
1

Data Structures for Java
William H. Ford
William R. Topp

Chapter 15
Queues and Priority Queues

Bret Ford

© 2005, Prentice Hall

Queue Collection

A queue is a list of items that allows
for access only at the two ends of the
sequence, called the front and back of
the queue. An item enters at the back
and exits from the front.

Queue Operations

Queue operations are restricted to the
ends of the list, called front and back.

push(item) adds item at the back
pop() removes element from the front
peek() accesses value at the front

Queue Operations (2)
An item removed (pop) from the queue
is the first element that was added
(push) into the queue. A queue has
FIFO (first-in-first-out) ordering.

Queue inserts followed by queue
deletions maintain the order of the
elements

Queue Interface
The generic Queue interface defines a
restricted set of collection operations that
access and update elements only at the end
of the list.

interface Queue<T> ds.util
 boolean isEmpty()

Returns true if this collection contains no
elements and false if the collection has at least 1
element.

 T peek()
Returns the element at the front of the queue. If
empty, throws a NoSuchElementException.

Queue Interface (end)

interface Queue<T> ds.util
 T pop()

Removes the element at the front of the queue
and returns its value. If the queue is empty,
throws a NoSuchElementException.

 void push(T item)
Inserts item at the back of the queue.

 int size()
Returns the number of elements in this queue

2

LinkedQueue Class

The Queue interface is an adapter which defines
a restricted set of list methods. A Queue class
can be efficiently implemented using a linked list
as the storage structure. The LinkedQueue class
uses a LinkedList collection and composition.

LinkedQueue Class (2)

public class LinkedQueue<T> implements Queue<T>
{

private LinkedList<T> qlist = null;
public LinkedQueue ()
{

qlist = new LinkedList<T>();
}
. . .

}

Implementing method pop()

Method has runtime efficiency O(1)

public T pop()
{

// if the queue is empty, throw
// NoSuchElementException
if (isEmpty())

throw new NoSuchElementException(
"LinkedQueue pop(): queue empty");

// remove and return the first element in the list
return qlist.removeFirst();

}

Program 15.1
The program implements an interview scheduler
that is a queue of Time24 objects. Output lists
the times and the potential length of each
interview.

import java.io.*;
import java.util.Scanner;
import ds.util.LinkedQueue;
import ds.time.Time24;

public class Program15_1
{

Program 15.1 (2)
public static void main(String[] args)

throws IOException
{

final Time24 END_DAY = new Time24(17,00);
String apptStr;

// time interval from current appt to next appt
Time24 apptTime = null, interviewTime = null;

// input stream to read times from file "appt.dat"
Scanner input = new Scanner(

new FileReader("appt.dat"));

Program 15.1 (3)
// queue to hold appointment time for job applicants
LinkedQueue<Time24> apptQ = new

LinkedQueue<Time24>();

// construct the queue by appt times as
// strings from file; use parseTime to
// convert to Time24 object
while (input.hasNext())
{

apptStr = input.nextLine();
apptQ.push(Time24.parseTime(apptStr));

}

// output the day's appointment schedule
System.out.println("Appointment Interview");

3

Program 15.1 (end)
// pop next appt time and determine available time
// for interview (peek at next appt at front of queue)
while (!apptQ.isEmpty())
{

// get the next appointment
apptTime = apptQ.pop();

// interview time is interval to next appt or END_DAY
if (!apptQ.isEmpty())

interviewTime = apptTime.interval(apptQ.peek());
else

interviewTime = apptTime.interval(END_DAY);
// display appointment time and interview time

System.out.println(" " + apptTime +
" " + interviewTime);

}
}

}

Program 15.1 (Run)
File "appt.dat":

10:00
11:15
13:00
13:45
14:30
15:30
16:30

Run:

Appointment Interview
10:00 1:15
11:15 1:45
13:00 0:45
13:45 0:45
14:30 1:00
15:30 1:00
16:30 0:30

Bounded Queue
A bounded queue is a queue that can
contain a fixed number of elements. An
insert into the queue can occur only
when the queue is not already full.
The BQueue class implements a bounded
queue. The class implements the Queue
interface. The boolean method full()
indicates whether the queue is full.
The class uses an array to store the
elements.

BQueue Class API

interface BQueue<T> implements Queue ds.util
 BQueue()

Creates a queue with fixed size 50.
 BQueue(int size)

Creates a queue with specified fixed size.
boolean full()

 Returns true if the number of elements in the
 queue equals is fixed size and false otherwise.

BQueue Class Example

The example illustrates the declaration
of a BQueue object and the use of full()
to avoid attempting an insertion into a
full queue. An exception occurs when we
call push() from within a try block and
attempt to add an element to a full
queue.

BQueue Class Example (2)
// declare an empty bounded queue with fixed size 15
BQueue<Integer> q = new BQueue<Integer>(15);
int i;

// fill-up the queue
for (i=1; !q.full(); i++)

q.push(i);
// output element at the front of q and the queue size
System.out.println(q.peek() + " " + q.size());

try
{

q.push(40); // exception occurs
}

catch (IndexOutOfBoundsException iobe)
{ System.out.println(iobe); }

4

BQueue Class Example (end)

Output:
1 15
java.lang.IndexOutOfBoundsException: BQueue push(): queue full

BQueue Class
public class BQueue<T> implements Queue<T>
{

// array holding the queue elements
private T[] queueArray;
// index of the front and back of the queue
private int qfront, qback;
// the capacity of the queue and the current size
private int qcapacity, qcount;

// create an empty bounded queue with specified size
public BQueue(int size)
{

qcapacity = size;
queueArray = (T[])new Object[qcapacity];
qfront = 0;
qback = 0;
qcount = 0;

}

BQueue Class (end)
public BQueue()
{

// called non-default constructor with capacity = 50
BQueue(50);

}

< method full() and methods in the Queue interface >
}

BQueue Class Implementation

No room for E.
Need a way to use
the slots at indices 0, 1.

BQueue Implementation (2)
Think of the queue as a circular sequence
with a series of slots that allow element to
enter in a clockwise fashion. The element
at index qfront exits the queue and an
element enters the queue at index qback.

BQueue Implementation (3)
Treating the array as a circular sequence
involves updating qfront and qback to cycle
back to the front the array as soon as they
move past the end of the array.

Move qback forward: qback = (qback + 1) % qcapacity;
Move qfront forward:qfront = (qfront + 1) % qcapacity;

5

BQueue full()
public boolean full()
{

return qcount == qcapacity;
}

BQueue push()
public void push(T item)
{

// is queue full? if so, throw an
// IndexOutOfBoundsException
if (qcount == qcapacity)

throw new IndexOutOfBoundsException(
"BQueue push(): queue full");

// insert into the circular queue
queueArray[qback] = item;
qback = (qback+1) % qcapacity;

// increment the queue size
qcount++;

}

BQueue pop()
public T pop()
{

// if queue is empty, throw a NoSuchElementException
if (count == 0)

throw new NoSuchElementException(
"BQueue pop(): empty queue");

// save the front of the queue
T queueFront = queueArray[qfront];

// perform a circular queue deletion
qfront = (qfront+1) % qcapacity;

// decrement the queue size
qcount--;
// return the front
return queueFront;

}

Priority Queue Collection
A priority queue is a collection in which all elements have
a comparison (priority) ordering.
It provides only simple access and update operations
where a deletion always removes the element of highest
priority

PQueue Interface
The generic PQueue resembles a queue
with the same method names.

interface PQueue<T> ds.util
 boolean isEmpty()

Returns true if the priority queue is empty and
false otherwise.

 T peek()
Returns the value of the highest-priority item. If
empty, throws a NoSuchElementException.

PQueue Interface (end)

interface PQueue<T> ds.util
 T pop()

Removes the highest priority item from the
queue and returns its value. If it is empty,
throws a NoSuchElementException.

 void push(T item)
Inserts item into the priority queue.

 int size()
Returns the number of elements in this
priority queue

6

HeapPQueue Class

The collection class HeapPQueue
implements the PQueue interface.

By default, the element of highest priority
is the one with the largest value (a
maximum priority queue); that is, if x and
y are two elements in a priority queue and
x > y, then x has higher priority than y.

HeapPQueue Class Example
// create an empty priority queue of generic type String
HeapPQueue<String> pq = new HeapPQueue<String>();
int n;
pq.push("green");
pq.push("red");
pq.push("blue");
// output the size and element with the highest priority
System.out.println(pq.size() + " " + pq.peek());
// use pop() to clear the collection and list elements in
// priority (descending) order
while (!pq.isEmpty())

System.out.print(pq.pop() + " ");

Output:
3 red
red green blue

Support Services Pool

The application processes job requests
to a company support service pool. A
request has a job ID, a job status, and
a time requirement.
JobStatus is an enum with a listing of
employee categories with values that
allows for comparison of objects.
The JobRequest class implements
Comparable and describes job objects.

Support Services Pool (2)

enum JobStatus

{

clerk (0), manager (1), director(2),
president(3);

int jsValue;

JobStatus(int value) { jsValue = value; }

public int value() { return jsValue; }

}

Support Services Pool (3)

class JOBREQUEST implements Comparable<JobRequest>
 Constructors
 JobRequest (JobStatus status, int ID, int time)

 Creates an object with the specified
 arguments.

 Methods
 int getJobID()

 Returns the ID for this object.
 int getJobStatus()

 Returns the status for this object.

Support Services Pool (4)

class JOBREQUEST implements Comparable<JobRequest>
 int getJobTime()

 Returns the time for this object in minutes.
static

JobRequest
readJob(Scanner sc)

Reads a job from the scanner with the form status
jobID jobTime; Returns a JobRequest object or
null is input is requests beyond end of file.

 String toString()
 Returns a string that represents a job in the
 format "<status name> <ID> <time>".

int compareTo(JobRequest item)
Compare the current object's jobStatus with the
jobStatus of item.

7

Program 15.3

The program processes job requests
with different employee statuses.
Output lists the jobs by status along
with their total time.

Program 15.3 (2)
import java.io.*;
import java.util.Scanner;
import ds.util.HeapPQueue;

public class Program15_3
{

public static void main(String[] args)
throws IOException
{

// handle job requests
HeapPQueue<JobRequest> jobPool =

new HeapPQueue<JobRequest>();

// job requests are read from file "job.dat"
Scanner sc = new Scanner(new FileReader(

"job.dat"));

Program 15.3 (3)
// time spent working for each category
// of employee
// initial time 0 for each category
int[] jobServicesUse = {0,0,0,0};
JobRequest job = null;

// read file; insert each job into
// priority queue
while ((job = JobRequest.readJob(sc)) != null)

jobPool.push(job);

// delete jobs from priority queue
// and output information
System.out.println("Category Job ID" +

" Job Time");

Program 15.3 (4)
while (!jobPool.isEmpty())
{

// remove a job from the priority
// queue and output it
job = (JobRequest)jobPool.pop();
System.out.println(job);

// accumulate job time for the
// category of employee
jobServicesUse[job.getStatus().value()] +=

job.getJobTime();
}
System.out.println();

writeJobSummary(jobServicesUse);
}

Program 15.3 (end)
private static void writeJobSummary(
int[] jobServicesUse)
{

System.out.println("Total Pool Usage");
System.out.println(" President " +

jobServicesUse[3]);
System.out.println(" Director " +

jobServicesUse[2]);
System.out.println(" Manager " +

jobServicesUse[1]);
System.out.println(" Clerk " +

jobServicesUse[0]);
}

}

Program 15.3 (Run)
Run

Category Job ID Job Time
President 303 25
President 306 50
Director 300 20
Director 307 70
Director 310 60
Director 302 40
Manager 311 30
Manager 304 10
Manager 305 40
Clerk 308 20
Clerk 309 20
Clerk 301 30

Total Pool Usage
President 75
Director 190
Manager 80
Clerk 70

