α of its vertices
output : A minimal triangulationM of G that is a subgraph of G+α
begin
Mn :=G+α ;
for i := n downto 1 do begin

Candidate(i) := Fi;
for all edge uv ∈ Fi do begin

for each x ∈ CNMi(uv) ∩ {vi+1, . . . , vn} do begin
if xvi /∈ E(Mi) then delete uv from Candidate(i);

end
end
if Candidate(i) 6= ∅ then begin
Keepfill(i) :=MinimalTriangulation (Candidate(i));
Mi−1 := (Mi − Candidate(i))+ Keepfill(i);

end
end

end

Fig. 2. AlgorithmMinimalChordal
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(a) The original graph. (b) The graph after the execution of EG.

Fig. 3. Example 2.

{bd, be, ce} is the input to CliqueMinTriang; in the following table the lists associated to candidate edges are reported.

uv Suv

be c, d
bd c, e
ce b, d

Suppose that the algorithm chooses to remove ce. Then it adds ce to Tbd since Sbd contains both c and e (note that bd becomes
now not removable). Next it removes c from the set Sbe. After this the first iteration of the while loop terminates, since there
is no set of the form Scx. At the second iteration of the while loop the only edge that can be removed is be. No set contains
the end points of be; so e is eliminated from Sbd and ce is eliminated from Tbd. Therefore, bd becomes again removable at the
end of the second while loop iteration and it is removed at the third iteration. �

5. Experimental results

By using C language we implemented both a version ofMinimalChordal in whichMCS-M [2] (we implementedMCS-M
instead to LEX-M due to its simplicity) is used asMinimalTriangulation procedure and a version ofMinimalChordal (in
the following Mixed version) in which at each step either CliqueMinTriang or MCS-M is used as MinimalTriangulation
procedure, depending on the estimated execution time. To this aimwemodeled the execution cost of CliqueMinTriang and
MCS-M by the following functions:

TCMT (δi, fi) = δ2i fi + f
2
i

and

TMCSM(ni) = n3i + 3/2n
2
i
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Table 1
Results of execution of MinimalChordal,

Matrices n m Initial Final MCS-M Mixed
fill fill time time

BCSSTK08 1074 5943 156778 71319 18.342 12.236
BCSSTK09 1083 8677 228044 133760 16.095 8.844
BCSSTK10 1086 10492 104545 94199 0.686 0.639
BCSSTK11 1473 16384 332474 187250 35.764 35.764
BCSSTK26 1922 14207 111918 46525 3.173 3.000
BCSSTM07 420 3416 29166 12287 0.674 0.674
CAN__838 838 4586 86175 75922 1.469 0.939
CAN_1054 1054 5571 68935 23727 7.098 5.881
CAN_1072 1072 5686 71736 28023 7.155 6.222
DWT_1005 1005 3808 95837 45030 10.692 5.984
DWT_1242 1242 4592 83925 30781 6.995 3.829

Table 2
Detailed data for the first thirty vertices during the execution ofMinimalChordalwith input BCSSTK08 matrix.

|Fi| ni fi δi CMT MCSM
time time

301 302 301 301 0.016 0.125
319 320 319 319 0.016 0.140
321 307 306 306 0.015 0.126
680 342 680 340 0.312 0.172
375 376 375 375 0.016 0.187
377 378 377 377 0.015 0.187
379 380 379 379 0.016 0.203
777 395 764 382 0.469 0.219
388 369 368 368 0.016 0.187
776 370 735 368 0.391 0.218
400 373 372 372 0.015 0.188
4490 409 4412 400 4.516 0.280
394 384 383 383 0.015 0.204
388 389 388 388 0.016 0.218
786 403 786 394 0.500 0.234
782 398 782 391 0.485 0.234
393 387 386 386 0.016 0.218
1176 402 1150 392 0.531 0.250
780 399 760 390 0.031 0.235
392 360 359 359 0.016 0.187
792 404 757 389 0.484 0.250
1164 405 1104 380 0.968 0.251
396 357 356 356 0.016 0.187
395 363 362 362 0.015 0.188
396 353 352 352 0.000 0.187
790 387 705 358 0.048 0.202
397 356 355 355 0.016 0.172
412 413 412 412 0.031 0.235
414 396 395 395 0.015 0.235
835 370 702 363 0.344 0.188

We tested both implementations on some matrices from Matrix Market [6]. The results of the test are reported in
Table 1, where the execution time of the two versions ofMinimalChordal appears inMCS-M Time andMixed Time column,
respectively. As we can see, only in two cases the execution time is the same for both versions; in the remaining cases
Mixed version performs better than the other one. This improvement of the execution time is due to the fact that, even
if the input graph is sparse, the subgraph induced at the i-th step by V (Candidate(i)) is very dense and, as a consequence,
CliqueMinTriangperformsbetter thanMCS-M. As an example of this fact,we reported in the first four columnsof Table 2 the
parameters |Fi|, ni, fi, δi for the first thirty vertices examined during the execution ofMinimalChordalwith input BCSSTK08
matrix and in the last two columns the execution time of CliqueMinTriang and MCS-M with input the subgraph induced
at the i-th step by V (Candidate(i)), respectively.

6. A backward selection algorithm

Undirected graphs are commonly used to model joint probability distributions. These models, called graphical models or
Markov networks, capture the conditional dependencies between the random variables involved in the joint distribution.
A restricted class of graphical models of joint probability distributions are the decomposable [14] graphical models or
decomposable Markov networks DMNs ([14,17]). These models possess a number of desirable properties that make them
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suitable for use in many practical applications. The problemwe shall discuss is to find a DMN that models an approximation
of a joint probability distribution.
In the followingwe explain themotivations of this problem andwe show how CliqueMinTriang can be adapted in order

to provide an heuristic to find a DMN that approximates a given joint probability distribution.

6.1. Graphical models

We are given a set X of random variables. Each variable Xi takes on values from a finite set called the domain of Xi. A
tuple x on X is a combination of values of the variables in X . The set of all possible tuples on X , denoted by dom(X), is given
by the cartesian product of the domains associated to the variables in X . A joint distribution of X is a nonnegative function
p : dom(X) → < such that p(x) ≤ 1 for all x and

∑
x∈dom(X) p(x) = 1. We denote by R = {x ∈ dom(X) : p(x) > 0}

the support [15] of the distribution p. Given a nonempty subset Y of X the restriction of a tuple x to Y , denoted by xY , is the
tuple obtained by discarding from x the values of variables in X − Y . Amarginal distribution pY of pwith respect to Y , is the
distribution

pY (y) =
∑
x

p(x)

where the sum is intended to be taken over all tuples x such that xY = y.
Note that storing the distribution p could require an exponential amount of memory space since the support of p can be

as large as dom(X). In order to save memory space one wants to store only a set of marginals, which could require far less
memory space, and to use them to obtain an (accurate) approximation of the original distribution.
So the problem here is to find a set ofmarginals such that thememory space required in order to store them is not greater

than a given constant and the difference between the original distribution and the approximated distribution provided by
the marginals is small. The accuracy of the approximation is commonly measured using the information divergence, also
known as the Kullback–Leibler (KL) distance or divergence [13].
In order solve this problem DMNs can be used. The benefit of using DMNs is that the approximation of the original

probability distribution can be calculated analytically from marginal probabilities without resorting to the iterative
proportional fitting procedures [15]. Furthermore, the KL divergence has a simple analytical expression [14] as we show
in the following.
ADMN is a chordal graphG = (V (G), E(G))where V (G) = X and if A, B and C are sets of randomvariables and C separates

A and B in G, then the set variables A and B, conditioned on C , are independent. It is well known that ifK = {K1, K2 . . . , Km}
is the set of maximal cliques of a chordal graph G and T = (K, ET ) is the clique tree [5] of G then for every pair of vertices Ki
and Kj of T the set Ki ∩ Kj is contained in every Kl along the path on T that connects Ki and Kj. It is also known that given an
edge KiKj of T then Ki ∩ Kj is a minimal separator of G. Denote by Sij the set Ki ∩ Kj for all KiKj ∈ ET . Then the approximation
pµ of a given distribution pmodeled by the DMN G, is given by [14,15]

pµ(x) =
∏
K∈K

pK (xK )/
∏
Sij

KiKj∈ET

pSij(xSij)

and the entropy of the distribution pµ is given by [14]

Hµ(X) =
∑
K∈K

H(K)−
∑
Sij

KiKj∈ET

H(Sij) (1)

where H(A) is the entropy of the marginal distribution of the variables in A [14], that is

H(A) = −
∑
xA

pA(xA) log pA(xA)

The KL divergence of pµ from p is given by the difference between the entropy of p and the entropy of pµ [14]. Since the
entropy of p is independent of the model chosen as approximation, seeking a DMN that minimizes the KL divergence is
equivalent to seeking a DMN whose entropy is minimum.
The amount of memory space gained by storing the marginal distributions instead of the original distribution, depends

on the maximum of the cardinalities of cliques inK , i.e. on the treewidth of G.
The problem of finding the DMN of a treewidth k, k > 1, that optimally fits the original distribution is known to be an

NP-hard problem [18]. So heuristic search techniques are usually used [14,7,8]. Most of these procedures are based on either
(1) the forward selection approach in which one starts from the smallest model (i.e., the graph whose edge set is empty)

and adds edges as long as the new model is still decomposable and the divergence of the approximation decreases, or
(2) backward selection approach, in which one starts from the largest model (i.e., the complete graph) and deletes edges

while preserving the decomposability until the divergence of the approximation is less than a given quantity and the
treewidth of the resulting model is sufficiently small.
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Table 3
Numerical comparisons of existing heuristic with the algorithm BSA.

k Algorithm Maximal cliques Entropy

3 HGA {ABCE, ACDE} 3.23282
EGA {ABDE, ACDE} 3.22640
BSA {ABDE, ACDE} 3.22640

2 HGA {ABE, ACE, CDE} 3.24333
EGA {ABE, BDE, CDE} 3.24115
BSA {ABE, BDE, CD} 3.24995

1 HGA {AE, BE, CD, CE} 3.26413
EGA {AE, BE, CD, CE} 3.26413
BSA {AE, B, CD} 3.28629

6.2. Description of the algorithm and experimental comparison with existing heuristics

In this subsectionwe show that CliqueMinTriang can be easily adapted to obtain a greedy backward selection algorithm
(BSA) which has the same time complexity as previous [8,7] best forward selection algorithms, but is simpler to understand
and easier to implement.WeuseCliqueMinTriangwith input the set of edges F = E(Kn) of the complete graph on n vertices.
Let F ′ be the subset of edges of F not yet removed and letM = (Kn − F)+ F ′. Among all removable edges of F ′ one chooses
to remove an edge that minimizes the KL divergence of the newmodel from the old one; the edge removal is repeated until
a DMN of a given treewidth is obtained. The KL divergence of the new model from the old one can be computed as follows.
Let uv be a removable edge of F ′ and let KM(uv) = {u, v} ∪ CNM(uv). It is easy to see that KM(uv) is a maximal clique ofM
and KM(uv) − {u, v} is a minimal separator of M − uv. Therefore, by applying (1), the KL divergence of M − uv from M is
(see for example [7])

D(uv) = H(KM(uv)− {u})+ H(KM(uv)− {v})− H(KM(uv)− {u, v})− H(KM(uv)) (2)

For every pair uv, the value ofD(uv) in Kn can be computed at the beginning of the algorithm. When an edge rs is removed,
the algorithm updates the value ofD(rx) andD(sx) only for those edges rx and sx of F ′ such that the set Srx (Ssx, respectively)
is modified and sx (rx, respectively) is still removable after the modification. This can be done without increasing the
complexity of the whole procedure. Note that the content of the variable Suv in the algorithm CliqueMinTriang is exactly
KM(uv)−{u, v}. Therefore, the overall complexity of removing a single edge is O(n2), so that the global complexity is O(hn2)
where h is the number of edges removed by the algorithm.
In order to compare BSAwith the forward selection algorithmproposed in [7,8] called EdgewiseGreedyAlgorithm (EGA)

and the heuristic proposed in [14], called HyperedgeGreedy-Algorithm (HGA), we executed the algorithm BSA on the
example appearing in [14] and also used in [8]. The results of the three algorithms are reported in Table 3; in the column
Entropy is reported the entropy value of the DMN obtained in output for each algorithm.
The steps of the algorithm are as follows. In the first step all the edges are removable. So the edge that minimizes the

entropy gives the optimal DMNof treewidth 3. At steps two, tree and four the edges AC , CE and AD, respectively, are removed
giving the DMN of treewidth 2. Finally at steps five six and seven the edges BD, DE and AB, respectively, are removed giving
the DMN of treewidth 1.
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