
1

Data Structures for Java
William H. Ford
William R. Topp

Chapter 10
Linked Lists A

Bret Ford

© 2005, Prentice Hall

Introducing Linked Lists

To insert or remove an element at an interior
location in an ArrayList requires shifting of data
and is an O(n) operation.

2

Introducing Linked Lists (2)

We need an alternative structure that
stores elements in a sequence but
allows for more efficient insertion and
deletion of elements at random
positions in the list. In a linked list ,
elements contain links that reference
the previous and the successor
elements in the list.

Introducing Linked Lists (3)

Inserting and deleting an element is a
local operation and requires updating
only the links adjacent to the element.
The other elements in the list are not
affected. An ArrayList must shift all
elements on the tail whenever a new
element enters or exits the list.

3

Structure of a Linked List

Each element is a node that consists of
a value and a reference (link) to the
next node in the sequence.
A node with its two fields can reside
anywhere in memory.
The list maintains a reference variable,
front, that identifies the first element in
the sequence. The list ends when the
link null ().

Structure of a Linked List

A singly-linked list is not a direct access
structure. It must be accessed
sequentially by moving forward one
node at a time

4

Creating a Linked List

Elements in a linked list are nodes.
These are Node objects that have two
instance variables. The first variable,
nodeValue, is of generic type T. The
second variable is a Node reference
called next that provides a link to the
next node

Creating a Linked List (2)

Linked lists are implementation structures
and so Node objects are rarely visible in the
public interface of a data structure. As a
result, we declare the instance variables in
the Node class public. This greatly simplifies
the writing of code involving linked lists.
The Node class is a self-referencing
structure, in which the instance variable,
next, refers to an object of its own type.

5

Creating a Linked List
The Node Class

The class has two constructors that
combine with the new operator to
create a node. The default
constructor initializes each instance
variable to be null. The constructor
with an type parameter initializes the
nodeValue field and sets next to null.

Creating a Linked List
The Node Class
public class Node<T>
{

// data held by the node
public T nodeValue;
// next node in the list
public Node<T> next;
// default constructor with no initial value
public Node()
{

nodeValue = null;
next = null; }

// initialize nodeValue to item and set next to null
public Node(T item)
{

nodeValue = item;
next = null;

}
}

6

Creating a Linked List (3)

Need a reference variable, front, that
identifies the first node in the list.
Once you are at the first node, you can
use next to proceed to the second node,
then the third node, and so forth.
Create a two element linked list where
the nodes have string values "red" and
"green". The variable front references the
node "red". The process begins by
declaring three Node reference variables
front, p, and q.

Creating a Linked List (4)

Node<String> front, p, q; // references to nodes
p = new Node<String>("red"); // create two nodes (figure (a)
q = new Node<String>("green");

// create the link from p to q by assigning the next field
// for node p the value q
p.next = q; // figure (b)

// set front to point at the first node in the list
front = p; // figure (c)

greenred

(a) Create nodes p and q

qp

greenred

(c) Assign front to point at p (red)

qp

greenred

(b) Link p to q

qp

front

7

Creating a Linked List (5)

If a linked list is empty, front has
value null.

Scanning a Linked List

Scan a singly linked list by assigning a variable
curr the value of front and using the next field
of each node to proceed down the list.
Conclude with curr == null.
As an example of scanning a list, the static
method toString() in the class ds.util.Nodes
takes front as a parameter and returns a string
containing a comma-separated list of node
values enclosed in brackets.

8

Nodes.toString()
public static <T> String toString(Node<T> front)
{

if (front == null)
return "null";

Node<T> curr = front;
// start with the left bracket and value of first node
String str = "[" + curr.nodeValue;
// append all but last node, separating items with a
// comma

while(curr.next != null)
{

curr = curr.next;
str += ", " + curr.nodeValue;

}
str += "]";
return str;

}

Locating a List Position

To locate an element at position n, we
need to scan the list through a specified
number of node.
Declare a Node reference curr to point
at the first element (front) of the list.
This is position 0. A for-loop moves curr
down the sequence n times. The
variable curr then references the
element at position n. The value at
position n is curr.nodeValue.

9

Locating a List Position

Node<T> curr = front;
// move curr down the sequence through n successor nodes
for (int i = 0; i < n; i++)

curr = curr.next;

Assign curr to front

curr

front

Move curr with 3 iterations

front

pos 3

curr

pos 0 pos 2pos 1 pos 3

Updating the Front of the List

Inserting or deleting an element at
the front of a list is easy because
the sequence maintains a
reference that points at the first
element.

10

Updating the Front of the List (2)

To insert, start by creating a new node with
item as its value. Set the new node to point at
the current first element. Then update front to
point at the new first element.

Node<T> newNode = new Node<T>(item);

// insert item at the front of the list
newNode.next = front;
front = newNode;

item

newNode

front

 //

Updating the Front of the List (3)

Deleting the first element involves
setting front to reference the second
node of the list.

front = front.next; // establish a new front

front

 //

front.next

11

General Insert Operation

Inserting a new node before a node referenced by
curr involves updating only adjacent links and does
not affect the other elements in the sequence.
To insert the new node before a node referenced
by curr, the algorithm must have access to the
predecessor node prev since an update occurs with
the next field of prev.

General Insert Operation (2)

Create newNode with value item.
Connecting newNode to the list
requires updating the values of
newNode.next and prev.next.

12

General Insert Operation (3)

Node curr, prev, newNode;
// create the node and assign it a value
newNode = new Node(item);
// update links
newNode.next = curr; // step 1
prev.next = newNode; // step 2

General Delete Operation

Deleting the node at position curr
also requires access to the
predecessor node prev.
Update the link in the predecessor
node by assigning prev to reference
the successor of curr (curr.next).

13

General Delete Operation (2)

Node curr, prev;

// reconnect prev to curr.next
prev.next = curr.next;

Removing a Target Node

To remove the first occurrence of a
node having a specified value, begin
with a scan of the list to identify the
location of the target node.
The scan must use a pair of references
that move in tandem down the list. One
reference identifies the current node in
the scan, the other the previous
(predecessor) node.

14

Removing a Target Node (2)

Once curr identifies the node that matches
the target, the algorithm uses the
reference prev to unlink curr.

Removing a Target Node (3)

Set reference curr to the front of the
list and prev to null, since the first node
in a linked list does not have a
predecessor.
Move curr and prev in tandem until
curr.nodeValue matches the target or
curr == null.

prev = curr; // update prev to next position (curr)
curr = curr.next; // move curr to the next node

15

Removing a Target Node (4)

Removing a Target Node (5)

If the scan of the list identifies a match
(target.equals(curr.nodeValue)), curr points
at the node that we must remove and prev
identifies the predecessor node.
There are two possible situations that
require different actions. The target node
might be the first node in the list, or it might
be at some intermediate position in the list.
The value of prev distinguishes the two
cases.

16

Removing a Target Node (6)

Case 1: Reference prev is null which
implies that curr is front. The action is to
delete the front of the list.

front = curr.next;

Removing a Target Node (7)
Case 2: The match occurs at some
intermediate node in the list. Both curr
and prev have non-null values. The
action is to delete the current node by
unlinking it from prev.

prev.next = curr.next;

17

Removing a Target Node (8)

The method generic remove() has a
parameter list that includes a reference to
the front of the list and the target value.
The method returns the value of front,
which may have been updated if the
deletion occurs at the first node in the list.

remove() Method

// delete the first occurrence of the target in the
// linked list referenced by front; returns the
// value of front
public static <T> Node<T> remove(Node<T> front,
T target)
{

// curr moves through list, trailed by prev
Node<T> curr = front, prev = null;
// becomes true if we locate target
boolean foundItem = false;

18

remove() Method (2)

// scan until locate item or come to end of list
while (curr != null && !foundItem)
{

// check for a match; if found, check
// whether deletion occurs at the front
// or at an intermediate position
// in the list; set boolean foundItem true
if (target.equals(curr.nodeValue))
{

// remove the first Node
if (prev == null)

front = front.next;
else

// erase intermediate Node
prev.next = curr.next;

foundItem = true;
}

remove() Method (3)

else
{

// advance curr and prev
prev = curr;
curr = curr.next;

}
}
// return current value of front which is
// updated when the deletion occurs at the
// first element in the list
return front;

}

19

Program 10.1
import java.util.Random;
import java.util.Scanner;
import ds.util.Node;
// methods toString() and remove()
import ds.util.Nodes;

public class Program10_1
{

public static void main(String[] args) {
// declare references; by setting front to null,
// the initial list is empty
Node<Integer> front = null, newNode, p;
// variables to create list and
// setup keyboard input
Random rnd = new Random();
Scanner keyIn = new Scanner(System.in);
int listCount, i;

Program 10.1 (2)
// prompt for the size of the list
System.out.print("Enter the size of the list: ");
listCount = keyIn.nextInt();

// create a list with nodes having random
// integer values from 0 to 99; insert
// each element at front of the list
for (i = 0; i < listCount; i++)
{

newNode = new Node<Integer>(rnd.nextInt(100));
newNode.next = front;
front = newNode;

}

System.out.print("Original list: ");
System.out.println(Nodes.toString(front));

20

Program 10.1 (3)

System.out.print("Ordered list: ");
// continue finding the maximum node and
// erasing it until the list is empty
while (front != null)
{

p = getMaxNode(front);
System.out.print(p.nodeValue + " ");
front = Nodes.remove(front, p.nodeValue);

}
System.out.println();

}

Program 10.1 (4)

// return a reference to the node
// with the maximum value
public static <T extends Comparable<? super T>>
Node<T> getMaxNode(Node<T> front)
{

// maxNode reference to node
// containing largest value (maxValue);
// initially maxNode is front and
// maxValue is front.nodeValue; scan
// using reference curr starting with
// the second node (front.next)
Node<T> maxNode = front, curr = front.next;
T maxValue = front.nodeValue;

21

Program 10.1 (5)

while (curr != null)
{

// see if maxValue < curr.nodeValue;
// if so, update maxNode and maxValue;
// continue scan at next node
if (maxValue.compareTo(curr.nodeValue)< 0)
{

maxValue = curr.nodeValue;
maxNode = curr;

}
curr = curr.next;

}
return maxNode;

}
}

Program 10.1 (Run)

Run:

Enter the size of the list: 9
Original list: [77, 83, 14, 38, 70, 35, 55, 11, 6]
Ordered list: 83 77 70 55 38 35 14 11 6

