
1

JFlow: Practical Mostly-Static
Information Flow Control

A.Myers and B.Liskov. A Decentralized Model for
Information Flow Control (SOSP 1997).
Andrew C. Myers and Barbara Liskov. Protecting privacy
using the decentralized label model. ACM Transactions
on Software Engineering and Methodology, 9(4): 410–
442, October 2000.

Motivation

Privacy protection is increasingly critical

Static information-flow checking is a good
solution
• Compromise between security and performance

Several languages exist on paper that allow
static information-flow checking, but…
• None are practical; too limited and/or restrictive

Goal of JFlow: support static information-flow
checking and be practical

2

Background
Builds on existing work:
• Java
• Lattice model of information flow [Bell, Denning]
• Subtype/parametric polymorphism
• Dependent types [Cardelli]
• Decentralized label model [Myers]

Novel work solving practical problems:
• Mutable objects
• Declassification
• Dynamic granting/revoking of authority
• Label polymorphism
• Automatic label inference
• Exceptions

Design

.jif.jif.jif JFlow .jif.jif.java

Source-to-source compiler for Java

Statically-checked constructs are simply removed
• “For the most part, translation involves removal of the

static annotations in the JFlow program (after checking
them, of course). There is little code space, data space,
or run time overhead…”

Non-statically-checked constructs (labels,
principals, actsFor, switch label) are converted
to runtime checks

3

Labels
Labels are type annotations that allow label
checking
Label checking = statically determining that the
label of every expression is at least as restrictive
as the label of any value it might produce
JFLow’s labeling scheme comes from decentralized
label model explored by Myers and Liskov

“Label” = set of 0 or more Policies
“Policy” = 1 owner and 0 or more readers

L = { o1: r1, r2 ; o2: r2, r3 }

owner ownerreaders readers

policy policy

label

Labels

L = { o1: r1, r2 ; o2: r2, r3 }
“o1 allows r1 and r2 to read; and o2 allows r2 and
r3 to read”
{ } is the fully permissive label

“No principal has expressed a security interest”
Owner automatically included as reader
L = { o1: }

“o1 allows only his/herself to read”
Owners and readers are drawn from the set of

“principals”

4

Labels
Data may only be read by a principal if all of the
policies in its label list that principal as a reader
• The “effective policy” of a label is the intersection of all its

policies

Labels form lattices
• Let A B be join/LUB of A and B

• Let A ≤ B be A “can be relabeled as” B
• For each policy in A, there is a policy at least as

restrictive in B

• Let ≈ be shorthand for A ≤ B and B ≤ A

∏

Labels

Example lattice where only principals are
Alice and Bob

{ } ≈ { Alice : Bob ; Bob : Alice }

{ Alice : } ≈ { Alice : ; Bob : Alice } { Bob : } ≈ { Alice : Bob ; Bob : }

{ Alice : ; Bob : }

5

Labels

A principal may choose to relax (add readers
to) a policy that it owns; this is declassification
• “Safe” because other policies are not affected

Some principals are allowed to act for other
principles
• There is a “principal hierarchy” that can be updated

dynamically
• Not a key detail

Labeled Types
Every variable is statically bound to a static
label
A label is denoted by a label expression, which
is a set of component expressions
• However, a component expression may take other

forms; e.g., it may be a variable name:

• Policy of “x” means “copy variable x’s policies here”
• Effective readers for x, y, z are Alice, Alice, Nobody

int { Alice : } x;

int { x } y;

int { Bob : ; y } z;

6

Labeled Types

The programmer may omit labels, in which
case JFlow will either infer the label or assign
a default
• “If omitted, the label of a local variable is inferred

automatically based on its uses. In other contexts
where a label is omitted, a context-dependent
default label is generated. For example, for default
label of an instance variable is the public label { }.”

Other cases of default label assignment will
be noted later

Implicit Flows
All guarded expressions’ labels are forced to be
at least as restrictive as the guard’s label
Type system uses variable pc to hold the join-of-
all-guard-labels at all points

This example will fail label checking: secret ≤
public

int { public } x; // pc = {}
boolean { secret } b; // pc = {}
…
x = 0; // pc = {}
if (b) { // pc = {}

x = 1; // pc = { secret }
}

7

Runtime Labels
New primitive type label
Needed when a label is relevant but is not known a
priori
Only thing you can do with a label is switch on
it:

Example is an attempt to transfer value of x to y
“The statement executed is the first whose
associated label is at least as restrictive as the
expression label.”

label { L } lb;
int { *lb } x;
int { p: } y;
switch label(x) {

case (int { y } z) y = z;
else throw new UnsafeTransfer(); }

Runtime Labels

labels also allow methods with
dependent type signatures:

labels may be used in label expressions
only if they are immutable (final) after
initialization
• (method args are implicitly final)

static float {*lb} compute(int x {*lb}, label lb)

8

Runtime Principals

New primitive type principal

Needed if a principal is relevant but not
known a priori
“Run-time principals are needed in
order to model systems that are
heterogeneous with respect to the
principals in the system, without
resorting to declassification.”

Authority and Declassification

A principal may declassify (weaken) policies that
he or she owns – but where’s the principal?
At a given point, the program is operating on
behalf of some set of principals (called the static
authority)
Static authority at a given point depends on
annotations made by the programmer on the
class and method levels
Only purpose of static authority is to statically
determine whether declassifications are legal
Declassification syntax:

• declassify(e, L): relabels expression e with L

9

Classes
Classes may be parameterized (generic with
respect to some labels and/or principals)
“To ensure that these types have a well-defined
meaning only immutable (final) variables may be
used as parameters”

Classes

If { secret } ≤ { public }, does it follow
that Vector[{secret}] ≤ Vector[{public}]?
• No!
Programmer may allow this in cases
where it is sound by declaring label
parameter covariant label
covariant imposes additional
constraints: no method argument or
mutable instance variable may be labeled
using the parameter

10

Classes
A class always has one implicit label
parameter: the label {this},
representing the label on an object of
the class
In the case of {this}, L1 ≤ L2 should
imply that C{L1} acts as a subtype of
C{L2}, so {this} must be a covariant
label

Classes
A class may have some authority granted to its
objects by adding an authority clause to the
class header

• class passwordFile authority(root) { … }

If the authority clause names “external
principals,” the process that installs the class
into the system must have the authority of the
named principals
“If the authority clause names principals that are
parameters of the class, the code that creates an
object of the class must have the authority of
the actual principal parameters used in the call
to the constructor.”

11

Methods
The return value, arguments, and exceptions
may each be individually labeled
Arguments are always implicitly final
There is also an optional begin-label and end-
label
• If begin-label is specified then pc must be at least as

restrictive as begin-label at time of call
• If end-label is specified then no termination of the

method may leak more information than end-label
specifies (end-label is at least as sensitive as the
leaked information)

Methods
When labels are omitted from parameters,
those parameters use implicit label
polymorphism
• The argument labels become implicit

parameters to the function
• Without label polymorphism, libraries are

intractable (need one method for every
possible labeling of the parameters)

12

Methods

If begin-label is omitted, it too becomes
an implicit parameter to the function
• “Because the pc within the method contains

an implicit parameter, this method is
prevented from causing real side effects…”

If a return-value label is omitted, it
defaults to the join of all argument
labels and the end-label

Methods

static int {x;y} add(int x, int y) { return x + y; }

boolean compare_str(String name, String pwd) :

{name; pwd} throws(NullPointerException) {…}

boolean store{L} (int{} x) throws(NotFound) {…}

Return value label

End-label

Parameter label

Explicit label parameter?

13

Password Example
Establish
static
authority

Declassify

(removes root: policy)

Runtime exceptions in JFlow
must be explicitly caught

root: policy added to
label of match via pc

Protected Example

“The default label for
a return value is the
end-label, joined
with the labels of all
the arguments.” ???

14

Typed Label Checking

Complete set of rules for type and label
checking are given in the journal paper
The checking subsystem generates a
system of constraints that are solved by a
fast constraint solver
Theoretical argument for why it’s fast
“The observed behavior of the JFlow
compiler is that constraint solving is a
negligible part of run time.”

Translation
The vast majority of annotations are simply
removed
Uses of the new primitive label and authority
types are translated to jflow.lang.Label and
jflow.lang.Principal
“Only two constructs translate to interesting
code: the actsFor and switch label
statement, which dynamically test principals
and labels, respectively.”
Dynamic tests translate to optimized method
calls on Label and Principal classes
• Memoize for speed

15

Mission Accomplished?
The goal was to build a practical system;
is it practical?
Not backward-compatible with Java
• “…since existing Java libraries are not flow-

checked and do not provide flow annotations.
However, in many cases, a Java library can be
wrapped in a JFlow library that provides
reasonable annotations.”

• No static fields
• No Threads
• No unchecked exceptions

Mission Accomplished?
Only large projects in JFlow/Jif I found were
Civitas and JPMail
JPMail: “an experiment in security programming”
• “Software engineering: Developing an application in

Jif was complex and time-consuming. Just the
edit/compile/repair cycle was tedious because of the
surprisingly large number of possible information leaks
in typical programs. Jif prevents all possible leaks,
forcing very particular programming styles.. There are
also opportunities for other refactorings to aid the
programmer in labeling and re-labeling data. These
developments are still in progress.”

• “We concluded that Jif holds great promise for building
provably secure, distributed applications, but more
development is needed before this goal may be realized.

http://siis.cse.psu.edu/jpmail/

