
1

Data Structures for Java
William H. Ford
William R. Topp

Appendix A
Java Primer

Bret Ford

© 2005, Prentice Hall

Structure of a Java Program

Sample Problem: A person has a height
of 74 inches. The program converts the
height into feet and inches and into
centimeters. The conversion factor "1
inch = 2.54 cm" is used for the metric
measure. Output to the screen displays
the conversion in the form " Height of
<foot> foot <inch> in metric is
<centimeter> cm" where the bracketed
symbol <value> is the actual value of the
corresponding unit.

2

Structure of a Java Program

The class name with the extension ".java"
becomes the file name. By convention, all
class names in Java begin with a capital
letter.

For the class name DemoProgram the file
name is DemoProgram.java.
The body of the class is enclosed in a pair of
braces and includes a special method called
main.
• This method designates where the runtime system

will begin execution of the program.

Structure of a Java Program

// main class for source code in file "DemoProgram.java"
public class DemoProgram
{

public static void main(String[] args)
{

<code to implement main()>
}

}

3

Program Listing
[1] // DemoProgram: Converts height in inches into
[2] // units of feet and inches as well as metric
[3] // units and then outputs the results
[4]
[5] // application class that contains the main method
[6] public class DemoProgram
[7] {
[8] public static void main(String[] args)
[9] {
[10] // the constant conversion factor inches to
[11] // centimeters
[12] final double IN2CM = 2.54;
[13]
[14] // variables for height, feet, inches, and
[15] // centimeters
[16] int height = 74, foot, inch;
[17] double centimeter;

Program Listing
[18]
[19] // convert height to feet and inches
[20] foot = height / 12;
[21] inch = height % 12;
[22] centimeter = height * IN2CM;
[23]
[24] // display the output
[25] System.out.println("Height of " + foot +
[26] " foot " + inch + " in metric is "
[27] + centimeter + " cm");
[28] }
[29] }

Height of 6 foot 2 in metric is 187.96 cm

4

Comments

A single-line comment starts with
the character sequence "//" and
continues to the end of the line.
A multi-line comment includes all of

the text that is enclosed within the
pair of delimiters "/*" and "*/".

A third form is a Javadoc comment
that creates HTML documentation.

Keywords and Identifiers

Keywords are words that have special
predefined meaning in the Java language.
They may not be used as programmer-
defined names for a class or other
components in the program. Examples:
class, static
The name of a class, a method, or a
variable is called an identifier.

An identifier is a series of characters consisting
of letters (a...z, A...Z), digits (0...9),
underscores (_), and dollar signs ($) An
identifier may not begin with a digit.

5

Declaring and Using Variables

A variable is the program's name for
a memory location that holds data. A
variable must have an associated
type that indicates whether the data
is an integer, a real number, a
character, or other kind of value.

int height = 74, foot, inch;
double centimeter;

Declaring and Using Variables

Java has two kinds of types,
primitive and reference.

A reference type is associated with an
object. The type of an object is a user-
defined class.
Primitive types are predefined in the
Java language and designate variables
the have simple integer or real number
values, character values, or logical
values (true or false).

6

Console Output

Java provides the predefined stream
System.out for console output. Use the
stream with methods print and println to
display strings and other information in a
console window. The form of the output is
provided by a string that is built with
elements separated by the '+' character. The
elements may include quoted strings (string
literals), variables, and constants.

System.out.println("Height of " + foot + " foot " + inch +
" in metric is " + centimeter + " cm");

The Java Programming
Environment

Programs are initially written as a
sequence of Java statements and then
translated by a compiler into bytecode.
Bytecode contains machine instructions
for a hypothetical computer. To execute
the bytecode, Java provides an
interpreter, called a Java Virtual Machine
(JVM) that simulates the bytecode on the
local computer.

7

The Java Programming
Environment (continued)

The most basic environment is a
command line environment that uses a
separate application from the Java
Software Development Kit (SDK) for each
task.

To compile the program, use the command
"javac" with a file name that includes the
extension ".java". The command converts the
source code into intermediate bytecode
instructions. The resulting file has the
extension ".class".

The Java Programming
Environment (continued)

To execute the program, use the
command "java" with the name of the
".class" file. The extension is not
included. The application loads the Java
Virtual Machine for the system and
executes the bytecode instructions

javacjavac compiles "compiles "DemoProgramDemoProgram.java" to .java" to bytecodebytecode ""DemoProgramDemoProgram.class.class"

> javac DemoProgram.java

execute the bytecode in file "DemoProgram.class"

> java DemoProgram

8

The Java Programming
Environment (continued)

Integrated Development
Environment

An Integrated Development Environment
(IDE) provides tools to support the entire
program development and execution
process.

The tools include an editor for writing
programs, debuggers to locate errors, a
window to display compiler messages, and a
runtime window to execute the program.
• Examples: JBuilder from Borland, CodeWarrior from

Metrowerks, and the author-supplied EZJava.

9

Primitive Number Types

(Approx) -1.7 x10308 to 1.7

x10308

64-bit real
numberdouble

(Approx) -3.4 x1038 to 3.4
x1038

32-bit real
number

float

(Approx) -9 x 1018 to 9 x 101864-bit integerlong

-2,147,483,648 to

2,147,483,647
32-bit integerint

-32768 to 32767 16-bit integershort

-128 to 1278-bit integerbyte

RangeSize in BitsPrimitive
Types

Declaration of primitive
numeric variables

// uninitialized variable of type byte
byte b;
// declaration of two int variables; n is initialized
int m, n = 15500;
// compiler error; range is -128 to 127
byte badByte = 1000;
// uninitialized variable
double slope;
// use fixed-point notation
double x = 14.89;
// use floating-point notation
double y = 2.3e-5;
// the literal is a 32-bit float
float t = 0.0775f;

10

Java char Type

Character data includes uppercase and
lowercase letters, digits, punctuation
marks, and special symbols.

The Java primitive type char specifies a
single character. A character literal is a
character enclose in single quotation
marks.

// declare the variables ch and letter
// assign letter the character 'A'
char ch, letter = 'A'

Java char Type (concluded)

Java defines a set of
escape sequence
to represent special
characters.

\ttab

\nnewline

\"double quote

\rcarriage return

\\backslash

Escape CodeCharacter

System.out.println("Source file is \"DemoProgram.java\"");
System.out.println("Input c:\\dataIn.dat\n" +

"Output c:\\dataOut.dat");

Output:Source file is "DemoProgram.java"
Input c:\dataIn.dat
Output c:\dataOut.dat

11

Declaring Named Constants

final int LIMIT = 50;
final double PI = 3.14159265;
final char DELIMITER = ':';

A program often uses a number or string
to define a value that should not be
changed. For instance, circle calculations
use the value 3.14159265 for π.

Create a named constant using the keyword
final followed the declaration format for an
initialized primitive variable.

Arithmetic Operators

An arithmetic expression combines
numeric values and operators. The
familiar binary operators addition (+),
subtraction (-), and multiplication (*)
apply to both integer and real numbers.
The unary operator negation (-) changes
the sign of the operand.

With integers, division is in fact long division
that evaluates to a quotient and a remainder.
The operator / returns the quotient. The %
operator gives the remainder (25/3=8,
25%3=1).

12

Assignment Operator

Java uses the assignment operator = to
copy the value of an expression on the
right-hand side (rhs) into a variable on the
left-hand side (lhs). An assignment
statement is terminated by a semicolon.

int m, n;
m = 8; // rhs is the integer literal 8
n = m * 2; // rhs is an expression which evaluates to 16
// assigns 25 as value of m and then the value of m to n
n = m = 25;

Compound Assignment
Operators

Compound assignment: lhs <op>= rhs
Simple assignment: lhs = lhs <op> rhs

Example: Assume m = 14 and n = 3.
m += 5; // m = m + 5; m is 19
n += m - 2; // n = n + (m - 2); n is 15
n *= 2; // n = n * 2; n is 6
m /= 5; // m = m / 5; m is 2
m %= 5; // m = m % 5; m is 4

13

Increment and Decrement
Operators

Java provides unary operators ++ and -
- for the increment and decrement
operations respectively.

count++; // increment operator
If the value of count is initially 8 before
the statement is executed, the resulting
value is 9. From initial value 8, the
result would be 7;

count--; // decrement operator

Operator Precedence and
Associativity

In Java, each operator has a
precedence level and the compiler
generates code to execute
operators in the order of their
precedence.

int m = 40, n;
n = -m + 14 % 4;

First execute negation: n = -40 + 14 % 4
Second execute remainder: = -40 + 2
Third execute addition: = -38

14

Operator Precedence
and Associativity (concluded)

Operator precedence and associativity
for arithmetic and assignment operators
Level Operator Operation Associativity
0 = Assignment R to L
1 + Addition L to R

- Subtraction L to R
2 * Multiplication L to R

/ Division L to R
% Remainder L to R

3 + Unary plus R to L
- Unary minus R to L

int m = 9, n = 5, p, q;
p = q = 4 * m / n;

First execute multiplication: p=q=36/n
Second execute division: p=q=7
Third execute assignment (R to L): q = 7
Fourth execute assignment (R to L): p = q

Type Conversions

Conversions between one primitive type and
another are classified as widening conversions
or narrowing conversions.

Widening conversions go from one data type to
another that uses the same or more memory space to
store the values.
Narrowing conversions go from one type to another
that uses a smaller space to store values. The result is
often a loss of both the magnitude and precision of the
value. The ordering of the widening conversions for
numeric types is

byte -> short -> int -> long -> float -> double

15

Arithmetic promotion occurs automatically.

A cast is an explicit directive to the compiler
indicating that a conversion should occur.
The format for a cast places the desired type
in parentheses in front of the operand which
may be variable, literal, or complex
expression.

(type)operand

Arithmetic Promotion and
Casting

4 + 6.5 is evaluated as 4.0 + 6.5 = 10.5

int total = 5;
// avg1 = 1, avg2 = 1.25
double avg1 = total/4, avg2 = (double)total/4;

Assignment Conversion

int m = 15, n = 65;
double x;
char ch;

x = m; // with widening conversion, x is 15.0
ch = (char)n; // explicit casting, ch is 'A'

Assignment conversion occurs when the
expression on the right side of an assignment
statement has a different type than the left hand
side. Assignment accomplishes only widening
conversion from the right-hand side to the left-
hand side. Otherwise, the right-hand side must
be explicitly cast.

16

Java Comparison Operators

Mathematics Notation: =
Java Notation: ==
Meaning: Equal to
Java Example: n % 2 == 0

Mathematics Notation: ≠
Java Notation: !=
Meaning: Not equal to
Java Example: response != 'Y'

Mathematics Notation: <
Java Notation: <
Meaning: Less than
Java Example: 4 < 6

Mathematics Notation: ≤
Java Notation: <=
Meaning: Less than or equal to
Java Example: age <= 21

Mathematics Notation: >
Java Notation: >
Meaning: Greater than
Java Example: balance > 0

Mathematics Notation: ≥
Java Notation: >=
Meaning: Greater than or equal to
Java Example: ch >= 'A'

Java Comparison
Operators (concluded)

Mathematics Notation: ≤
Java Notation: <=
Meaning: Less than or equal to
Java Example: age <= 21

Mathematics Notation: >
Java Notation: >
Meaning: Greater than
Java Example: balance > 0

Mathematics Notation: ≥
Java Notation: >=
Meaning: Greater than or equal to
Java Example: ch >= 'A'

17

Boolean Operators
Logical Operator Java Operator
AND &&
OR ||
NOT !

• P && Q is true provided both P and Q are true; it is false in all other cases.
 Example: 'a' <= ch && ch <= 'z'
 // true if ch is a lowercase letter

• P || Q is true if P is true or if Q is true; it is false only when both P and Q are
false

 Example: n % 2 == 0 || n == 5
 // true if n is even or n is 5

• !P is the logical opposite of P. It is true when P is false and false when P is
true
 Example: !(n % 5 == 0)
 // true if n is not divisible by 5

Boolean Operators (concluded)

With short-circuit evaluation, the
computer evaluates the operands from
left to right and stops as soon as the
logical value of the entire expression is
known.

In the following expression, the division is not done if x is 0.In the following expression, the division is not done if x is 0.0.0.

x != 0.0 && 20/x < 1

18

The Code Block

A code block is a group of one or more
statements that are combined to carry
out a single task. Instructions within
the block are set off by braces and may
contain declarations. In the case of a
single statement, the braces may be
omitted. A variable declared in a block
can only be used in the block. We say
that the block defines the scope of the
variable.

The if-Statement

The simplest form of an if-statement uses a
logical expression as a condition and
executes code block codeT if the expression
evaluates to true.

Block Syntax:
{

Declarations // declaration of variables
Statement1 // sequence of statements

...
Statementn

}

Syntax:
if (condition)

CodeT

19

The if-Statement (continued)

if (m < n)
{

int temp; // the exchange needs temporary storage

temp = m; // hold m in temporary storage
m = n; // copy n to m
n = temp; // copy original value of m to n

}

The if-Statement (continued)
The most common form of an if-statement has
the program choose from among two options.
The form of the if-statement uses the reserved
word else to designate the second option. The
statement, called an if-else statement, tests the
condition and executes CodeT if the condition is
true and CodeF if it is false.

Syntax:Syntax:
if (condition)

CodeT // if true, execute this code
else

CodeF // if false, execute this code

20

The if-Statement (continued)

if (avgScore >= 70)
grade = 'P';

else
grade = 'F';

A course grade is 'P' or 'F' indicating
pass or failure. The instructor passes a
student when the average score is 70
or above.

Nested if-Statements

An if-else statement can contain any
sort of statements within its code
blocks. In particular, it can constitute
a nested if-statement by placing if-
else statements within the blocks.

21

Nested if-Statements
(continued)

17.2511.25Quantity 10+

18.7512.50Quantity 1-9

FinishedUtility

Plywood price (per sheet)

A lumber company prices sheets of plywood based on A lumber company prices sheets of plywood based on
their grade F (finished) or U (utility). In addition, the their grade F (finished) or U (utility). In addition, the
company offers customers a reduced price on a sheet if company offers customers a reduced price on a sheet if
they buy in quantity. The following table lists the price they buy in quantity. The following table lists the price
of a sheet of plywood based on grade and quantity of a sheet of plywood based on grade and quantity

Nested if-Statements
(continued)

// first test for the grade; nested if-else
// statements for each grade test the quantity
if (grade == 'U')

if (quantity < 10)
// option: U grade, quantity 1-9
totalCost = n * 12.50;

else
// option: U grade, quantity 10+
totalCost = n * 11.25;

else
if (quantity < 10)

// option: F grade, quantity 1-9
totalCost = n * 18.75;

else
// option: F grade, quantity 10+
totalCost = n * 17.25;

22

Multiway if/else Statements

In many applications, we want a
selection statement to specify branches
into a number of different options. This
can be done with nested if-statements
but without indenting to list the choices.
The format creates a multiway if-else
statement that better describes how we
view the options.

Multiway if/else
Statements

if (avgScore >= 90)
grade = 'A';

else if (avgScore >= 80)
grade = 'B';

else if (avgScore >= 70)
grade = 'C';

else if (avgScore >= 60)
grade = 'D';

// could be a simple else statement
else if (avgScore < 60)

grade = 'F';

23

if (x >= y)
max = x;

else
max = y;

max = (x >= y) ? x : y; equivalent to

Java provides an alternative to the "if-else"
statement using the conditional expression
operator (?:). The syntax for the operator
requires three operands. The first is a boolean
expression and the other two are expressions
that are set off with separators "?" and ":"
respectively.

Syntax: condition ? expressionT : expressionF

Conditional Expression
Operator

The switch-Statement

The switch-statement is a special form
of multiway selection that transfers control to
one of several statements depending on the
value of an integer or character expression.

If no match occurs, then control passes to the default
label if it exists or to the first statement following the
switch block. When a statement sequence concludes,
control continues with the next statement sequence.
Java provides a break statement, which forces a
branch out of the switch statement.

24

The switch-Statement

Syntax:
switch (selector expression)
{

case constant1: Statement for constant1
break;

.
case constantn: Statement for constantn

break;

default: Statement if no case matches selector
break;

}

Switch-Statement Example

switch(coinValue)
{

case 1: // Note: two or more case options included with
case 5: // a single statement
case 10:
case 25: System.out.println(coinValue + " cents " +

"is a standard coin"); break;
case 50: System.out.println(coinValue + " cents " +

"is a special coin"); break;
default: System.out.println("No coin for " + coin +

" cents"); break;
}

For coinValue = 25, the output is "25 cents is a standard coin"
For coinValue = 50, the output is "50 cents is a special coin"
For coinValue = 15, the output is "No coin for 15 cents"

25

The switch-Statement
If a break statement is not placed at the end of a If a break statement is not placed at the end of a
casecase--option, the runtime system will execute option, the runtime system will execute
instructions in the next caseinstructions in the next case--option. For instance, option. For instance,
assume the example includes no break statements assume the example includes no break statements
and and coinValuecoinValue is 25. A run would produce output that is 25. A run would produce output that
includes the case 50 option and the default option.includes the case 50 option and the default option.

Output: Output:
25 cents is a standard coin
25 cents is a special coin
No coin for 25 cents

The boolean Type

The boolean type is a primitive type like
int, double, and char. The type has
values true and false which can be used
in program statements. Like the other
primitive types, you can have constants
and variables of boolean type. A
variable is typically used as a flag to
indicate the status of a condition in an
algorithm or as a name for a boolean
expression.

26

The boolean Type (continued)

final boolean VALID_ID = true;

// isEnrolled is a flag that indicates the
// registration status of a student in a course;
// The flag is set to false if the student drops
// the course
boolean isEnrolled = true;

// variables are names for a boolean expression;
// the value of the variable is the value of the
// boolean expression
boolean isLowercase = 'a' <= ch && ch <= 'z';
boolean onProbation = gpa < 2.0;

boolean isLeapYear = (year % 4 == 0 && year % 100 != 0) ||
(year % 400 == 0);

The boolean Type (concluded)

boolean haveInsufficientFunds = balance < checkAmt;
boolean isSenior = age >= 60;

if (haveInsufficientFunds)
fee = 20.00;

else
if (isSenior)

fee = 0.50;
else

fee = 1.00;

27

The while Loop

A while loop is the most general form of loop
statement. The while statement repeats its
action until the controlling condition (loop test)
becomes false.

Syntax: while (logical expression)
body

Sum successive even integers 2 + 4 + 6 + . . . until the total Sum successive even integers 2 + 4 + 6 + . . . until the total is greater than 250.is greater than 250.

int i, sum = 0;
i = 2; // initial even integer for the sum
while (sum <= 250) // loop test; check current value of sum
{

sum += i; // add integer to sum
i += 2; // update i to next even integer

}

The do/while Loop

The do/while loop is similar to a while
loop except that it places the loop test at
the end of the loop body. A do/while loop
executes at least one iteration and then
continues execution so long as the test
condition remains true.

Syntax: do
{

body
} while (logical expression);

28

The do/while loop (concluded)

int count = 10;
do
{

System.out.print(count + " ");
count--; // decrement count

}
while (count > 0); // repeat until count is 0

System.out.println("Blast Off!!!");

Output: 10 9 8 7 6 5 4 3 2 1 Blast Off!!!

The for Loop
The for-statement is an alternative
loop structure for a counter-controlled
while statement. The format of the
for-loop has three separate fields,
separated by semicolons. The fields
enable a programmer to initialize
variables, specify a loop test, and
update values for control variables.

Syntax: for (init statement; test condition; update statement)
body

29

The for loop (concluded)

int i, sum = 0;

while LOOP for LOOP
========== ========

init: i = 1; for (i = 1; i <= 10; i++)
test: while (i <= 10) sum += i;

{
sum += i;

update: i++;
}

The Break Statement

while (true)
{

<read data from the file>
if (eof)

break;
<process data from this input>

}

Within a loop body, a break statement
causes immediate exit from the loop to
the first statement after the loop body.
The break allows for an exit at any
intermediate statement in the loop.

Syntax: break;

30

Arrays

An array is a fixed-size collection of
elements of the same data type that
occupy a block of contiguous memory
locations. Like any other variable, an
array declaration includes the name of
the array and the data type for the
elements in the sequence. To specify
that the variable is an array, add a pair
of square brackets immediately after the
data type.

int[] intArr;
Time24[] tarr;

Arrays (continued)

An array is a different kind of entity
called a reference variable. It contains a
value which is a reference (address) to the
first location in the associated block of
memory.

A simple declaration of an array assigns it the
value null. The array does not point to any
actual memory locations.
To allocate a block of memory for the array
and assign the address of the block to the
array variable, use the new operator.

31

Arrays (continued)

The syntax for the new operator
includes the data type and the number of
elements in the array enclosed in square
brackets. For instance, the following
statement allocates four integer elements.

intArr = new int[4];

Arrays (continued)

Assume n is the size of the array. Access to an
individual element in the array is provided by
an index in the range 0 to
n-1. The index denotes the position of the
element in the sequence. The element at
index i is denoted by arr[i]. The sequence of
elements in the array is

arr[0], arr[1], arr[2],..., arr[n-2], arr[n-1]

int[] intArr = new int[4]; // array of 4 integers
char[] charArr = new char[80]; // array of 80 characters
double[] rainfall = new double[12]; // array of 12 real numbers

32

Arrays (continued)

For instance, let intArr be an array
of four integers 21, 7, 30, and 15.
The figure displays the sequence as
a contiguous block of memory with
an index listed below each cell.

Arrays (continued)

The range of valid indices is 0 to n-1
where n is the size of the array. An
attempt to access an element outside of
the valid index range results in a
runtime error. Once an array is created,
a program may access its size using the
expression arr.length. Java defines
length as a variable associated with the
array. Hence, with any array, the valid
index range is 0 to arr.length -1.

33

Arrays (continued)

A loop provides efficient sequential
access to the elements in an array. Let the loop
control variable serve as an index. For instance,
the following statements declare an array arr of
100 integer elements and use a for-loop to
initialize the array with values 1, 2, ..., 100.

int[] arr = new int[100]; // declare array and allocate space

for (i=0; i < arr.length; i++)
arr[i] = i+1;

Arrays (continued)

An array can be initialized when it is
declared. After the array name, use
"=" followed by an array initializer list
which is a comma-separated sequence
of values enclosed in braces. There is
no need to use the operator new since
the compiler uses the size of the
initializer list to allocate memory.

int[] intArr = {21, 7, 30, 15};
String[] day = {"Sun", "Mon", "Tue", "Wed", "Thu",
"Fri", "Sat"};

34

Arrays (continued)

Java provides an "enhanced for"
statement that allows for a read-only
scan of an array without using indices.
The syntax includes a declaration of a
variable of the array type and the array
name separated by a colon(:).

Syntax: for (Type varName : arrayName)
. . .

int [] intArr = {6, 1, 8, 4, 9};
int sum;
for (int eltValue : intArr)

sum += eltValue;

Two-Dimensional Arrays

A two-dimensional array is a table with
access specified by row and column indices.
Rather than using one pair of square brackets
to denote an array, the two-dimensional
array uses two pairs of brackets. We often
refer to a two-dimensional array of numbers
as a matrix.

int[][] mat; // declare two-dimensional reference variable
// allocate 8 integer locations organized in 2 rows, 4 columns
mat = new int[2][4];

Elements of mat are accessed using double-bracket notation

mat[i][j] where 0 <= i < 2, 0 <= j < 4

35

Two-Dimensional Arrays
(continued)

The following table displays the elements in
mat. Nested for-loops scan the elements and
compute the sum of the elements.

int row, col, sum = 0;

for (row = 0; row < 2; row++)
for (col = 0; col < 4; col++)

sum += mat[row][col];

Two-Dimensional Arrays
(continued)

A program may access an entire row of the
matrix using a row index in brackets. The
resulting structure is a 1-dimensional array.

Like a one-dimensional array, you can use an
initializer list to allocate a matrix with initial
values.

// mat[0] is the first row in the matrix.
// as a one-dimensional array,
// it has an associated length variable
columnSize = mat[0].length; // value 4

int[][] mat = {{20, 5, 30, 0}, {-40, 15, 100, 80}};

36

Java Methods

A method is a collection of
statements that perform a task. A
method can accept data values,
carry out calculations, and return a
value. The data values serve as input
for the method and the return value
is its output.

Java Methods (continued)

The declaration of a method begins
with its signature, which consists of modifiers, a
return type, a method name, and a parameter
list that specifies the formal parameters.
The code that implements the method is a block

called the method body.

modifiers returnType methodName(Type1 var1, Type2 var2, . . .)
{

// method body
}

37

Java Methods (continued)
We are already familiar with the
method main(). The method name is main
and the return type is void since it does not
return a value. The parameter list is a single
variable specifying an array of strings. The
method has the modifier "public static" which
indicates that it is associated with the main
application class.

public static void main(String[] args)
{

// body is the main program
}

Predefined Methods

Java provides a collection of methods
that implement familiar mathematical
functions for scientific, engineering or
statistical calculations. The methods are
defined in the Math class.

38

Predefined Methods
(continued)

Power Function:
public static double pow(double x, double y); // x^y

Square Root Function:
public static double sqrt(double x);

Trigonometric Functions:
// trigonometric cosine
public static double cos(double x);
// trigonometric sine
public static double sin(double x);
// trigonometric tangent
public static double tan(double x);

Predefined Methods
(continued)

To access a Java method defined in the Math
class, a calling statement must access the
method using the syntax
Math.method(arguments).

If not void, the return value may be used in an
assignment statement or as part of an
expression.

39

Predefined Methods
(continued)
// variables for one argument and the return value
double a = 4.0, powValue;
// call pow() from Math class; integer 3 promoted to a double.
// assign powValue the return value 64.0
powValue = Math.pow(a,3);

Predefined Methods
(concluded)

The Math class defines the constant π as the
named constant Math.PI. A trigonometric
function takes an angle in radians. The
expression (angle * (π/180)) converts from
degrees to radians.

double theta = 0.0, angle = 30;
System.out.println("cosine of 0 radians is " + Math.cos(theta));
System.out.println("sine of 30 degrees is " +

Math.sin(angle*(Math.PI/180));

cosine of 0 radians is 1.0
sine of 30 degrees is 0.5

40

User Defined Methods

In a method, we provide the return value with a
statement that uses the reserved word return
and the value. The data type of the return value
must be compatible with the return type in the
method header. The general form of the
statement is

return expression;

The method annuity() returns the value of an
annuity.

public static double annuity(double principal,
double rate, int nyears)
{

return principal * Math.pow(1+rate,nyears);
}

User Defined Methods (continued)

A return statement can be used
anywhere in the body of the method and
causes an exit from the method with the
return value passed back to the calling
statement.

When a method has a returnType other than
void, use a return statement with a return
value.
When the method has a void returnType, the
method will return after the last statement.
You may force a return using the syntax
return;

41

User Defined Methods (continued)

public static void printLabel(String label,
String month, int year)

{
System.out.println(label + " " month + ", " + year);

// a return statement provides explicit exit
// from the method; typically we use an implicit
// return that occurs after executing the last
// statement in the method body
return;

}

The method printLabel() takes a string argument
for a label along with string and integer arguments
for the month and year and outputs the label and
the month and year separated by a comma (',').

User Defined Methods (continued)

// month and year for purchase
String month = "December";
int year = 1991;

// principal invested and interest earned per year
double principal = 10000.0, interestRate = 0.08,

annuityValue;
// number of years for the annuity
int nyears = 30;
// call the method and store the return value
annuityValue = annuity(principal, interestRate, nyears);
// output label and a summary description of the annuity
printLabel("Annuity purchased:", month, year);
System.out.println("After " + nyears + " years, $" +

principal + " at " + interestRate*100 +
"% grows to $" + annuityValue);

42

Arrays as Method Parameters

A method can include an array
among its formal parameters. The
format includes the type of the
elements followed by the symbol
"[]" and the array name.

returnType methodName (Type[] arr, ...)

Arrays as Method Parameters
(continued)

The method max() returns the largest
element in an array of real numbers.
The method signature includes an array
of type double as a parameter and a
return type double.

43

Arrays as Method Parameters
(continued)

public static double max(double[] arr)
{

// assume arr[0] is largest
double maxValue = arr[0];

// scan rest of array and update
// maxValue if necessary
for (int i = 1; i < arr.length; i++)

if (arr[i] > maxValue)
maxValue = arr[i];

// return largest value which is maxValue
return maxValue;

}

Arrays as Method Parameters
(continued)

In a declaration of an array, the name
is a reference that designates the
address of the block of memory that
holds the array elements. When a
method has an array parameter, call
the method by passing the name of an
existing array argument. This has the
effect of passing a reference to the
method identifying the sequence of
elements.

44

Arrays as Method Parameters
(continued)

int[] arrList = new int[5];
maxValue = max(arrList);

Arrays as Method Parameters
(continued)

The algorithm for max() performs a read-only
scan of the elements. It is possible to update
the array passed to a method. Since the array
parameter is pointing at the array allocated in
the calling program, an update modifies this
array and the change remains in effect after
returning from the method
The method maxFirst() finds the largest
element in the tail of an array beginning at
index start and exchanges it with the element
at the index start. The method has no return
value.

45

Arrays as Method Parameters
(continued)

public static void maxFirst(int[] arr, int start)
{

// maxValue and maxIndex are value and location
// of the largest element identified during a scan
int maxValue = arr[start], maxIndex = start, temp;
// scan tail of list beginning at start+1 and update
// both maxValue and maxIndex so that we know the
// value and location of the largest element
for (int i = start+1; i < arr.length; i++)

if (arr[i] > maxValue) {
maxValue = arr[i];
maxIndex = i; }

// exchange arr[start] and arr[maxIndex]
temp = arr[start];
arr[start] = arr[maxIndex];
arr[maxIndex] = temp;

}

Program A.1
public class ProgramA_1
{

public static void main(String[] args)
{

int[] intArr = {35, 20, 50, 5, 40, 20, 15, 45};
int i;
// scan first intArr.length-1 positions in the
//array, call maxFirst() to place largest
// element of the list into position i
for (i = 0; i < intArr.length-1; i++)

maxFirst(intArr, i);
// display the sorted array
for (i = 0; i < intArr.length; i++)

System.out.print(intArr[i] + " ");
System.out.println();

}
<include code for maxFirst()>

}

