
Java Actually 1: Getting started 1-5/21

Overview of programming activities
• Activities sufficient for writing small program:

• Many other activities are involved when writing larger programs.

Edit
source code

(start)

Build
program

Test
program

[no build error]

[build error]

[the program is done]
(end)

[deficiencies or errors found]

Java Actually 1: Getting started 1-6/21

Source code
(example)

// (1) This source code file is called SimpleProgram.java
public class SimpleProgram {
 // Print a proverb, and the number of characters in the proverb.
 public static void main(String[] args) { // (2)

 System.out.println("A proverb:"); // (3)

 String proverb = "Practice makes perfect!"; // (4)
 System.out.println(proverb); // (5)

 int characterCount = proverb.length(); // (6)
 System.out.println("The proverb has " + characterCount
 + " characters.");
 }
}

Class name

Java Actually 1: Getting started 1-7/21

Editing source code
• We write the source code in text files:

• Commonly called source code files.
• Describes exactly what tasks the computer should

perform.
• Contain only characters that constitute the actual

text of the source code, (no formatting).
• Choose a good editor for writing source code.

• The compiler requires the source code files to be named according to specific rules:
• Correct:
• SimpleProgram.java

• Incorrect:
• simpleprogram.java (wrong case)
• SimpleProgram.java.doc (wrong extension)
• Simple~1.java.doc (Microsoft Windows short-names not allowed)

Edit
source code

(start)

Class name

Java Actually 1: Getting started 1-8/21

Build program: Compiling Java programs

 > javac SimpleProgram.java (Run this on the command-line)

 > javac MainClass.java

SimpleProgram.java

public class SimpleProgram {
 // ...
}

javac
compiled by generates SimpleProgram.class

(executable byte code)

011

01110

01011

(a) One class in the source code file

MainClass.java

public class MainClass {
 // ...
}
class Extra {
 // ...
}

javac

(b) Two classes in the source code file

generates MainClass.class

Extra.class

generates

011

01110

01011

011

01110

01011

compiled by

Java Actually 1: Getting started 1-9/21

Build program: Compilation errors
• The compiler translates source

code to byte code.

• It may detect errors in the source.

• The compiler will report any
errors and terminate the
compilation.

• The errors must be corrected in the
source code and the compiler run
again to compile the program.

> javac SimpleProgram.java

SimpleProgram.java:9: ')' expected

 System.out.println(proverb; // (5)

 ^

1 error
(Oops, forgot the closing parenthesis.)

Edit
source code

Build
program

[no build error]

[build error]

The "^" indicates where the error is located

Java Actually 1: Getting started 1-10/21

Running Java programs

 > java -ea SimpleProgram (Run this on the command-line)

• Specify the exact class name, without any “.class” or “.java” extensions.

• Check the use of upper and lowercase letters in the class name.

• Make sure that the source code has been compiled.

Test
program

[no build error]

[the program is done]
(end)

Java Actually 1: Getting started 1-11/21

Objects and Operations

How to make an omelette:

1. Open() the refrigerator

2. Take out() an egg carton

3. Open() the egg carton

4. Take out() two eggs

5. Close() the egg carton

6. ...

The type of the object determines the operations that can be performed on it:

• Open() the frying pan (a frying pan cannot be opened)

Legend:

Operation: operation
name()

Object: object name

Java Actually 1: Getting started 1-12/21

Object based programming (OBP)
• Describing tasks as operations executed on objects.

• Define objects that are useful for the problem you’re trying to solve.

• E.g. for a program to keep track of library loans, create objects representing...
– tangible items: books, journals, audio tapes
– non-tangible concepts: lending date, information about library users

• Programs usually have more than one object of the same type.

MILK MILK MILK

Egg
«class»

MilkBottle
«class»

MILK

«operations»
crack()
scramble()

«operations»
uncap()
drinkFrom()

Objects
multiple of each type

Classes
one for each type of object
(the class is the type)

Java Actually 1: Getting started 1-13/21

The Java programming language

comments

class declaration

method declaration

class name

method name method body

class body

statements
executed
in sequence

parameter declaration

bottom of source code file

top of source code file

// (1) This source code file is named SimpleProgram.java

public class SimpleProgram {

 // Print a proverb, and the number of characters in the proverb.

 public static void main(String[] args) { // (2)

 System.out.println("A proverb:"); // (3)

 String proverb = "Practice makes perfect!"; // (4)
 System.out.println(proverb); // (5)

 int characterCount = proverb.length(); // (6)

 System.out.println("The proverb has " + characterCount + " characters.");
 }

}

Java Actually 1: Getting started 1-14/21

Comments and indentation

 // This is a source code comment. (ignored by compiler)

This will technically work...

 public static void main(String[]args){System.out.println("A proverb:");
 String proverb="Practice makes perfect!";System.out.println(proverb);int
 characterCount=proverb.length();System.out.println("The proverb has "+
 characterCount+" characters.");}

...but don’t do it.
Please.

• Use proper indentation:
– It makes the source code easier to read and modify.
– Java convention: use four spaces for each indentation step

Java Actually 1: Getting started 1-15/21

Program entry point

public static void main(String[] args) {

 ... method body containing statements that will be executed one by one...
}

• For a Java program to be executable, it must define exactly one main() method.

• For very small programs:
– one source code file
– primary class in the file that contains the main() method

• For larger programs:
– split the source code into several files
– one class in each file
– only one file containing the main() method

Java Actually 1: Getting started 1-16/21

Statements

System.out.println("A proverb:");

String proverb = "Practice makes perfect!";

System.out.println(proverb);

int characterCount = proverb.length();

object reference

method name

parameter value

method call

variable name string value

variable declaration
variable assignment

method call variable declaration

variable assignment

method call

Java Actually 1: Getting started 1-17/21

Variables

• named locations in the computer’s internal storage (memory)

• holds values during program execution

• often used by methods to hold intermediate results

• storing numeric values is very common

• storing other types of values is also possible

• Store a value in a variable:
 String proverb = "Practice makes perfect!";

• Later, use value by referring to the variable:
 System.out.println(proverb);

Value
Variable name
Type

Java Actually 1: Getting started 1-18/21

Sequence of method calls during program execution

SimpleProgram

 println("A proverb:")

System.out

proverb:String

println(proverb)

String proverb =
 "Practice makes perfect!"

length()

23

main()

The main()
method call
returns, and

program ends

Program
execution

starts

println("The proverb has 23 characters.")

Java Actually 1: Getting started 1-19/21

Byte code and the Java Virtual Machine
• Java programming language:

– a high-level language
– provides a rich set of language
– natural for humans to read

• Java byte code:
– a low-level language
– provides a small set of basic instructions
– suited for execution by machines
– platform independent

• Java Virtual Machine (JVM):
– a program that interprets byte code instructions
– not a physical machine...

...but behaves much in the same way as a central processing unit (CPU)
– may virtual machines interpret the byte code directly
– or recompile it to platform specific machine code during execution
– implementations exist for several platforms (Windows, Solaris, Linux)

Java Actually 1: Getting started 1-20/21

Program code at several levels

getstatic <Field System.out java.io.PrintStream>
ldc <String "A proverb:">
invokevirtual <Method PrintStream.println (String)void>
ldc <String "Practice makes perfect!">
astore_1
getstatic <Field System.out java.io.PrintStream>
aload_1
invokevirtual <Method PrintStream.println (String)void>
aload_1
invokevirtual <Method String.length ()int>
istore_2

8B 15 F0 93 04 08 mov edx,[0x80493f0]
8B 0A mov ecx,[edx]
A1 0C 92 04 08 mov eax,[0x804920c]
89 44 24 04 mov [esp+0x4],eax
89 14 24 mov [esp],edx
FF 51 7C call near [ecx+0x7c]
8B 1D 10 92 04 08 mov ebx,[0x8049210]
A1 F0 93 04 08 mov eax,[0x80493f0]
8B 10 mov edx,[eax]
89 5C 24 04 mov [esp+0x4],ebx
89 04 24 mov [esp],eax
FF 52 7C call near [edx+0x7c]
85 DB test ebx,ebx
0F 84 82 00 00 00 jz near 0xc51
89 1C 24 mov [esp],ebx
E8 9D FD FF FF call 0x974
89 C6 mov esi,eax

is compiled to
processor-
independent Java
byte code

can be further translated
into processor dependent
code
(x86-code shown here)

System.out.println("A proverb:");
String proverb = "Practice makes perfect!";
System.out.println(proverb);

int characterCount = proverb.length()

Source code:

Java byte code:

x86 processor instructions:

written
by
programmers

interpreted
by
Java
Virtual
Machine

executed
by
Central
Processing
Unit

High level

Low level

