
1

1

What is an Exception
o Imagine the following code in some Applet:

int age = Integer.parseInt(ageTF.getText().trim());

o Obviously, we are expecting a number will appear in the TextField
and that it constitutes a legal integer age.

o Consider, however, the following possibilities:
1. What if the user types a “$” instead of a 4 by mistake?
2. What if the user enters a decimal point number rather than an

integer?
3. What if the user holds down the “3” key too long and an extremely

long number is accidentally entered?
o We do not expect circumstances such as these -- but they do

happen!

2

What is an Exception
o Some things that can go wrong during the execution of a

program cannot be detected at compile-time - because the user
has not yet made the mistake by entering the wrong data!!

o Another example: your program may attempt to divide one
number by zero (ex. examSum/numberOfStudents)

o Or your program may require that an integer value be entered
into a TextField, and the user of the program enters a float
value or some other illegal character.

o From the compiler’s point of view, there is nothing wrong with
these statements, and problems will arise only when the program
is actually executing.

o At that point an internal alarm goes off, and Java attempts to
“throw an exception” signifying that something untoward has
occurred.

2

3

Example
import java.awt.*;
import java.applet.*;

public class TrivialApplet extends Applet
{

// Deliberately divides by zero to produce an exception.
public void init()
{

int numerator = 10;
int denominator = 0;
System.out.println ("This text will be printed.");
System.out.println (numerator/denominator);
System.out.println ("This text will not be printed.");
// because exception occurs prior to execution of this

}
}

Note also: There is no code to handle the exception, if it occurs!

4

What is an Exception
o The system then immediately halts its normal mode

of execution and goes off looking for help.

o With luck, the system will find some code in your
program that will catch the exception and deal with
it.

o Once caught, the alarm is silenced and the system
picks up execution at a location after the block that
contained the ‘offending’ statement.

Java has its own terminology for exceptions.
Exceptions are indicted by being thrown, and are

detected elsewhere by being caught.

3

5

Terminology of Exceptions

o An exception is an object that describes an
unusual or erroneous situation

o Exceptions are thrown by a program, and may
be caught and handled by another part of the
program

o A program can be separated into a normal
execution flow and an exception execution
flow

o An error is also represented as an object in
Java, but usually represents an unrecoverable
situation and should not be caught

6

Some Possible Exceptions
ArithmeticException - something, such as division by zero,

has gone wrong in an arithmetic
expression

NumberFormatException - indicates that an illegal number
format is being used.

StringIndexOutOfBoundsException - attempt has been made to
use an inappropriate String index.

NullPointerException - class method called by object
instance that is currently null.

EOFException - an end-of-file mark has been seen.
IllegalArgumentException - a method has been called with an

invalid argument.
IndexOutOfBoundsException - an index into an array is out of

bounds.

4

7

Exceptions
o As indicated on the earlier slide, Java has a

predefined set of exceptions and errors that
can occur during execution

o A program can deal with an exception in one
of three ways:

ignore it
handle it where it occurs
handle it in another place in the program

o The manner in which an exception is
processed is an important design
consideration

8

Lexicon: Actors and Actions
Operation
A method which can possibly raise an exception.
Invoker
A method which calls operations and handles resulting
exceptions.
Exception
A concise, complete description of an abnormal event.
Raise
Brings an exception from the operation to the invoker, called
throw in Java.
Handle
Invoker’s response to the exception, called catch in Java.
Backtrack
Ability to unwind the stack frames from where the exception
was raised to the first matching handler in the call stack.

5

9

Lexicon: Types of Exceptions
Hardware
Generated by the CPU in response to a fault (e.g. divide by
zero, overflow, segmentation fault, alignment error, etc).
Software
Defined by the developer to represent any other type of
failure. These exceptions often carry much semantic
information.
Domain Failure
The inputs, or parameters, to the operation are considered
invalid or inappropriate for the requested operation.
Range Failure
Operation cannot continue, or output is possibly incorrect.
Monitor
Describes the status of an operation in progress, a mechanism
for runtime updates which is simpler than sub-threads.

10

Classifying Java Exceptions
Unchecked Exceptions
It is not required that these
types of exceptions be
caught or declared on a
method.

Runtime exceptions can be
generated by methods or by
the JVM itself.
Errors are generated from
deep within the JVM, and
often indicate a truly fatal
state.
Runtime exceptions are a
source of major
controversy!

Checked Exceptions
Must either be caught by a
method or declared in its
signature.

Placing exceptions in the
method signature generates
major complications
This requirement is viewed
with derision in the
hardcore C++ community.
A common technique for
simplifying checked
exceptions is subsumption.

6

11

Keywords for Java Exceptions
throws
Describes the exceptions which can be raised by a method.
throw
Raises an exception to the first available handler in the call
stack, unwinding the stack along the way.
try
Marks the start of a block associated with a set of exception
handlers.
catch
If the block enclosed by the try generates an exception of this
type, control moves here; watch out for implicit subsumption.
finally
Always called when the try block concludes, and after any
necessary catch handler is complete.

12

General Syntax
public void setProperty(String p_strValue) throws

NullPointerException {
if (p_strValue == null) { throw new
NullPointerException(“...”); }

}
public void myMethod() {

MyClass oClass = new MyClass();
try {

oClass.setProperty(“foo”);
oClass.doSomeWork();

} catch (NullPointerException npe) {
System.err.println(“Unable to set property:“

+ npe.toString());
} finally {

oClass.cleanup();
}

}

7

13

Canonical Example 1
public void foo() {

try { /* marks the start of a try-catch block */

int a[] = new int[2];
a[4] = 1; /*causes a runtime exception due to index*/

} catch (ArrayIndexOutOfBoundsException e) {

System.out.println("exception: " +
e.getMessage());

e.printStackTrace();
}

}

14

Canonical Example 2

/* This code also compiles, but throws an
exception at runtime! It is both less obvious
and more common (an off-by-one-error). */

public int[] bar() {
int a[] = new int[2];
for (int x = 0; x <= 2; x++) { a[x] = 0; }
return a;

}

8

15

throw(s) Keyword (1)
/* The IllegalArgumentException is considered unchecked,

and remains so even making it part of the signature */
public void setName(String p_strName) throws

IllegalArgumentException
{

/* valid names cannot be zero length */
if (p_strName.length() == 0) {

throw new IllegalArgumentException(“…”);
}
m_strName = p_strName;

}

public void foo() {
setName(“”); /* No warning about unhandled exceptions.
*/

}

16

throw(s) Keyword (2)
/* Make a bad parameter exception class */
class NuttyParameterException extends Exception { … }

/* To really make an invoker pay attention, use a checked
exception type rather than a Runtime Exception type, but
you must declare that you will throw the type! */
public void setName(String p_strName) /* error here! */
{

/* valid names cannot be zero length */
if (p_strName == null || p_strName.length() == 0) {

throw new NuttyParameterException(“…”);
}
m_strName = p_strName;

}

9

17

throw(s) Keyword (3)
/* Make a bad parameter exception class */
class NuttyParameterException extends Exception { … }

/* To really make an invoker pay attention, use a checked
* exception type rather than a Runtime Exception type. */

public void setName(String p_strName) throws
NuttyParameterException

{
/* valid names cannot be zero length */
if (p_strName == null || p_strName.length() == 0) {

throw new NuttyParameterException(“…”);
}
m_strName = p_strName;

}
public void foo() {

setName(“”); /* This does result in an error. */
}

18

try Keyword
/* The try statement marks the position of the first bytecode

instruction protected by an exception handler. */
try {

UserRecord oUser = new UserRecord();
oUser.setName(“Fred Stevens”);
oUser.store();

/* This catch statement then marks the final bytecode instruction
* protected, and begins the list of exceptions handled. This info
* is collected and is stored in the exception table for the
method. */

} catch (CreateException ce) {
System.err.println(“Unable to create user record in the
database.”);

}

10

19

catch Keyword (1)
/* A simple use of a catch block is to catch the exception raised

by the code from a prior slide. */
try {

myObject.setName(“foo”);
} catch (NuttyParameterException npe) {

System.err.println(“Unable to assign name:” + npe.toString());
}

try { /* example 2 */
myObject.setName(“foo”);

} catch (NuttyParameterException npe) { /* log and relay this
problem. */
System.err.println(“Unable to assign name:” + npe.toString());
throw npe;

}

20

catch Keyword (2)
/* Several catch blocks of differing types can be concatenated. */
try {
URL myURL = new URL("http://www.mainejug.org");
InputStream oStream = myURL.openStream();
byte[] myBuffer = new byte[512];
int nCount = 0;
while ((nCount = oStream.read(myBuffer)) != -1) {

System.out.println(new String(myBuffer, 0, nCount));
}
oStream.close();

}
catch (MalformedURLException mue) {
System.err.println("MUE: " + mue.toString());

} catch (IOException ioe) {
System.err.println("IOE: " + ioe.toString());

}

11

21

finally Keyword (1)
URL myURL = null;
InputStream oStream = null;

/* The prior sample completely neglected to discard the network
* resources */

try {
/* Imagine you can see the code from the last slide here... */

} finally { /* What two things can cause a finally block to be
missed? */
/* Since we cannot know when the exception occurred, be
careful! */
try {

oStream.close();
} catch (Exception e) {
}

}

22

finally Keyword (2)
public bool anotherMethod(Object myParameter) {

try { /* What value does this snippet return? */
myClass.myMethod(myParameter);
return true;

} catch (Exception e) {
System.err.println(“Exception in anotherMethod()”

+ e.toString());
return false;

} finally {
/* If the close operation can raise an exception */
if (myClass.close() == false) {

break;
}

}
return false;

}

12

23

finally Keyword (3)
public void callMethodSafely() {

while (true) { /* How about this situation? */
try {

/* Call this method until it returns false. */
if (callThisOTherMethod() == false) {

return;
}

} finally {
continue;

}
} /* end of while */

}

24

Steps of try…catch…finally
Every try block must have at least one catch or finally block
attached.
If an exception is raised during a try block:

The rest of the code in the try block is skipped over.
If there is a catch block of the correct, or derived, type in
this stack frame it is entered.
If there is a finally block, it is entered.
If there is no such block, the JVM moves up one stack
frame.

If no exception is raised during a try block, and there is no
System.exit() statement:

If there is a matching finally block, it is entered.

13

25

Java Exception Hierarchy

java.lang.ThreadDeath

java.lang.Error

java.lang.NullPointerException java.lang.IllegalArgumentException

java.lang.RuntimeException

java.io.FileNotFoundException

java.io.IOException

java.lang.Exception

java.lang.Throwable

Anything which should be handled by the invoker is of this type,
and all but five exceptions are.

Exception

Any exception so severe it should be allowed to pass uncaught to
the Java runtime.

Error

The base class for all exceptions, it is required for a class to be
the rvalue to a throw statement.

Throwable

26

Sometimes it’s useful to declare your
own exception classes that are specific
to the problems that can occur when
another programmer uses your reusable
classes.
A new exception class must extend an
existing exception class to ensure that
the class can be used with the
exception-handling mechanism.

Your exception class?

14

27

A typical new exception class contains only four
constructors:

one that takes no arguments and passes a default
error message String to the superclass constructor;
one that receives a customized error message as a
String and passes it to the superclass constructor;
one that receives a customized error message as a
String and a Throwable (for chaining exceptions) and
passes both to the superclass constructor;
and one that receives a Throwable (for chaining
exceptions) and passes it to the superclass
constructor.

Defining your class

28

Creating your own exception class
/* You should extend RuntimeException to create an unchecked

exception, or Exception to create a checked exception. */
class MyException extends Exception {

/* The common constructor. It takes a text argument. */
public MyException(String p_strMessage) {

super(p_strMessage);
}

/* A default constructor is also a good idea! */
public MyException () {

super();
}

/* If you create a more complex constructor, then it is
critical that you override toString(), since this is the call
most often made to output the content of an exception. */

15

29

Three Critical Decisions
How do you decide to raise an exception rather than return?
1. Is the situation truly out of the ordinary?
2. Should it be impossible for the caller to ignore this problem?
3. Does this situation render the class unstable or inconsistent?
Should you reuse an existing exception or create a new type?
1. Can you map this to an existing exception class?
2. Is the checked/unchecked status of mapped exception

acceptable?
3. Are you masking many possible exceptions for a more general

one?
How do you deal with subsumption in a rich exception
hierarchy?
1. Avoid throwing a common base class (e.g. IOException).
2. Never throw an instance of Exception or Throwable classes.

30

An Example of Return v. Raise
try {

InputStream oStream = new
URL("http://www.mainejug.org").openStream();
byte[] myBuffer = new byte[512];
StringBuffer sb = new StringBuffer();
int nCount = 0;
while ((nCount = oStream.read(myBuffer)) != -1) {

sb.append(new String(myBuffer));
}
oStream.close();
return sb.toString(); /*if sb.length()==0 NOT exception */
/* These are certainly exceptional conditions. */

} catch (MalformedURLException mue) {
throw mue;

} catch (IOException ioe) {
throw ioe;

}

16

31

Mapping to an Exception Class
o When you attempt to map your situation onto an

existing Exception class consider these suggestions:
Avoid using an unchecked exception, if it is
important enough to explicitly throw, it is important
enough to be caught.
Never throw a base exception class if you can avoid
it: RuntimeException, IOException,
RemoteException, etc.
There is no situation which should cause you to
throw the Exception or Throwable base classes.
Never.

32

Using Unchecked Exceptions
Use unchecked exceptions to indicate a broken contract:

public void setName(String p_strName) {
/* This is a violated precondition. */
if (p_strName == null || p_strName.length() == 0) {
throw new InvalidArgumentException(“Name parameter

invalid!”);
}

}

Be careful about creating a type derived from
RuntimeException.

A class derived from AccessControlException is implicitly
unchecked because its parent class derives from
RuntimeException.

