
1

Data Structures for Java
William H. Ford
William R. Topp

Chapter 2
Class Relationships

Bret Ford

© 2005, Prentice Hall

Wrapper Classes

Convert a value of primitive type to
an object.
Supply methods to access and
display the value.
Wrapper classes include Integer,
Double, and Boolean.

2

Comparing Integer Objects

Compare primitive values using
==, <, <=, >, >=, etc.
Use equals() and compareTo() for
comparing objects.

Example: Compare Integer objects objA and objB.
Integer objA = new Integer(35), objB = new Integer(50);

int t = objA.compareTo(objB); // t < 0 since 35 < 50
boolean b = objB.equals(new Integer("35")); // b is true
//assign to objMax the larger of the two Integer objects.

Integer objMin = (objA.compareTo(objB) > 0) ? objA : objB;

Wrapper Classes Integer,
Character and Double

3

Static Wrapper Class Members

Integer.MIN_VALUE and
Integer.MAX_VALUE are the minimum
and maximum integer values
Double has similar constants.
Methods such as the Integer parseInt()
method convert a numeric string to the
corresponding primitive value.
toString() provides a string
representation for a primitive type.

Character Handling

Character is a wrapper class for the
primitive type char.
Classifying a character

public static boolean isLetter(char ch);
public static boolean isDigit(char ch);
public static boolean isWhitespace(char ch);

Testing and Modifying Case of a
Character

public static boolean isUpperCase(char ch);
public static boolean isLowerCase(char ch);
public static char toUpperCase(char ch);
public static char toLowerCase(char ch);

4

Autoboxing and
Auto-unboxing

Autoboxing automatically converts a
primitive type to its associated wrapper
type.

Example: Integer[] arr = {5, 3, 2, 9, 35};

Auto-unboxing automatically converts
from a wrapper type to the equivalent
primitive type.

Example: int n = arr[1];

Object Composition

Class (client class) contains one or
more objects of another class
(supplier class).
Termed the “has-a” relationship.

5

TimeCard Class

Maintains data for hourly workers.
private String workerID;
private double payrate;
private Time24 punchInTime, punchOutTime;

public TimeCard(String workerID,
double payrate,
int punchInHour,
int punchInMinute)

{
// initialize workerID and payrate
this.workerID = workerID;
this.payrate = payrate;

// create Time24 object by calling
// constructor Time24(hour,minute)
punchInTime = new Time24(punchInHour,punchInMinute);

// create Time24 object by calling
// default constructor Time24()
punchOutTime = new Time24();

}

TimeCard Constructor

6

payworker()
public String payWorker(int punchOutHour,

int punchOutMinute)
{

// local variables for time
// worked and hours worked
Time24 timeWorked;
// timeWorked converted to hours
double hoursWorked;

// numeric format object for
// hours worked and pay
DecimalFormat fmt = new DecimalFormat("0.00");

// update punchOutTime by calling setTime()
punchOutTime.setTime(punchOutHour,punchOutMinute);

payworker() (continued)

// evaluate time worked with Time24
// interval() method
timeWorked =

punchInTime.interval(punchOutTime);

// hoursWorked is timeWorked as
// fractional part of an hour
hoursWorked = timeWorked.getHour() +

timeWorked.getMinute()/60.0;

7

// return formatted string
return "Worker: " +

workerID + "\n" +
"Start time: " + punchInTime +
"End time: " +
punchOutTime + "\n" +
"Total time: " +
fmt.format(hoursWorked) +
" hours" + "\n" +
"At $" + fmt.format(payrate) +
" per hour, pay is $" +
fmt.format(payrate*hoursWorked);

}

payworker() (concluded)

UML for the TimeCard Class

8

Inheritance in Java

An “is a” relationship that involves
sharing of attributes and methods
among classes.
A superclass defines a common set
of attributes and operations.
A subclass extends the resources in
a superclass by adding its own data
and methods.

Inheritance Hierarchy Tree

9

Visibility for Members in an
Inheritance Hierarchy

Private members accessible only
within a particular class.
Protected members are accessible
by defining class and all
subclasses.
Public members are accessible by
the defining class, all subclasses,
and any instance of the class.

Scope Rules in Inheritance
Hierarchies

10

Employee Inheritance
Hierarchy

Superclass Employee specifies
name and Social Security Number
and associated methods.
The subclasses SalaryEmployee and
HourlyEmployee inherit (extend)
Employee and add data and
methods for handling salaried
workers and hourly workers.

class Employee
{

// instance variables are accessible by
// subclass methods
protected String empName;
protected String empSSN;

// create an object with initial values
// empName and empSSN
public Employee(String empName, String empSSN)
{

this.empName = empName;
this.empSSN = empSSN;

}
// update the employee name
public void setName(String empName)
{ this.empName = empName; }

Employee Class

11

// returns a formatted string to display
// employee information
public String toString()
{ return "Name: " + empName + '\n' +

"SS#: " + empSSN; }

// method is declared in this
// class for polymorphism
public String payrollCheck()
{ return ""; }

}

Employee Class (concluded)

SalaryEmployee Subclass

SalaryEmployee class extends
Employee and adds a salary
instance variable along with
methods that access the salary.

12

SalaryEmployee API
class SALARYEMPLOYEE extends Employee

 Constructor

 SalaryEmployee(String empName, String empSSN, double salary)
 Creates an object with arguments empName and empSSN initializing the superclass
 portion of the object.

 Methods

 double getSalary()
Returns the salary paid the employee during each pay period. .

String payrollCheck()
Returns a string that describes a pay check. The format includes the employee name,
social security number, and salary.

 void setSalary(double salary)
Assigns the specified argument as the new salary.

String toString()
Returns a string that describes the object. The format includes the name, social security
number, status ("salaried") and the salary.

Keyword super

Use super(args) in a subclass
constructor to call the superclass
constructor. Must be the first
statement in the constructor.
For methods with the same name
in the subclass and the superclass,
call the superclass method using
the form

super.method(args)

13

public SalaryEmployee(String empName,
String empSSN,
double salary)

{
// call the Employee
// superclass constructor
super(empName, empSSN);
this.salary = salary;

}

SalaryEmployee
Constructor

public String toString()
{

DecimalFormat fmt =
new DecimalFormat("#.00");

return super.toString() + '\n' +
"Status: Salary" + '\n' +
"Salary: $" + fmt.format(salary);

}

SalaryEmployee
toString()

14

HourlyEmployee
Subclass

Declares private instance variables
hourlyPay and hoursWorked of type double

UML for the
Employee Hierarchy

15

Assignment in an Inheritance
Hierarchy

Can assign any subclass reference to a superclass
reference.

Employee emp;
SalaryEmployee sEmp =

new SalaryEmployee(“Morris, Mike”, “569-34-0382”,
1250.00);

emp = sEmp;

Assignment in an Inheritance
Hierarchy (concluded)

Superclass variable that references a
subclass object can be used to call any
public method in the superclass.
May not be used to call a method defined
only in the subclass.

// invalid! setSalary() is not defined in Employee
emp.setSalary(1500.00);

// valid! uses reference emp to call an Employee method
emp.setName("Morris, Michael");

16

Static Binding

Static binding associates a method with
the class type of a reference variable.

Example:
emp.setName(“Harrison, Pamela”),
sEmp.setSalary(1500.0)

Overriding Methods

When the superclass and the subclass
have methods with the same signature,
we say that the subclass method
“overrides” the superclass method.

// emp = sEmp sets emp to point at sEmp ("Michael Morris").
// the runtime system executes payrollCheck SalaryEmployee
System.out.println(emp.payrollCheck());

Output:
Pay Morris, Mike (569-34-0382) $1250.00

17

Polymorphism

When the superclass and one or more
subclasses define methods with the same
signature, the runtime system executes
the subclass method under the following
conditions

A subclass object is assigned to a superclass
reference variable.
The method call uses the superclass
reference variable.

Polymorphism (concluded)

Rather than using static binding which
would associate the method with the
superclass reference variable, the
compiler directs the runtime system to
determine the subclass type referenced
by the variable and then calls the
corresponding subclass method. This is
dynamic binding since the association
between reference variable and method
is established at runtime.

18

Polymorphism Example

// declare a subclass object
HourlyEmployee hEmp =

new HourlyEmployee("Holmes, Julie",
"837-68-2198",
12.00, 30);

// assign subclass object hEmp to superclass
// reference variable
emp = hEmp;
// create a pay check using polymorphism
System.out.println(emp.payrollCheck());

Output:
Pay Holmes, Julie (837-68-2198) $360.00

Upcasting

Upcasting occurs when a subclass
object reference is assigned to a
superclass reference.

Superclass reference variable may call
any public method in the superclass
and any public method in the subclass
for which polymorphism applies.

19

Downcasting

A superclass reference variable may
not be used to call a method
defined exclusively in a subclass.
The programmer must use a cast to
change the reference type of the
variable to that of the subclass.

Downcasting Example

SalaryEmployee sEmp =
new SalaryEmployee(“Bonner, Al”, “667-21-7128”

2500.0);
Employee emp;

Emp = sEmp;

((SalaryEmployee)emp).setSalary(3000.0);

20

The instanceof Operator

Sometimes the choice of an downcast
cannot be made until runtime. The
instanceof operator allows the
determination of subclass type.
The method payIncrease() provides a
good example of using the instanceof
operator. Its first argument can be
either a SalaryEmployee or an
HourlyEmployee.
// give employee a percentage pay increase of pct
public void payIncrease(Employee emp, double pct)

public static void payIncrease(Employee emp,
double pct)

{
// use instanceof to determine the
// object type for emp if SalaryEmployee,
// access and update salary
if (emp instanceof SalaryEmployee)

((SalaryEmployee)emp).setSalary(
(1.0 + pct) *
((SalaryEmployee)emp).getSalary());

else
((HourlyEmployee)emp).setHourlyPay(

(1.0 + pct) *
((HourlyEmployee)emp).getHourlyPay());

}

payIncrease()

21

Abstract Classes
Define an abstract method in a class by
preceding the signature with the
keyword abstract and replacing the
method body by “;”. Place the keyword
abstract in the class header.

abstract class ClassName
{

// abstract class may contain data and concrete methods
. . .

// abstract class must contain at least one abstract method
abstract public returnType methodName(<parameters>);

}

Abstract Classes (concluded)

Each subclass of an abstract class must
override all of the abstract methods in
the superclass.
A program cannot create an instance of
an abstract class.
Provides only resources for a subclass
and method declarations that can be
used with polymorphism.

22

The Scanner Class

A Scanner object partitions text
from an input stream into tokens
by means of its "next" methods.
Declare a Scanner object as
follows:

Scanner keyIn = new Scanner(System.in);

Scanner Methods

String line = sc.nextLine(); // whole line
int i = sc.nextInt(); // i = 17
String str = sc.next(); // str = "deposit"
double x = sc.nextDouble(); // x = 450.75
boolean b = sc.nextBoolean(); // b = false
char ch = sc.next().charAt(0); // ch = 'A'

23

Testing for
Scanner Tokens

// loop reads tokens in the line
while (sc.hasNext())
{

token = sc.next();
System.out.println("In loop next token = " + token);

}

Output:
In loop next token = 17
In loop next token = deposit
In loop next token = 450.75
In loop next token = false
In loop next token = A

Scanner Class API

class SCANNER java.util

 Constructors
 Scanner((InputStream source)

Creates a Scanner object that produces values
read from the specified input stream (Typically
standard input System.in that denotes the
keyboard)

 Scanner(Readable source)
Creates a Scanner object that produces values
read from the specified input stream (Typically a
FileReader that denotes a file)

24

Scanner Class API
continued

 Methods
void close()

Close the scanner.
 boolean hasNext()

Returns true if the scanner has another token in
the input stream

 boolean hasNextBoolean()
Returns true if the next token in the input
stream can be interpreted as a boolean value

 boolean hasNextDouble()
Returns true if the next token in the input
stream can be interpreted as a double value

 boolean hasNextInt()
Returns true if the next token in the input
stream can be interpreted as an int value

Scanner Class API
(concluded)

 String next()
Finds and returns the next complete token in the
input stream as a String.

 boolean nextBoolean()
Scans the next token in the input stream into a
boolean value and returns that value.

 double nextDouble()
Scans the next token in the input stream into a
double value and returns that value.

 int nextInt ()
Scans the next token in the input stream into an
int value and returns that value.

