
ATM Case Study Part 1

A requirements document specifies the purpose
of the ATM system and what it must do.

Requirements Document
A local bank intends to install a new automated
teller machine (ATM) to allow users (i.e., bank
customers) to perform basic transactions
Each user can have only one account at the bank.
ATM users

view their account balance
withdraw cash
deposit funds

ATM user interface:
a screen that displays messages to the user
a keypad that receives numeric input from the user
a cash dispenser that dispenses cash to the user and
a deposit slot that receives deposit envelopes from
the user.

The cash dispenser begins each day loaded
with 500 $20 bills.

Develop software to perform the financial
transactions initiated by bank customers
through the ATM.

The bank will integrate the software with the
ATM’s hardware at a later time.

Software should encapsulate the functionality
of the hardware devices within software
components, but it need not concern itself with
how these devices perform their duties.
Use the computer’s monitor to simulate the
ATM’s screen, and the computer’s keyboard to
simulate the ATM’s keypad.

An ATM session consists of
authenticating a user based on an account number
and personal identification number (PIN)
creating and executing financial transactions

To authenticate a user and perform
transactions

interact with the bank’s account information
database
For each account, the database stores an account
number, a PIN and a balance indicating the amount
of money in the account.

Simplifying Assumptions:
the bank plans to build only one ATM, so we need
not worry about multiple ATMs accessing this
database at the same time
the bank does not make any changes to the
information in the database while a user is
accessing the ATM.
an ATM faces reasonably complicated security
issues that are beyond our scope.
the bank trusts the ATM to access and manipulate
the information in the database without significant
security measures.

Upon first approaching the ATM, the user should
experience the following sequence of events:

The screen displays Welcome! and prompts the user to
enter an account number.
The user enters a five-digit account number using the
keypad.
The screen prompts the user to enter the PIN (personal
identification number) associated with the specified
account number.
The user enters a five-digit PIN using the keypad.
If the user enters a valid account number and the correct
PIN for that account, the screen displays the main
menu. If the user enters an invalid account number or an
incorrect PIN, the screen displays an appropriate
message, then the ATM returns to Step 1 to restart the
authentication process.

After the ATM authenticates the user, the main
menu contains numbered options for the three
types of transactions: balance inquiry (option 1),
withdrawal (option 2) and deposit (option 3).
It also should contain an option to allow the user
to exit the system (option 4).
The user then chooses either to perform a
transaction (by entering 1, 2 or 3) or to exit the
system (by entering 4).
If the user enters 1 to make a balance inquiry, the
screen displays the user’s account balance.
To do so, the ATM must retrieve the balance from
the bank’s database.

The following steps describe what occurs when
the user enters 2 to make a withdrawal:

The screen displays a menu of standard withdrawal
amounts and an option to cancel the transaction.
The user enters a menu selection using the keypad.
If the withdrawal amount is greater than the user’s
account balance, the screen displays a message
stating this and telling the user to choose a smaller
amount. The ATM then returns to Step 1. If the
withdrawal amount chosen is less than or equal to
the user’s account balance (i.e., an acceptable
amount), the ATM proceeds to Step 4. If the user
chooses to cancel, the ATM displays the main
menu and waits for user input.

If the cash dispenser contains enough cash, the
ATM proceeds to Step 5. Otherwise, the screen
displays a message indicating the problem and
telling the user to choose a smaller withdrawal
amount. The ATM then returns to Step 1.
The ATM debits the withdrawal amount from the
user’s account in the bank’s database.
The cash dispenser dispenses the desired amount
of money to the user.
The screen displays a message reminding the user
to take the money.

The following steps describe the actions that occur
when the user enters 3 to make a deposit:

The screen prompts the user to enter a deposit amount or
type 0 (zero) to cancel.
The user enters a deposit amount or 0 using the keypad.
If the user specifies a deposit amount, the ATM
proceeds to Step 4. If the user chooses to cancel the
transaction (by entering 0), the ATM displays the main
menu and waits for user input.
The screen displays a message telling the user to insert a
deposit envelope.
If the deposit slot receives a deposit envelope within two
minutes, the ATM credits the deposit amount to the
user’s account in the bank’s database (i.e., adds the
deposit amount to the user’s account balance).

After the system successfully executes a
transaction, it should return to the main menu
so that the user can perform additional
transactions.
If the user exits the system, the screen should
display a thank you message, then display the
welcome message for the next user.

Analyzing the ATM System
The preceding statement is a simplified
example of a requirements document

Typically the result of a detailed process of
requirements gathering

A systems analyst
might interview banking experts to gain a better
understanding of what the software must do
would use the information gained to compile a list
of system requirements to guide systems designers
as they design the system.

The software life cycle specifies the stages
through which software goes from the time it’s
first conceived to the time it’s retired from use.

These stages typically include: analysis, design,
implementation, testing and debugging, deployment,
maintenance and retirement.

Several software life-cycle models exist
Waterfall models perform each stage once in
succession
Iterative models may repeat one or more stages
several times throughout a product’s life cycle

The analysis stage focuses on defining the
problem to be solved.
When designing any system, one must solve the
problem right, but of equal importance, one
must solve the right problem.
Our requirements document describes the
requirements of our ATM system in sufficient
detail that you need not go through an extensive
analysis stage—it’s been done for you.

Use case modeling identifies the use cases of
the system, each representing a different
capability that the system provides to its
clients.

“View Account Balance”
“Withdraw Cash”
“Deposit Funds”

Each use case describes a typical scenario for
which the user uses the system.

A use case diagram models the interactions between
a system’s clients and its use cases.
Shows the kinds of interactions users have with a
system without providing the details
Often accompanied by informal text that gives more
detail—like the text that appears in the requirements
document.
Produced during the analysis stage of the software
life cycle.
Stick figure represents an actor, which defines the
roles that an external entity—such as a person or
another system—plays when interacting with the
system.

During the analysis stage, systems designers focus
on understanding the requirements document to
produce a high-level specification that describes
what the system is supposed to do.
The output of the design stage—a design
specification - specifies clearly how the system
should be constructed to satisfy these requirements.
In the next several sections, we perform the steps of
a simple object-oriented design (OOD) process on
the ATM system to produce a design specification
containing a collection of UML diagrams and
supporting text.
We present our own simplified design process

A system is a set of components that interact to
solve a problem.
System structure describes the system’s objects
and their interrelationships.
System behavior describes how the system
changes as its objects interact with one another.
Every system has both structure and behavior—
designers must specify both.

The UML 2 standard specifies 13 diagram types
for documenting the system models.
Each models a distinct characteristic of a
system’s structure or behavior—six diagrams
relate to system structure, the remaining seven to
system behavior.
We are interested in two of the six diagram types:

Use case diagrams model the interactions between a
system and its external entities (actors) in terms of use
cases.
Class diagrams model the classes, or “building
blocks,” used in a system.

Identify the classes that are needed to build the system
by analyzing the nouns and noun phrases that appear in
the requirements document.
We introduce UML class diagrams to model these
classes.

Important first step in defining the system’s structure.
Review the requirements document and identify key
nouns and noun phrases to help us identify classes that
comprise the ATM system.

We may decide that some of these nouns and noun phrases
are actually attributes of other classes in the system.
We may also conclude that some of the nouns do not
correspond to parts of the system and thus should not be
modeled at all.
Additional classes may become apparent to us as we proceed
through the design process.

We create classes only for the nouns and noun
phrases that have significance in the ATM
system.
Though the requirements document frequently
describes a “transaction” in a general sense, we
do not model the broad notion of a financial
transaction at this time.

Instead, we model the three types of transactions
(i.e., “balance inquiry,” “withdrawal” and
“deposit”) as individual classes.
These classes possess specific attributes needed for
executing the transactions they represent.

Classes:
ATM
screen
keypad
cash dispenser
deposit slot
account
bank database
balance inquiry
withdrawal
deposit

The UML enables us to model, via class diagrams, the
classes in the ATM system and their interrelationships.
Each class is modeled as a rectangle with three
compartments.

The top one contains the name of the class centered
horizontally in boldface.
The middle compartment contains the class’s attributes.
The bottom compartment contains the class’s operations.

The UML allows the suppression of class attributes and
operations in this manner to create more readable
diagrams, when appropriate.
Class diagrams also show the relationships between the
classes of the system. The solid line that connects the
two classes represents an association between classes.
The numbers near each end of the line are multiplicity
values, which indicate how many objects of each class
participate in the association.

An association can be named.
The word Executes above the line connecting classes ATM and
Withdrawal in Fig. 12.7 indicates the name of that association.
This part of the diagram reads “one object of class ATM executes zero or
one objects of class Withdrawal.”

Association names are directional, as indicated by the filled
arrowhead.
The word currentTransaction at the Withdrawal end
of the association line is a role name, identifying the role the
Withdrawal object plays in its relationship with the ATM.
A role name adds meaning to an association between classes by
identifying the role a class plays in the context of an association.
A class can play several roles in the same system.
Role names in class diagrams are often omitted when the
meaning of an association is clear without them.

Solid diamonds attached to the ATM class’s
association lines indicate that ATM has a
composition relationship with classes Screen,
Keypad, CashDispenser and
DepositSlot.
Composition implies a whole/part relationship.
The class that has the composition symbol (the
solid diamond) on its end of the association line
is the whole (in this case, ATM), and the
classes on the other end of the association lines
are the parts.

Composition relationships have the following
properties:

Only one class in the relationship can represent the whole
The parts in the composition relationship exist only as long
as the whole does, and the whole is responsible for the
creation and destruction of its parts.
A part may belong to only one whole at a time, although it
may be removed and attached to another whole, which then
assumes responsibility for the part.

If a has-a relationship does not satisfy one or more of
these criteria, the UML specifies that hollow diamonds
be attached to the ends of association lines to indicate
aggregation—a weaker form of composition.

Class ATM has a one-to-one relationship with class
BankDatabase—one ATM object authenticates
users against one BankDatabase object.
The bank’s database contains information about many
accounts—one BankDatabase object participates
in a composition relationship with zero or more
Account objects.

The multiplicity value 0..* at the Account end of the
association between class BankDatabase and class
Account indicates that zero or more objects of class
Account take part in the association.

Class BankDatabase has a one-to-many
relationship with class Account—the
BankDatabase contains many Accounts.
Class Account has a many-to-one relationship with
class BankDatabase—there can be many
Accounts stored in the BankDatabase.

At any given time 0 or 1 Withdrawal
objects can exist.
If the user is performing a withdrawal, “one
object of class Withdrawal
accesses/modifies an account balance through
one object of class BankDatabase.”
All other parts of the system must interact with
the database to retrieve or update account
information.

Classes have attributes (data) and operations
(behaviors).
Class attributes are implemented in Java programs as
fields, and class operations are implemented as
methods.
In this section, we determine many of the attributes
needed in the ATM system.
Look for descriptive words and phrases in the
requirements document.
For each such word and phrase we find that plays a
significant role in the ATM system, we create an
attribute and assign it to one or more of the classes
identified earlier.
We also create attributes to represent any additional
data that a class may need, as such needs become clear.
Next the list the words or phrases from the requirements
document that describe each class.

For real problems in industry, there is no
guarantee that requirements documents will be
precise enough for the object-oriented systems
designer to determine all the attributes or even
all the classes.
The need for additional classes, attributes and
behaviors may become clear as the design
process proceeds.

Attributes represent an object’s state.
We identify some key states that our objects may
occupy and discuss how objects change state in
response to various events occurring in the system.
We also discuss the workflow, or activities, that
objects perform in the ATM system, and we present
the activities of BalanceInquiry and
Withdrawal transaction objects.

An operation is a service that objects of a class provide to
clients (users) of the class.
We can derive many of the class operations by examining the
key verbs and verb phrases in the requirements document.

The UML represents operations (methods in
Java) by listing the operation name, followed
by a comma-separated list of parameters in
parentheses, a colon and the return type:

operationName(parameter1, parameter2, …,
parameterN) : return type

Each parameter in the comma-separated
parameter list consists of a parameter name,
followed by a colon and the parameter type:

parameterName : parameterType

