
1

GUI Event Handling

2

Typical command line program

Non-interactive

Linear execution

program:
main()
{

code;
code;
code;
code;
code;
code;
code;
code;
code;
code;
code;

}

3

Interactive command line program

User input commands

Non-linear execution
Unpredictable order
Much idle time

program:
main()
{

decl data storage;
initialization code;

loop
{

get command;
switch(command)
{

command1:
code;

command2:
code;

…
}

}
}

4

Typical GUI program
GUI program:

main()
{

decl data storage;
initialization code;
create GUI;

register callbacks;
main event loop;

}

Callback1() //button1 press
{ code;
}
Callback2()
{ code;
}
…

User input commands

Non-linear execution
Unpredictable order
Much idle time

Event callback procs

5

What is an Event?
GUI components communicate with the
rest of the applications through events.
The source of an event is the component
that causes that event to occur.
The listener of an event is an object that
receives the event and processes it
appropriately.

6

Handling Events
Every time the user types a character or
clicks the mouse, an event occurs.
Any object can be notified of any particular
event.
To be notified for an event,

The object has to be registered as an event
listener on the appropriate event source.
The object has to implement the appropriate
interface.

2

7

An example of Event Handling

public class SwingApplication implements
ActionListener {
...
JButton button = new JButton("I'm a Swing
button!");
button.addActionListener(this);
....
public void actionPerformed(ActionEvent e)
{ numClicks++;
label.setText(labelPrefix + numClicks);
}

}

8

The Event Handling process

When an event is triggered, the JAVA
runtime first determines its source and type.
If a listener for this type of event is
registered with the source, an event object is
created.
For each listener to this type of an event, the
JAVA runtime invokes the appropriate event
handling method to the listener and passes
the event object as the parameter.

9

The Event Handling Process (2)

10

What does an Event Handler require?

It just looks for 3 pieces of code!
First, in the declaration of the event
handler class, one line of code must specify
that the class implements either a listener
interface or extends a class that
implements a listener interface.
public class DemoClass implements
ActionListener {

11

What does an Event Handler require? (2)

Second, it looks for a line of code which
registers an instance of the event handler
class as a listener of one or more
components because, as mentioned earlier,
the object must be registered as an event
listener.
anyComponent.addActionListener(instance
Of DemoClass);

12

What does an Event Handler require? (3)

Third, the event handler must have a piece
of code that implements the methods in the
listener interface.

public void actionPerformed(ActionEvent e)
{
… //code that reacts to the action …

// if e.source()==button1 …
}

3

13

Types of Events
Below, are some of the many kinds of events,
swing components generate.

MouseListenerClicking a mouse button, while
the cursor is over a
component

WindowListenerUser closes a frame

ActionListenerUser clicks a button, presses
Enter, typing in text field

Listener TypeAct causing Event

14

Types of Events (2)

ListSelectionListenerTable or list selection
changes

ComponentListenerComponent becomes
visible

MouseMotionListenerUser moving the mouse
over a component

Listener TypeAct causing Event

15

The Event classes
An event object has an event class as
its reference data type.
The Event object class

Defined in the java.util package.
The AWT Event class

An immediate subclass of EventObject.
Defined in java.awt package.
Root of all AWT based events.

16

Event Listeners
Event listeners are the classes that
implement the
<type>Listener interfaces.
Example:
1. ActionListener receives action events
2. MouseListener receives mouse events.
The following slides give you a brief
overview on some of the listener types.

17

The ActionListener Method
It contains exactly one method.

Example:
public void actionPerformed(ActionEvent e)

The above code contains the handler
for the ActionEvent e that occurred.

18

The MouseListener Methods
Event handling when the mouse is
clicked.
public void mouseClicked(MouseEvent e)

Event handling when the mouse enters a
component.
public void mouseEntered(MouseEvent e)

Event handling when the mouse exits a
component.
public void mouseExited(MouseEvent e)

4

19

The MouseListener Methods (2)

Event handling when the mouse button
is pressed on a component.
public void mousePressed(MouseEvent e)

Event handling when the mouse button
is released on a component.
public void mouseReleased(MouseEvent e)

20

The MouseMotionListener Methods

Invoked when the mouse button is pressed
over a component and dragged. Called
several times as the mouse is dragged
public void mouseDragged(MouseEvent e)

Invoked when the mouse cursor has been
moved onto a component but no buttons
have been pushed.
public void mouseMoved(MouseEvent e)

21

The WindowListener Methods

Invoked when the window object is opened.
public void windowOpened(WindowEvent e)

Invoked when the user attempts to close
the window object from the object’s system
menu.
public void windowClosing(WindowEvent e)

Invoked when the window object is closed as
a result of calling dispose (release of
resources used by the source).
public void windowClosed(WindowEvent e)

22

The WindowListener Methods (2)

Invoked when the window is set to be the active
window.
public void windowActivated(WindowEvent e)

Invoked when the window object is no longer the
active window
public void windowDeactivated(WindowEvent e)

Invoked when the window is minimized.
public void windowIconified(WindowEvent e)

Invoked when the window is changed from the
minimized state to the normal state.
public void windowDeconified(WindowEvent e)

23

Hierarchy of event objects

Note: The number of
event objects is much
greater then specified
in the diagram.
Only some of them are
represented in the
figure

Courtesy: Safari.oreilly.com
24

Additional Listener Types

Change Listener
Container Listener
Document Listener
Focus Listener
Internal Frame Listener

Item Listener
Key Listener
Property Change Listener
Table Model Listener

The main purpose of the last few slides is to
give you an idea as to how you can use event
handlers in your programs. See the JAVA
tutorials for more information.

5

25

Adapter classes for Event
Handling.
Why do you need adapter classes?

Implementing all the methods of an interface
involves a lot of work.
If you are interested in only using some methods
of the interface.

Adapter classes
Built-in in JAVA
Implement all the methods of each listener
interface with more than one method.
Implementation of all empty methods

26

Adapter classes - Illustration.
You want create a class that implements a
MouseListener interface, where you
require only a couple of methods to be
implemented. If your class directly
implements the MouseListener, you must
implement all five methods of this
interface.
Methods for those events you don't care
about can have empty bodies

27

Illustration (2)
public class MyClass implements MouseListener {

... someObject.addMouseListener(this);
/* Empty method definition. */
public void mousePressed(MouseEvent e) { }
/* Empty method definition. */
public void mouseReleased(MouseEvent e) { }
/* Empty method definition. */
public void mouseEntered(MouseEvent e) { }
/* Empty method definition. */
public void mouseExited(MouseEvent e) { }
public void mouseClicked(MouseEvent e) {
//Event listener implementation goes here...
}

}

28

Illustration (3)

What is the result?
The resulting collection of empty bodies can
make the code harder to read and maintain.

To help you avoid implementing empty
bodies, the API generally includes an
adapter class for each listener
interface with more than one method.
For example, the MouseAdapter class
implements the MouseListener
interface.

29

How to use an Adapter class?

/* Using an adapter class */
public class MyClass extends MouseAdapter {
....

someObject.addMouseListener(this);
....

public void mouseClicked(MouseEvent e) {
...//Event listener implementation goes

// here
}

}

30

Using Inner classes for Event
Handling

Consider that you want to use an
adapter class but you don’t want your
public class to inherit from the adapter
class.
For example, you write an applet with
some code to handle mouse events. As
you know, JAVA does not permit
multiple inheritance and hence your
class cannot extend both the Applet
and MouseAdapter classes.

6

31

Using Inner classes (contd..)

Use a class inside your Applet subclass that
extends the MouseAdapter class.

public class MyClass extends Applet { ...
someObject.addMouseListener(new

MyAdapter());
...
class MyAdapter extends MouseAdapter { public
void mouseClicked(MouseEvent e) {

//Event listener implementation here... }
}

}
32

Creating GUI applications
with Event Handling.

Guidelines:
1. Create a GUI class

Describes the appearance of your
GUI application.

2. Create a class implementing the
appropriate listener interface

May refer to the same class as
step 1.

33

Creating GUI applications with
Event Handling (contd..)

3. In the implementing class
Override all methods of the
appropriate listener interface.
Describe in each method how you
want to handle the events.
May give empty implementations
for the methods you don’t need.

34

Creating GUI applications with
Event Handling (contd..)

4. Register the listener object with
the source

The object is an instantiation of the
listener class specified in step 2.
Use the add<Type>Listener method.

35

Design Considerations

The most important rule to keep in mind
about event listeners is that they must
execute quickly. Since all drawing and event-
listening methods are executed in the same
thread, a slow event listener might make the
program seem unresponsive. So, consider
the performance issues also when you
create event handlers in your programs.

36

Design Considerations
You can have choices on how the event listener
has to be implemented. One particular solution
might not fit in all situations.
For example, you might choose to implement
separate classes for different types of
listeners. This might be a relatively easy
architecture to maintain, but many classes can
also result in reduced performance .

