
1

Secure Socket Layer

2

Security Threat Classifications
One way to classify Web security threats in
terms of the type of the threat:

Passive threats
Active threats

Another way to classify Web security threats
in terms of the location of the threat:

Web server
Web browser
Network traffic (between browser and server)#

3

Web Security Approaches

Number of possible ways, similar in provided
services
Differ in

Scope of Applicability
Location within the TCP/IP Protocol Stack

Web security can be provided at any of these
networking layers or levels:

Network level
Transport level
Application level

4

Web Security: Network Level
Provide security using
IPSec

Advantages:
Transparent to users
and applications
Filtering : only selected
traffic need incur the
overhead of IPSec
processing

5

Web Security: Transport Level

Implemented above TCP
layer

Secure Sockets Layer
(SSL) and successor
Transport Layer Security
(TLS)

Advantages:
Could be transparent to
Applications
Part of Microsoft and
Netscape Browsers

6

Web Security: Application Level

Application specific
services embedded in
application

Secure Electronic
Transaction (SET),
S/MIME, PGP

Advantage
Service tailored to
specific needs of
application

7

Introduction to SSL
The overall goal of the Secure Sockets Layer (SSL) protocol is to
provide privacy and reliability between two communicating
applications.

SSL was developed by Netscape.
Evolved through an unreleased v1 (1994), flawed-but-useful v2
The current version of the SSL protocol is Version 3 (V3),
specification released March 1996.
standard TLS1.0 (Jan 1999) is just SSL3.0 with minor tweaks,
hence Version field is 3.1

Defined in RFC2246, http://www.ietf.org/rfc/rfc2246.txt
Open-source implementation at http://www.openssl.org/

Protocol allows client/server applications to communicate in a way
designed to prevent eavesdropping, tampering, or message forgery.

8

Goals
The goals of SSL Protocol v3.0, in order of their
priority, are:

Cryptographic security: SSL should be used to
establish a secure connection between two parties.

Interoperability: Independent programmers should
be able to develop applications utilizing SSL 3.0
that will then be able to successfully exchange
cryptographic parameters without knowledge of one
another's code.

9

Goals

Extensibility: SSL seeks to provide a framework
into which new public key and bulk encryption
methods can be incorporated as necessary.

This will also accomplish two sub-goals:
To prevent the need to create a new protocol.
To avoid the need to implement an entire new
security library.

Relative efficiency: Cryptographic operations tend
to be highly CPU intensive, particularly public key
operations.

10

SSL Services
peer entity authentication
data confidentiality
data authentication and integrity
compression/decompression
generation/distribution of session keys

integrated into protocol
security parameter negotiation
NOT non-repudiation
NO protection against traffic analysis attacks

11

Protocol Architecture
SSL can run under application protocols
such as:

HTTP
FTP
TELNET

SSL normally uses TCP/IP as its basic
transport protocol.
SSL uses X.509 certificates for
authentication
SSL uses RSA as its public-key cipher.
SSL can use any one of RC4-128, RC2-
128, DES, Triple DES or IDEA as its
bulk symmetric cipher.

12

Protocol Architecture
SSL is not a single protocol but rather
two layers of protocols:

The SSL Record Protocol which
provides the basic security services
to higher layer protocols.
Three higher-layer protocols are
defined as part of SSL:

SSL Handshake
SSL Change Cipher Spec
SSL Alert

These three higher-level protocols are
used in the management of SSL
exchanges.
SSL is designed to make use of TCP to
provide a reliable end-to-end secure
service.

13

SSL Communication
The Secure Sockets Layer (SSL) protocol defines two roles
for entities in the network:

One entity is always a client.
The other entity is a server.

SSL requires that each entity behaves very differently:
The client is the system that initiates the secure
communication.
The server responds to the client’s request.

SSL clients and servers communicate by exchanging SSL
messages.
The most basic operation that an SSL client and server can
perform is to establish a channel for encrypted
communication.

14

SSL Architecture
SSL session

an association between client and server
created by the Handshake Protocol
defines a set of cryptographic parameters
may be shared by multiple SSL connections

SSL connection
a transient, peer-to-peer, communications link
associated with one SSL session

Handshake protocol either establishes new session and connection
or uses existing session for new connection

15

SSL Session Parameters
SSL session negotiated by handshake protocol

session ID
chosen by server

X.509 public-key certificate of peer
possibly null

compression algorithm
cipher spec

encryption algorithm
message digest algorithm

master secret
48 byte shared secret

is_resumable flag
can be used to initiate new connections

16

SSL Connection State
connection end: client or server
Characterized by

client and server chosen random: 32 bytes each
keys generated from master secret, client/server
random

client_write_MAC_secret server_write_MAC_secret
client_write_key server_write_key
client_write_IV server_write_IV

cipher state: initially IV, subsequently next feedback
block

sequence number: set to 0 (max 264-1) at each
ChangeCipherSpec message

17

SSL Connection State
4 parts to state

current read state (security info for receiving)
current write state (security info for sending)
pending read state
pending write state

handshake protocol
initially current state is empty
either pending state can be made current and
reinitialized to empty by (receiving for read,
sending for write) ChangeCipherSpec message

18

SSL Record Layer Protocol

SSL uses its Record
Layer Protocol to
encapsulate all messages.

It provides a common
format to frame the
following message types:

Alert
ChangeCipherSpec
Handshake
Application protocol
messages

19

SSL Record Layer Protocol

The Record Layer formatting
consists of 5 bytes that
precede other protocol
message.

If message integrity is
active, a message
authentication code is
placed at the end of the
message.

If encryption is active,
this layer is also
responsible for the
encryption process.

20

SSL Record Layer Protocol

The Record Layer Protocol
takes an application
message and performs the
following operations:

Fragments the data into
manageable blocks.

Optionally, compresses
the data.

Default is no
compression.

21

SSL Record Layer Protocol

Adds a message
authentication code
(MAC).
Encrypts the data
plus MAC using
symmetric encryption.
Prepends a header.
Transmits the unit in
a TCP segment.

22

SSL Record Layer Protocol

Some values:
Fragment size: (no more
than) 214 bytes, or
16,384 bytes.

Compression: This
operation may not
increase content length
by more than 1024
bytes.

However, it should
shrink it!

23

SSL Record Layer Protocol

Message authentication code is calculated over the
data using a shared secret key as follows:
hash(MAC_write_secret || pad_2 ||

hash(MAC_write_secret || pad_1 || seq_num ||
SSLCompressed.type || SSLCompressed.length ||
SSLCompressed.fragment))

24

SSL Record Layer Protocol
where:
|| represents concatenation
MAC_write_secret represents the shared secret

key.
hash represents the cryptographic hash algorithm

(either MD5 or SHA-1).
pad_1 represents the byte 0x36 repeated 48 times

(384 bits) for MD5 and 40 times for SHA-1.
pad_2 represents the byte 0x5C repeated 48 times

for MD5 and 40 times for SHA-1.

25

SSL Record Layer Protocol

seq_num represents the sequence number for
this fragment.

SSLCompressed.type represents the higher
level protocol used to process this message.

SSLCompressed.length represents the length of
the compressed fragment.

SSLCompressed.fragment represents the
compressed (or plaintext) fragment.

26

SSL Record Layer Protocol

Encryption: After
encrypting the plaintext
(or, compressed plaintext)
message plus the MAC, the
overall message size
should not be more than
214 + 2048 bytes

Valid encryption
algorithms:

IDEA, DES, DES-40,
3DES, RC2-40,
Fortezza

RC4-40 & RC4-128

27

SSL Record Layer Protocol: Header

The pre-pended header
consists of the following fields:

Content Type: An 8-bit
field to define the higher-
layer protocol encapsulated.

The content types defined
are:

20: ChangeCipherSpec
21: Alert
22: Handshake
23: Application

28

SSL Record Layer Protocol: Header

Major Version: An 8-bit
field which indicates the
major version of SSL is in
use (e.g., 3).

Minor Version: An 8-bit
field which indicates the
minor version of SSL is in
use (e.g., 0).

Compressed Length: An
16-bit field which
indicates the length of the
compressed (plaintext)
fragment.

29

SSL Change Cipher Spec Protocol

The ChangeCipherSpec
Protocol is simplest possible
protocol since it has only one
message.

It consists of a single byte
with a value of 1.

This message causes a pending
state to be copied into the
current state which updates
the cipher suite to be used on
the connection.

30

SSL Alert Protocol
The Alert Protocol is used to
signal an error, or caution,
condition to the other party in
the communication.

Two bytes
The first byte takes either of
the following two values: :

“1” indicates a warning.
“2” indicates a fatal error.

Fatal errors terminate the
connection.

31

SSL Alert Protocol
W a r n i n g o r f a t a l (*)

 c l o s e _ n o t i f y (0) ,
 * u n e x p e c t e d _ m e s s a g e (1 0) ,
 * b a d _ r e c o r d _ m a c (2 0) ,
 d e c r y p t i o n _ f a i l e d (2 1) ,
 r e c o r d _ o v e r f l o w (2 2) ,

 * d e c o m p r e s s i o n _ f a i l u r e (3 0) ,
 * h a n d s h a k e _ f a i l u r e (4 0) ,
 b a d _ c e r t i f i c a t e (4 2) ,
 u n s u p p o r t e d _ c e r t i f i c a t e (4 3) ,
 c e r t i f i c a t e _ r e v o k e d (4 4) ,
 c e r t i f i c a t e _ e x p i r e d (4 5) ,
 c e r t i f i c a t e _ u n k n o w n (4 6) ,
 * i l l e g a l _ p a r a m e t e r (4 7) ,
 u n k n o w n _ c a (4 8) ,
 a c c e s s _ d e n i e d (4 9) ,
 d e c o d e _ e r r o r (5 0) ,
 d e c r y p t _ e r r o r (5 1) ,
 e x p o r t _ r e s t r i c t i o n (6 0) ,
 p r o t o c o l _ v e r s i o n (7 0) ,
 i n s u f f i c i e n t _ s e c u r i t y (7 1) ,
 i n t e r n a l _ e r r o r (8 0) ,
 u s e r _ c a n c e l e d (9 0) ,
 n o _ r e n e g o t i a t i o n (1 0 0)

32

SSL Handshake Protocol
The most complex part of SSL is the
Handshake Protocol.
provides means for client and server to:

Authenticate each other.
Negotiate an encryption and MAC
algorithm.
Negotiate the secret key to be used.

This protocol consists of a series of
messages. Each message consists of
three fields:

Type: A 8-bit field indicating the
type of message (1 of 10).
Length: A 3-byte field-length field.
Content: >=0-byte field for message
parameters.

33

SSL Handshake Protocol

Message Type Parameters
hello_request Null

client_hello Version, random, session id, cipher suite, compression method

erver_hello Version, random, session id, cipher suite, compression method

certificate Chain of X509 V3 certificates

server_key_exchange Parameters, signature

erver_done Null

certificate_verify Signature

client_key_exchange Parameters, signature

finished Hash value

The table shows the SSL messages with
the appropriate parameters that are used
with those messages.

34

Message Exchange
In SSL, the message exchange process is used to:

Authenticate the server.
Authenticate the client.
Select a cipher.
Exchange a key.
Transfer data.

All messages during handshaking and after, are sent
over the SSL Record Protocol layer.

35

SSL Handshake Protocol
Phase 1:

Establish security capabilities
Phase 2:

Server authentication and key exchange
Phase 3:

Client authentication and key exchange
Phase 4:

Finish

36

SSL
Handshake
Protocol

37

SSL Handshake Protocol
hello_request (not shown) can be sent anytime
from server to client to request client to start
handshake protocol to renegotiate session when
convenient
can be ignored by client

if already negotiating a session
Do not want to renegotiate a session

client may respond with a no_renegotiation alert

38

PHASE 1: establish security capabilities

The client-hello message sends the server some
challenge-data and a list of ciphers which the
client can support. The challenge-data is used to
authenticate the server later on.
client_hello parameters

4 byte timestamp, 28 byte random value
session ID:

non-zero for new connection on existing session
zero for new connection on new session

client version: highest version
cipher_suite list: ordered list
compression list: ordered list

39

PHASE 1: establish security capabilities

cipher suite
key exchange method

RSA: requires receiver’s public-key certificates
Fixed DH: requires both sides to have public-key
certificates
Ephemeral DH: signed ephemeral keys are exchanged,
need signature keys and public-key certificates on both
sides
Anonymous DH: no authentication of DH keys,
susceptible to man-in-the-middle attack
Fortezza: Fortezza key exchange (ignore from now on)

40

PHASE 1: establish security capabilities

cipher suite
cipher spec

CipherAlgorithm: RC4, RC2, DES, 3DES, DES40,
IDEA, Fortezza
MACAlgorithm: MD5 or SHA-1
CipherType: stream or block
IsExportable: true or false
HashSize: 0, 16 (for MD5) or 20 (for SHA-1) bytes
Key Material: used to generate write keys
IV Size: size of IV for CBC

41

PHASE 1: establish security capabilities

The server-hello message returns a connection-id,
a server certificate and a modified list of ciphers
which the client and server can both support.
server_hello parameters

32 byte random value
session ID:

new or reuse
version

lower of client suggested and highest supported
cipher_suite list: single choice
compression list: single choice

42

SSL
Handshake
Protocol

43

PHASE 2: server authentication & key exchange

Certificate message
used by the client to obtain the servers public key and
verify the identity of the server using any certification
authority certificates it has.
server’s X.509v3 certificate followed by optional chain of
certificates
required for RSA, Fixed DH, Ephemeral DH but not for
Anonymous DH

Server Key Exchange message
not needed for RSA, Fixed DH
needed for Anonymous DH, Ephemeral DH
needed for RSA where server has signature-only key

server sends temporary RSA public encryption key to client

44

PHASE 2: server authentication & key exchange

Server Key Exchange message
signed by the server
signature is on hash of

ClientHello.random, ServerHello.random
Server Key Exchange parameters

Certificate Request message
request a certificate from client
specifies Certificate Type and Certificate
Authorities

certificate type specifies public-key algorithm and use
Server Done message

ends phase 2, always required, no parameters

45

SSL
Handshake
Protocol

46

PHASE 3: client authentication & key exchange

Certificate message
sent if server has requested certificate and client has
appropriate certificate

otherwise send no_certificate alert

Client Key Exchange message
content depends on type of key exchange (see next slide)

Certificate Verify message
can be optionally sent following a client certificate with signing
capability
signs hash of master secret (established by key exchange) and
all handshake messages so far
provides evidence of possessing private key corresponding to
certificate

47

PHASE 3: client authentication & key exchange

Client Key Exchange message
RSA

client generates 48-byte pre-master secret, encrypts
with server’s RSA public key (from server certificate
or temporary key from Server Key Exchange message)

Ephemeral or Anonymous DH
client’s public DH value

Fixed DH
null, public key previously sent in Certificate Message

48

POST PHASE 3:
cryptographic computation

48 byte pre master secret
RSA

generated by client
sent encrypted either by server’s public RSA from certificate
or by temp. RSA from server_key_exchange message to server

DH
both sides compute the same value
each side uses its own private value and the other sides public
value

master_secret = PRF(pre_master_secret, "master secret",
ClientHello.random + ServerHello.random) [0..47];
pre_master_secret: 48 bytes

PRF as sequences and nestings of MD5 and SHA

49

SSL
Handshake
Protocol

50

PHASE 4: finish
Change Cipher Spec message

not considered part of handshake protocol but in
some sense is part of it
1 byte message protected by current state
copies pending state to current state

sender copies write pending state to write current state
receiver copies read pending state to read current state

immediately send finished message under new current
state

Finished message
sent under new algorithms and keys
content is hash of all previous messages and master
secret

51

PHASE 4: finish

 verify_data
 PRF(master_secret, finished_label, MD5(handshake_messages)+
 SHA-1(handshake_messages)) [0..11];

 finished_label
 For Finished messages sent by the client, the string "client
 finished". For Finished messages sent by the server, the
 string "server finished".

 handshake_messages
 All of the data from all handshake messages up to but not
 including this message. This is only data visible at the
 handshake layer and does not include record layer headers.

Finished message

52

Message Exchange

The client-finish message consists of the connection-id
originally sent by the server.

The connection-id acts as a nonce value which prevents
certain attacks.

The message is encrypted using the client-write-key.

Finally the server-finish message terminates the handshaking
section. It contains a new piece of data generated by the
server called the session-id.
The session-id is used in subsequent handshakes between the
same client and server to avoid having to go through all the
cipher and master key negotiation again.
Session-ids are cached by each party after a connection is
closed and should have only a 100 second life in a cache.

53

UPDATES
TLS 1.1 (SSL 3.2)
defined in RFC 4346 in Apr 2006, an update from TLS

version 1.0.
Added protection against Cipher block chaining (CBC) attacks.
The implicit Initialization Vector (IV) replaced with an explicit IV.

TLS 1.2 (SSL 3.3)
defined in RFC 5246 in Aug 2008, based on earlier TLS 1.1

spec. Major differences:
The MD5-SHA-1 combination in the pseudorandom function (PRF), in
the Finished message hash, and in the digitally-signed element
replaced with SHA-256, with option to use cipher-suite specified *.

54

UPDATES
TLS 1.2 (SSL 3.3) (cont.)

Enhancement in the client's and server's ability to specify which
hash and signature algorithms they will accept.
Expansion of support for authenticated encryption ciphers
TLS Extensions definition and Advanced Encryption Standard
CipherSuites were added.
Updated 3/2011 to forbid backward compatibility with SSL2.0

TLS 1.3 draft as of March 2016
https://tools.ietf.org/html/draft-ietf-tls-tls13-12

Deprecate SHA-1 with signatures
Remove support for DSA, MD5, SHA-224 hashes with signatures
Change to RSA-PSS signatures for handshake messages
Remove ChangeCipherSpec
Remove support for compression

