
Identity-based Access Control

The kind of access control familiar from operating
systems like Unix or Windows based on user identities
This model originated in ‘closed’ organisations
(‘enterprises’) like universities, research labs, that have
authority over its members.
Members (users) can be physically located.
Access control policies refer naturally to user
identities.
Audit logs point to users who can be held accountable.
Access control seems to require by definition that
identities of persons are verified.

Other Aspects

Access rules are local: no need to search for the
rule that should be applied since stored in ACL with
the object.
Enforcement of rules is centralized: reference
monitor is independent when making a decision.
Simple access operations: read, write, execute;
single subject per rule; no rules based on object
content.
Homogeneity: same organisation defines
organizational security policy and automated
security policy.

Changes in the 1990s

Internet connections to parties never met before:
‘identity’ cannot be part of our access rules.
not always able to hold them accountable.

Java sandbox shows it is not necessary to refer to
users when describing or enforcing access control.
Access controlled at level of applets, not at
granularity of read/write/execute.
Instead of asking who made the request, ask what
to do with it.

What changed with the web?

Separation of program and data is blurred;
executable content (applets, scripts) embedded in
interactive web pages that can process user input.
Computation moved to the client who needs
protection from rogue content providers.

Lesson from early PC age: floppy disks from arbitrary
sources were the route for computer virus infections.

Client asked to make decisions on security policy
and on enforcing security: end user becomes
system administrator and policy maker.
Browser becomes part of the TCB.

Changes in the Environment

When organisations collaborate, access
control can be based on more than one
policy and potential conflicts between
policies have to be addressed.
How to export security identifiers from
one system into another system?
Decision on access requests may be made
by entity other than the one enforcing it
How does a user know which credentials to
present?

Code-based Access Control

If not possible to rely on principal who requests an
access control decision, look at the request itself.
Requests can be programs, rather than elementary
read/write instructions.
Code-based access control: access control where
permissions are assigned to (parts of) code.
Major examples: Java security model, .NET
security framework (code access control).

Access Control Parameters

Security attributes of code could be:
Site of code origin: local or remote?
URL of code origin: intranet or Internet?
Code signature: signed by “trusted” author?
Code proof: code author provides proof of
security properties
Identity of sender: principal the code comes
from
…

Questions central to code-based
access control.

In code-based access control, when process calls
another function, access decisions refer to access
rights assigned to that function.
Should calling process also delegate some of its
access rights to process executing the function
being called?
Should calling process limit access rights of the
function executing the program being called?
Which privileges should be valid when one function
calls another function?

Call Chains

Example 1: function A has access right to resource
R, B does not; A calls B, B requests access to R:
Should access be granted?

Conservative answer is ‘no’, but A could explicitly delegate
the access right to B.

Example 2: function B has access right to resource
R, A does not; A calls B, B requests access to R:
Should access be granted?

Conservative answer is ‘no’, but B could explicitly assert its
access right.

A B R

Enforcing Policies

How to compute current permissions granted to
code?
Access decisions should know about entire call
chain.
Information about callers maintained on call stack
used by Java VM for managing executions.
Design decision: re-use call stack for policy
evaluation.
Lazy evaluation: evaluate granted permissions just
when a permission is required to access a resource.

Dynamic Stack Inspection

Record, for each stack frame, the security
permissions of the function.
Rights of final caller are computed as the
intersection of permissions for all entries on call
stack.

B
A

effective rights =
rights(B) ∩ rights(A) ∩ …

Limits of Stack Inspection

Access control explained in terms of runtime stack
for implementation reasons (lazy evaluation).

Performance? Common optimizations are disabled.
Security: What guaranteed by stack inspection?
Hard to relate to high-level security policies.

Two concerns for developers:
Untrusted component may take advantage of my code.
Permissions may be missing when running my code.

Stack inspection blind to many control and data flows:
Parameters, results, mutable data, objects, inheritance,
callbacks, events, exceptions, concurrency…

Each case requires a specific discipline or mechanism.

Java Security

Java: strongly typed - type safe - object-oriented general
purpose programming language.
Static (and dynamic) type checking to examine whether arguments
received during execution always of correct type.
Security: no pointers arithmetic; memory access through pointers
one of main causes for security flaws in C or C++.
Java source code translated into machine independent byte code
(similar to assembly language) and stored in class files.
Platform specific virtual machine interprets byte code translating
it into machine specific instructions.
When running a program, a Class Loader loads any additional
classes required.
Security Manager enforces the given security policy.

Java Execution Model

Java
Source Code

Compiler Java
Byte Code

Java Runtime

Security
Manager

Class Loader

Byte Code
Verifier

executable

JDK 1.1 Security Model

system resources

Security Manager

full access
to resources

Sandbox
restricted access

local code remote code (applet)

trusted (signed) code (added in version 1.1)

Discussion

Basic policy inflexible:
Local/signed code is unrestricted.
Applet/unsigned code is restricted to sandbox.
No intermediate level: how to give some privileges to a home
banking application?

Local/remote is not a precise security indicator:
Parts of local file system could reside on other machines
Downloaded software becomes “trusted” once cached or
installed on local system.

For more flexible security policies a customized
security manager needed to be implemented.

Requires security AND programming skills.

Java 2 Security Model

Java 2 security model no longer based on distinction
between local code and applets, and applets and
applications controlled by same mechanisms.
Reference monitor of Java security model performs
fine-grained access control based on security policies
and permissions.
Policy definition separated from policy enforcement.
Single method checkPermissions() handles all security
checks.

Byte Code Verifier

Analyzes Java class files: performs syntactic
checks, uses theorem-provers and data flow
analysis for static type checking.
There is still dynamic type checking at run time
Verification guarantees properties like:

Class file is in proper format.
Stacks will not overflow.
All operands have arguments of correct type.
No data conversion between types.
All references to other classes are legal.

Class Loaders

Protect integrity of run time environment; applets
not allowed to create their own Class Loaders and
to interfere with each other.

Vulnerabilities in a class loader are particularly
security critical (if exploited by attacker to insert
rogue code).

Each Class Loader has own name space; each class
labeled with Class Loader that installed it.

Security Policies

Security policy: maps set of properties characterizing
running code to set of access permissions granted to
the code.
Code characterized by CodeSource:

origin (URL)
digital certificates

Permissions contain target name and set of actions and
granted to protection domains:

Classes and objects belong to protection domains and ‘inherit’
the granted permissions.
Each class belongs to one and only one domain.

Security Manager

Security Manager: reference monitor in JVM;
security checks defined in AccessController class.

Uniform access decision algorithm for all permissions.
Access (normally) only granted if all methods in
the current sequence of invocations have the
required permissions (‘stack walk’).
Controlled invocation: privileged operations;
doPrivileged() tells the Java runtime to ignore the
status of the caller.

Summary

Java 2 security model flexible and feature-rich; it
gives a framework but does not prescribe a fixed
security policy.
JAAS (Java Authentication and Authorization
Service) adds user-centric access control.
Sandbox enforces security at service layer; security
can be undermined by access to layer below:

users running applications other than web browser.
attacks by breaking the type system.

