
1

Simple Java I/O

Streams
All modern I/O is stream-based
A stream is a connection to a source of data or
to a destination for data (sometimes both)
An input stream may be associated with the
keyboard
An input stream or an output stream may be
associated with a file
Different streams have different characteristics:

A file has a definite length, and therefore an end
Keyboard input has no specific end

2

Sources and Destinations

Types of Streams
If data flows from a source into a program, it
is called an input stream.
If data flows from a program to a destination,
it is called an output stream.
The basic stream classes are defined in the
package “java.io”.

3

Streams
I/O streams carry data.

Text streams have character data such as an
HTML file or a Java source file.
Binary streams have byte data that may
represent a graphic or executable code, such
as a Java .class file.

A stream carries data from a source to a
destination in FIFO mode.

How to do I/O

 import java.io.*;

Open the stream
Use the stream (read, write, or both)
Close the stream

4

Opening a stream
There is data external to your program that you want to
get, or you want to put data somewhere outside your
program
When you open a stream, you are making a connection
to that external place (then forgotten)

A FileReader is used to connect to a file that will be used
for input:
 FileReader fileReader =

new FileReader(fileName);
The fileName specifies where the (external) file is to be
found
fileName not used again; use fileReader

Using a stream
Some streams can be used only for input, others only
for output, still others for both
Using a stream means doing input from it or output to it
manipulate the data as it comes in or goes out

 int ch;
ch = fileReader.read();

The fileReader.read() method reads one character and
returns it as an integer, or -1 if there are no more
characters to read
The meaning of the integer depends on the file
encoding (ASCII, Unicode, other)

5

Manipulating the input data
Reading characters as integers is not usually
what you want to do
A BufferedReader will convert integers to
characters; it can also read whole lines
The constructor for BufferedReader takes a
FileReader parameter:
 BufferedReader bufferedReader =

new BufferedReader(fileReader);

Reading lines
 String s;
s = bufferedReader.readLine();

A BufferedReader will return null if there is
nothing more to read

6

Closing
A stream is an expensive resource
There is a limit on the number of streams
that you can have open at one time
You should not have more than one
stream open on the same file
You must close a stream before you can
open it again
Always close your streams!

Text files
Text (.txt) files are the simplest kind of files

text files can be used by many different programs

Formatted text files (such as .doc files) also
contain binary formatting information
Only programs that “know the secret code” can
make sense of formatted text files
Compilers, in general, work only with text

7

My LineReader class
class LineReader {

BufferedReader bufferedReader;

LineReader(String fileName) {...}

String readLine() {...}

void close() {...}
}

Basics of the LineReader
constructor

Create a FileReader for the named file:
 FileReader fileReader =

new FileReader(fileName);

Use it as input to a BufferedReader:
 BufferedReader bufferedReader =

new BufferedReader(fileReader);

Use the BufferedReader; but first, we need to
catch possible Exceptions

8

The full LineReader constructor

LineReader(String fileName) {
FileReader fileReader = null;
try { fileReader = new FileReader(fileName); }
catch (FileNotFoundException e) {
System.err.println
("LineReader can't find input file:" + fileName);
e.printStackTrace();

}
bufferedReader = new BufferedReader(fileReader);

}

readLine
String readLine() {

try {
return bufferedReader.readLine();

}
catch(IOException e) { e.printStackTrace();}
return null;

}

void close() {
try {

bufferedReader.close();
}
catch(IOException e) { }

}

close

9

How did I figure that out?
I wanted to read lines from a file
I found a readLine method in the
BufferedReader class
The constructor for BufferedReader takes
a Reader as an argument
An InputStreamReader is a kind of
Reader
A FileReader is a kind of
InputStreamReader

The LineWriter class
class LineWriter {

PrintWriter printWriter;

LineWriter(String fileName) {...}

void writeLine(String line) {...}

void close() {...}
}

10

The constructor for LineWriter
LineWriter(String fileName) {

try {
printWriter =

new PrintWriter(
new FileOutputStream(fileName), true);

}
catch(Exception e) {

System.err.println("LineWriter can't " +
"use output file: " + fileName);

}
}

Flushing the buffer
When you put information into a buffered
output stream, it goes into a buffer
The buffer may not be written out right away
If your program crashes, you may not know
how far it got before it crashed
Flushing the buffer is forcing the information
to be written out

11

PrintWriter
Buffers are automatically flushed when
the program ends normally
Usually it is your responsibility to flush
buffers if the program does not end
normally
PrintWriter can do the flushing for you
 public PrintWriter(OutputStream out,

boolean autoFlush)

writeLine
void writeLine(String line) {

printWriter.println(line);
}

close
void close() {

printWriter.flush();
try { printWriter.close(); }
catch(Exception e) { }

}

12

Class Reader
Constructor: protected Reader();
Main Methods

public int read() throws IOException:
single character or –1 if at end

public int read(char[] cbuf) throws IOException:
cbuf is the destination buffer, returns no. characters or –1 if EOS
reads characters from stream in cbuf until array full, error or EOS

public abstract int read(char[] cbuf, int off,
int len) throws IOException:

cbuf is the destination buffer, returns no. characters or –1 if EOS
reads characters from stream in cbuf until array full, error or EOS
off is the initial position, len the max no. characters to read

public abstract void close() throws IOException:
Closes the stream

Class InputStream
Constructor: public InputStream();
Same as before, but to read byte and array of
bytes:

public int read() throws IOException
public int read(byte[] cbuf) throws
IOException
public abstract int read(byte[] cbuf,
int off, int len) throws IOException
public abstract void close() throws
IOException

13

Class Writer
Constructor: protected Writer();
Main Methods:

public void write(int c) throws IOException
public void write(char[] cbuf) throws
IOException
public abstract void write(char[] cbuf,
int off, int len) throws IOException

cbuf: array of characters, off initial position, len max no. to write
public abstract void flush() throws IOException

buffer cbuf is immediately emptied
public abstract void close() throws IOException

closes the stream

Class OutputStream
Constructor: public OutputStream();
Main Methods:

public void write(byte[] b) throws IOException
writes b.length() bytes of b on the stream

public void write(byte[] b, int off, int len)
throws IOException

b array of bytes, off the initial position, len no. bytes to write
public abstract void write(int b) throws
IOException
public abstract void flush() throws
IOException

buffer is immediately emptied
public abstract void close() throws
IOException

closes the stream

14

The Reader Hierarchy

Writer Inheritance Hierarchy

15

Stream of characters

grey: only read/write
white: other processing as well

Stream of bytes

grey: only read/write
white: other processing as well

16

FILES
In Java they are represented by the class
FILE
abstract representation of files and directory
Methods to manipulate files/directory, but not
to read/write
To read/write from/on file, need to associate a
stream to the file
next:

FileInputStream/FileOutputStream
Useful Methods of the class FILE

FileInputStream/FileOutputStream
Subclasses of InputStream and OutputStream
Open stream of byte from/to file
same methods as InputStream and OutputStream
Constructors:

public FileInputStream(File file) throws
FileNotFoundException
public FileInputStream(String name) throws
FileNotFoundException
public FileOutputStream(File file) throws
FileNotFoundException
public FileOutputStream(String name) throws
FileNotFoundException
public FileOutputStream(String name, boolean
append) throws FileNotFoundException

17

FileReader/FileWriter
Subclasses of Reader and Writer
Open stream of characters from/to file
same methods as Reader and Writer
Costruttori:

public FileReader(File file) throws
FileNotFoundException
public FileReader(String name) throws
FileNotFoundException
public FileWriter(File file) throws
FileNotFoundException
public FileWriter(String name) throws
FileNotFoundException
public FileWriter(String name, boolean append)
throws FileNotFoundException

Class FILE
Abstract representation of file and directory
Methods to manipulate file and directory (create,
destroy etc.)
Does not contain methods to read/write
Constructors:

public File(String pathname) throws
NullPointerException
public File(File parent, String child) throws
NullPointerException
public File(String parent, String child)
throws NullPointerException

If the file does not exist, it is effectively created when
a stream to it is open

18

Class FILE
Main methods:

public boolean delete() throws SecurityException
public boolean exists() throws SecurityException
public String getAbsolutePath()
public String getName()
public boolean isDirectory()
public boolean isFile()
public long length()
public String[] list()
public File[] listFiles()
public static File[] listRoots()
public boolean mkdir() throws SecurityException

public boolean mkdirs() throws SecurityException

SecurityException is a subclass of RuntimeException

The Scanner Class
A Scanner object partitions text from
an input stream into tokens by means
of its "next" methods.
Declare a Scanner object as follows:

Scanner keyIn = new Scanner(System.in);
Scanner fileIn = new Scanner(

new FileReader("demo.dat"));

19

Scanner Methods

String line = sc.nextLine(); // whole line
int i = sc.nextInt(); // i = 17
String str = sc.next(); // str = "deposit"
double x = sc.nextDouble(); // x = 450.75
boolean b = sc.nextBoolean(); // b = false
char ch = sc.next().charAt(0); // ch = 'A'

Scanner Class API
class SCANNER java.util
 Constructors
 Scanner((InputStream source)

Creates a Scanner object that produces values
read from the specified input stream (Typically
standard input System.in that denotes the
keyboard)

 Scanner(Readable source)
Creates a Scanner object that produces values
read from the specified input stream (Typically a
FileReader that denotes a file)

20

Scanner Class API (2)
 Methods

void close()
Close the scanner.

 boolean hasNext()
Returns true if the scanner has another token in
the input stream

 boolean hasNextBoolean()
Returns true if the next token in the input
stream can be interpreted as a boolean value

 boolean hasNextDouble()
Returns true if the next token in the input
stream can be interpreted as a double value

 boolean hasNextInt()
Returns true if the next token in the input
stream can be interpreted as an int value

Scanner Class API (end)

 String next()
Finds and returns the next complete token in the
input stream as a String.

 boolean nextBoolean()
Scans the next token in the input stream into a
boolean value and returns that value.

 double nextDouble()
Scans the next token in the input stream into a
double value and returns that value.

 int nextInt ()
Scans the next token in the input stream into an
int value and returns that value.

21

Testing for Scanner Tokens

// loop reads tokens in the line
while (sc.hasNext())
{

token = sc.next();
System.out.println("In loop next token = " + token);

}

Output:
In loop next token = 17
In loop next token = deposit
In loop next token = 450.75
In loop next token = false
In loop next token = A

File Input using Scanner

A sports team creates the file "attendance.dat" to store
attendance data for home games during the season. The
example uses the Scanner object dataIn and a loop to read the
sequence of attendance values from the file and determine the
total attendance. The condition hasNextInt() returns false
when all of the data has been read from the file.

// create an Scanner object attached to the file "attendance.dat"
Scanner dataIn = new Scanner(new FileReader("attendance.dat"));
int gameAtt, totalAtt = 0;

// the loop reads the integer game attendance until end-of-file
while(dataIn.hasNextInt()) // loop iteration condition
{

gameAtt = dataIn.nextInt(); // input next game attendance
totalAtt += gameAtt; // add to the total

}

22

import java.util.Scanner;
import java.io.*;
import java.text.DecimalFormat;

public class Program2_1 {
public static void main(String[] args)
{

final double SALESTAX = 0.05;

// input streams for the keyboard and a file
Scanner fileIn = null;
// input variables and pricing information
String product;
int quantity;
double unitPrice, quantityPrice, tax,

totalPrice;
char taxStatus;

Program 2.1

// create formatted strings for
// aligning output
DecimalFormat fmtA = new DecimalFormat("#"),

fmtB = new DecimalFormat("$#.00");

// open the file; catch exception
// if file not found
// use regular expression as delimiter
try
{

fileIn =
new Scanner(new FileReader("food.dat"));

fileIn.useDelimiter("[\t\n\r]+");
}

Program 2.1 (2)

23

catch (IOException ioe)
{

System.err.println("Cannot open file " +
"'food.dat'");

System.exit(1);
}

// header for listing output
System.out.println("Product" +

align("Quantity", 16) +
align("Price", 10) +
align("Total", 12));

Program 2.1 (3)

// read to end of file; break
// when no more tokens
while(fileIn.hasNext())
{

// input product/purchase input fields
product = fileIn.next();
quantity = fileIn.nextInt();
unitPrice = fileIn.nextDouble();
taxStatus = fileIn.next().charAt(0);

// calculations and output
quantityPrice = unitPrice * quantity;
tax = (taxStatus == 'Y') ?

quantityPrice *
SALESTAX : 0.0;

totalPrice = quantityPrice + tax;

Program 2.1 (4)

24

System.out.println(product +
align("", 15-product.length()) +
align(fmtA.format(quantity), 6) +
align(fmtB.format(unitPrice), 13) +
align(fmtB.format(totalPrice),12) +
((taxStatus == 'Y') ? " *" : ""));

}
}
// aligns string right justified in a field of width n
public static String align(String str, int n) {

String alignStr = "";
for (int i = 1; i < n - str.length(); i++)

alignStr += " ";
alignStr += str;
return alignStr;

}
}

Program 2.1 (end)

Input file ('food.dat')
Soda 3 2.69 Y
Eggs 2 2.89 N
Bread 3 2.49 N
Grapefruit 8 0.45 N
Batteries 10 1.15 Y
Bakery 1 14.75 N

Run:

Product Quantity Price Total
Fruit Punch 4 $2.69 $11.30 *
Eggs 2 $2.89 $5.78
Rye Bread 3 $2.49 $7.47
Grapefruit 8 $.45 $3.60
AA Batteries 10 $1.15 $12.08 *
Ice Cream 1 $3.75 $3.75

Program 2.1 Run

25

About FileDialogs
The FileDialog class displays a window from
which the user can select a file
The FileDialog window is modal--the
application cannot continue until it is closed
Only applications, not applets, can use a
FileDialog; only applications can access files
Every FileDialog window is associated with a
Frame

Typical FileDialog window

26

FileDialog constructors
FileDialog(Frame f)

Creates a FileDialog attached to Frame f
FileDialog(Frame f, String title)

Creates a FileDialog attached to Frame f, with the
given title

FileDialog(Frame f,String title,int type)

Creates a FileDialog attached to Frame f, with
the given title; the type can be either
FileDialog.LOAD or FileDialog.SAVE

Useful FileDialog methods I
String getDirectory()

Returns the selected directory
String getFile()

Returns the name of the currently selected file, or
null if no file is selected

int getMode()
Returns either FileDialog.LOAD or
FileDialog.SAVE, depending on what the
dialog is being used for

27

Useful FileDialog methods II
void setDirectory(String directory)

Changes the current directory to directory
void setFile(String fileName)

Changes the current file to fileName
void setMode(int mode)

Sets the mode to either
FileDialog.LOAD or
FileDialog.SAVE

Serialization
You can also read and write objects to
files
Object I/O goes by the awkward name
of serialization
Serialization in other languages can be
very difficult, because objects may
contain references to other objects
Java makes serialization (almost) easy

28

Conditions for serializability
If an object is to be serialized:

The class must be declared as public
The class must implement Serializable
The class must have a no-argument
constructor
All fields of the class must be serializable:
either primitive types or serializable objects

Implementing the Serializable interface
To “implement” an interface means to define
all the methods declared by that interface,
but...
The Serializable interface does not define
any methods!

Question: What possible use is there for an
interface that does not declare any methods?
Answer: Serializable is used as flag to tell Java it
needs to do extra work with this class

29

Writing objects to a file
 ObjectOutputStream objectOut =

new ObjectOutputStream(
new BufferedOutputStream(

new FileOutputStream(fileName)));

 objectOut.writeObject(serializableObject);

 objectOut.close();

Reading objects from a file
 ObjectInputStream objectIn =

new ObjectInputStream(
new BufferedInputStream(

new FileInputStream(fileName)));

 myObject = (itsType)objectIn.readObject();

 objectIn.close();

