
171

6Assertion facility

This chapter covers
� Using assertions

� Controlling assertions from the command line

� Controlling assertions from code

� Knowing when to use assertions

jdk.book Page 171 Monday, March 11, 2002 3:38 PM

172 CHAPTER 6

Assertion facility

The assertion facility provides a mechanism for adding optional “sanity checks” to
your code. These checks are used during the development and testing phases, but
are turned off when the software is deployed. This allows the programmer to insert
debugging checks that might be too slow or memory-intensive to use in a real con-
text, but that help during development. In a sense, assertions are a lot like error
checks, except that they are turned off for deployment.

 Assertions generally are implemented in such a way that they can be compiled
out; in languages like C and C++, this means using the preprocessor. Since Java
doesn’t have macro facilities, features that otherwise might be created by the pro-
grammer must be built into the language themselves. As a result, assertions have
not been used widely in Java. The 1.4 release of the JDK corrects this.

 One of the most important features of this facility is that these checks can be
turned on and off at runtime, which means that you don’t have to decide during
development whether or not these checks should remain in the code or be removed
before deployment.

6.1 Assertion basics

An assertion is a conditional expression that should evaluate to true if and only if
your code is working correctly. If the expression evaluates to false, an error is sig-
naled.

 Here is an example of an assertion (shown in bold):

public class aClass {
 public void aMethod(int argument) {
 Foo foo = null;

 // ... somehow get a Foo object

 // Now check to make sure we've managed to get one:
 assert foo != null;
 }
}

This asserts that foo is not null. If foo is in fact null, an AssertionError is thrown.
Any code that executes after this line can safely assume that foo is not null.

 Assertions are very simple, but we’ll be looking at their usage in detail because
assertions are very important in the quest for robust code. In this chapter, we’ll
learn not only how to use assertions, but when and where to use them.

6.1.1 Why use assertions?
It is widely acknowledged in programming circles that software isn’t stable enough.
We all know we’re not doing enough error-checking. It is also acknowledged that

jdk.book Page 172 Monday, March 11, 2002 3:38 PM

Assertion basics 173

error-handling comprises a substantial amount of programming effort and a sub-
stantial portion of the resulting code. Error-handling code is also relatively dull to
write, especially compared with the main algorithm whose errors are being handled.

 Furthermore, dealing with errors can sometimes force you to consider design
questions that you may be trying to avoid. In such situations, programmers gener-
ally just ignore the possibility of error, mostly because they don’t want to lose their
train of thought.

 As programmers, we need to do more error-checking, and assertions are an
important step in this direction. Assertions can be used to catch conditions that we
don’t expect to happen. This may sound paradoxical, but given that we rarely check
for enough errors, it makes a certain sense. For every error we think of while pro-
gramming, there are a whole bunch more that never occur to us. It’s not possible to
eliminate all errors, but we can plan ahead for the unexpected.

6.1.2 Assertions vs. other error code
The programmer’s decision to use an assertion instead of other error-handling code
is often based on a general rule of programming psychology: the less likely a pro-
grammer thinks an error is, the less code she will write to deal with it. An assertion is
easier to write than a RuntimeException; a RuntimeException is easier to write than a
regular Exception. Since assertions are easy and quick to use, getting into the habit
of using them means you will catch more errors before they cause you trouble.

 The choice between these different methods of dealing with an exceptional case
really depends on how “exceptional” the exception really is. Is it something that
should never happen? Something that should only happen due to the error of
another programmer? Of the end user? Of the system administrator who configured
the server? Of the person who configured the client machine? Is it something that
will never happen after the software is released? Is it something that can be tolerated
in the field? What damage can result if this exceptional case happens even once in a
real-life situation?

 All of these questions are relevant. A good rule of thumb is that you should use
an assertion for exceptional cases that you would like to forget about. An assertion
is the quickest way to deal with, and forget, a condition or state that you don’t
expect to have to deal with. For example, an application might have a hidden con-
figuration file that it never deletes. Since it’s possible, but unlikely, that the user will
ever delete this hidden configuration file, it might be a good idea, after trying to
open the file, to assert that the open worked. It almost certainly will, but it’s a good
idea to check.

 Just about any computer programmer—or any computer user—can tell you that
software isn’t stable enough. Some software bugs are routine, and most of them

jdk.book Page 173 Monday, March 11, 2002 3:38 PM

174 CHAPTER 6

Assertion facility

come without a hint of explanation. You have likely encountered some, if not all, of
these problems:

� Printer drivers not printing, and not giving a warning
� Files not showing up on an FTP site after upload

� Web servers returning empty pages
� Hardware devices not being recognized
� System configuration differing after each reboot

� Programs crashing because of corrupted input
� Programs simply not running, or failing unexpectedly

Buried under each of these bugs, many levels down the chain of inter-program
communication, is an exceptional condition that some programmer, somewhere,
forgot to handle. Handling these errors gracefully is the best possible approach, but
it’s not possible to handle everything in a complete fashion. Think of an assertion as
the smallest (and easiest) way to handle an exceptional case.

6.1.3 Designing by contract
If you are familiar with the design-by-contract programming methodology, then you
can think of assertions as a good way of ensuring preconditions, postconditions, and
invariants. Preconditions are contractual guarantees that must be true at the start
of a method, and postconditions are the same, except they are in effect at the end of
a method. Assertions can be good for ensuring preconditions if, and only if, the
method is not a public method. (Public methods should make an explicit check and
throw an exception—see section 6.4.2 for more on this.) Assertions are always
good for postconditions.

 Invariants, broadly defined, are conditions that should always be true. They are
often checked before and after a computation. Since they should always be true,
assertions are an excellent way to implement them.

6.2 Working with assertions

An assertion is a convenient syntax for checking for an error. In a sense, it’s really
just a shorthand for a full error check. In this section, we’ll examine the syntax used
for assertions and look at the equivalent expression from pre-assertion Java. We’ll
also examine the command-line and programmatic interfaces that can be used to
enable and disable assertions at runtime.

jdk.book Page 174 Monday, March 11, 2002 3:38 PM

Working with assertions 175

6.2.1 Assertion syntax
An assertion is a conditional error; operationally, assertions are very simple. There
are two distinct flavors of assertion: simple and complex.

Flavor 1 (simple)
Using the simpler syntax, an assertion consists of the keyword assert, followed by
an expression:

assert expression;

This should be read as, “if expression isn’t true, that’s very bad, so throw an error
immediately.”

 Here is the assertion example from section 6.1. This uses the simple syntax:

public class aClass {
 public void aMethod(int argument) {
 Foo foo = null;

 // ... somehow get a Foo object

 // Now check to make sure we've managed to get one:
 assert foo != null;
 }
}

Again, operationally, this is roughly equivalent to the following:

public class aClass {
 public void aMethod(int argument) {
 Foo foo = null;

 // ... somehow get a Foo object

 // Now check to make sure we've managed to get one:
 if (!(foo != null)) {
 throw new AssertionError();
 }
 }
}

Flavor 2 (complex)
The more complex syntax goes as follows:

assert expression_1 : expression_2;

This should be read as, “if expression_1 isn’t true, throw an error containing the
value of expression_2.”

jdk.book Page 175 Monday, March 11, 2002 3:38 PM

176 CHAPTER 6

Assertion facility

NOTE The second expression must be a valid argument to the constructor of the
AssertionError object.

Here’s the example from the previous section, but this time using the complex syntax:

public class aClass {
 public void aMethod(int argument) {
 Foo foo = null;

 // ... somehow get a Foo object

 // Now check to make sure we've managed to get one:
 assert foo != null : "Can't get a Foo, argument="+argument;
 }
}

This is roughly equivalent to the following:

public class aClass {
 public void aMethod(int argument) {
 Foo foo = null;

 // ... somehow get a Foo object

 // Now check to make sure we've managed to get one:
 if (!(foo != null)) {
 throw new AssertionError(
 "Can't get a Foo, argument="+argument);
 }
 }
}

As mentioned in the previous note, the second expression in the complex version of
assert must be a valid argument to the constructor of the AssertionError object.
AssertionError has constructors that take any of the following types:

� object
� boolean

� char
� int
� long

� float
� double

jdk.book Page 176 Monday, March 11, 2002 3:38 PM

Working with assertions 177

This allows the second expression of an assertion to have any kind of data type as an
argument, making assertions as easy to use as System.out and System.err. This is
intended to encourage the use of assertions over print statements.

Choosing a flavor
The choice of whether to use the simple syntax or the complex syntax comes down
to how much information you want to provide the person running the program. In
some cases, it’s enough to tell the person where the error occurred; in others, it’s
important to print out certain values so that the bug can be repaired. If you can’t
decide, a good rule of thumb is to use the simple syntax. If, at some later point, you
want the assertion to provide more information, you can easily change it to use the
complex syntax.

6.2.2 Compiling with assertions
Assertions require a change to Java’s syntax, so there is a slight issue with backward-
compatibility. Once assert is a keyword, it can no longer be a variable or method
name, and code like this is not compatible with the new syntax:

public void method() {
 int assert = getAssert();
}

Because of the dangerous possibility of breaking seven years’ worth of Java code,
the JDK 1.4 from Sun Microsystems allows you to select whether you want the new
syntax or not.

 To use the old syntax, and thus allow the word “assert” to be used as a keyword,
you must execute the compiler using the –source 1.3 option. At the command
line, you would type this:

javac -source 1.3

To use the new syntax, and thus enable assertions, you would use this command on
the command line:

javac -source 1.4

If unspecified, -source 1.3 is assumed, so that existing code will compile normally
even if it uses assert as a regular identifier. It is expected that all code will eventu-
ally compile under the new syntax; the older syntax is provided for those cases
where the keyword assert was used as a variable or class name.

 If you use assertions in your code, it will be incompatible with versions of the
JRE prior to 1.4 because assertions need methods and fields from the Class and

jdk.book Page 177 Monday, March 11, 2002 3:38 PM

178 CHAPTER 6

Assertion facility

ClassLoader classes. This is true even if you don’t use the programmatic enable and
disable methods mentioned in section 6.2.4.

 This shouldn’t be cause for alarm—using any new feature of a new release of
Java will make the resulting class files incompatible with earlier versions of the JRE.
Note that this incompatibility is purely a library incompatibility—there is no com-
patibility problem at the JVM level.

6.2.3 Controlling assertions from the command line
One of the most useful features of assertions is that they can be turned off during
normal usage, so that they don’t incur any speed penalty. By the same token, they
need to be turned on when a problem arises. Assertions are off by default.

 Although the assertion specification does not require a particular technique for
enabling or disabling assertions, it does strongly recommend that such a technique
exist for any implementation of the Java language. The implementation described
here is that of the release of JDK 1.4 from Sun Microsystems. It is likely that most
other implementations will closely follow this model.

 Assertions are enabled on the command line via the -ea switch, which is an
abbreviation for the -enableassertions switch. The following two commands are
equivalent:

java -ea myPackage.myProgram
java -enableassertions myPackage.myProgram

Assertions are similarly disabled with either the -da or -disableassertions com-
mands:

java -da myPackage.myProgram
java -disableassertions myPackage.myProgram

Assertions can be enabled or disabled for specific packages or classes. To specify a
class, use the class name. To specify a package, use the package name followed by
“...”:

java -ea:<class> myPackage.myProgram
java -da:<package>... myPackage.myProgram

Note that each enable or disable modifies the one before it, so that you can, for
example, enable assertions in general, but disable them in a particular package.

java -ea -da:<package>... myPackage.myProgram

Finally, you can enable or disable assertions in the unnamed root package (the one
in the current directory) using the following commands:

java -ea:... myPackage.myProgram
java -da:... myPackage.myProgram

jdk.book Page 178 Monday, March 11, 2002 3:38 PM

Working with assertions 179

Note that assertions within system classes that come installed with your JVM can be
enabled and disabled separately using the -esa and -dsa switches, which are abbrevi-
ations for -enablesystemassertions and -disablesystemassertions, respectively.
The various command-line switches for using assertions are listed in table 6.1.

Command-line examples
Let’s take a look at some examples of these options in action. In these examples, we
have an application called AssertPackageTest that creates an instance of each of
three classes, each one in a different package. These instances will print a message if
assertions are turned on for them:

import pkg0.Class0;
import pkg0.subpkg0.Class2;
import pkg1.Class1;

public class AssertPackageTest
{
 static public void main(String args[]) {
 new Class0();
 new Class1();
 new Class2();

Table 6.1 Command-line switches for enabling and disabling assertions. These options are taken from
JDK 1.4 from Sun Microsystems; other implementations may have other techniques for
turning assertions on and off.

Switch Example Meaning

-ea Java -ea Enable assertions by default

-da Java -da Disable assertions by default

-ea:<classname> Java -ea:AssertPackageTest Enable assertions in class
AssertPackageTest

-da:<classname> Java -da:AssertPackageTest Disable assertions in class
AssertPackageTest

-ea:<packagename>... Java –ea:pkg0... Enable assertions in package
pkg0

-da:<packagename>... Java –da:pkg0... Disable assertions in package
pkg0

-esa Java –esa Enable assertions in system
classes

-dsa Java -dsa Disable assertions in system
classes

jdk.book Page 179 Monday, March 11, 2002 3:38 PM

180 CHAPTER 6

Assertion facility

 }
}

The following examples of running AssertPackageTest first state what is being
done, and then show the command that runs the program and the output it pro-
duces (if any).

Leave assertions off by default:
java AssertPackageTest

(No output)

Turn assertions on for all non-system classes:
java -ea AssertPackageTest
Assertions enabled in AssertPackageTest
Assertions enabled in pkg0.Class0
Assertions enabled in pkg1.Class1
Assertions enabled in pkg0.subpkg0.Class2

Turn assertions on for a single package:
java -ea:pkg0... AssertPackageTest
Assertions enabled in pkg0.Class0
Assertions enabled in pkg0.subpkg0.Class2

Forget the “...” after a package name:
java -ea:pkg0 AssertPackageTest

(No output)

Turn assertions on for a single class:
java -ea:pkg0.Class0 AssertPackageTest
Assertions enabled in pkg0.Class0

Turn assertions on for a different class:
java -ea:pkg0.subpkg0.Class2 AssertPackageTest
Assertions enabled in pkg0.subpkg0.Class2

Turn assertions on for a subpackage:
java -ea:pkg0.subpkg0... AssertPackageTest
Assertions enabled in pkg0.subpkg0.Class2

Turn assertions on in general, but off for a package:
java -ea -da:pkg1... AssertPackageTest
Assertions enabled in AssertPackageTest
Assertions enabled in pkg0.Class0
Assertions enabled in pkg0.subpkg0.Class2

Turn assertions on for a package, but off for a subpackage of that package:
java -ea:pkg0... -da:pkg0.subpkg0... AssertPackageTest
Assertions enabled in pkg0.Class0

Turn assertions on only in the unnamed default package:
java -ea:... -da:pkg0... -da:pgk1... AssertPackageTest

jdk.book Page 180 Monday, March 11, 2002 3:38 PM

Working with assertions 181

Assertions enabled in AssertPackageTest

Turn assertions on in general, but off in the unnamed default package:
java -ea -da:... AssertPackageTest
Assertions enabled in pkg0.Class0
Assertions enabled in pkg1.Class1
Assertions enabled in pkg0.subpkg0.Class2

6.2.4 Controlling assertions programmatically
It is also possible to enable or disable assertions from the program itself. In general,
this is something you won’t need to do unless you are writing a debugger or some
other kind of program whose purpose is to manage a Java program running in the
same JVM.

 Each class contains an “assertion status” flag that tells the system whether asser-
tions are enabled for that class. Each time an assert line is reached, the containing
class is checked for the value of this flag, to see if the assertion should be processed
or skipped.

 This flag can be set via the class’s ClassLoader, using the following approach:

public void setClassAssertionStatus(String className,
 boolean enabled);

The arguments are as follows:

� className—The name of the class whose assertion status is to be set
� enabled—Whether assertions should be on or off

This flag can also be turned on for an entire package using another method of
ClassLoader:

public void setPackageAssertionStatus(String packageName,
 boolean enabled);

The arguments are as follows:

� packageName—The name of the package whose classes are to have their asser-
tion status set

� enabled—Whether assertions should be on or off

Note that this method applies not just to the specified package, but to all subpack-
ages within it.

 A ClassLoader also has a default assertion status that is passed to any class
loaded through it. The default can be set with the following method of Class-
Loader:

public void setDefaultAssertionStatus(boolean enabled);

jdk.book Page 181 Monday, March 11, 2002 3:38 PM

182 CHAPTER 6

Assertion facility

The argument is as follows:

� enabled—Whether assertions should be on or off by default

Finally, ClassLoader has a method that lets you clear all the assertion settings that
have gone before. This not only clears the default assertion status (thus turning
assertions off by default), it also removes any per-class and per-package settings that
have been made against this ClassLoader:

public void clearAssertionStatus();

Another method, Class.desiredAssertionStatus(), will be discussed in
section 6.2.8.

NOTE The assertion status flags set by these methods do not affect classes already
loaded and initialized by the ClassLoader—they only affect classes that are
loaded and initialized subsequently. Remember to set these flags before load-
ing the classes that you want to be affected by them.

6.2.5 Removing assertions completely
Even if you run your code with assertions disabled, they are still in the class files.
Although this depends completely on the particular implementation of the Java
platform you are using, it is quite likely that the assertions will be taking up some
space, as well as some time, in your running program.

 If this is a problem, you can apply the standard technique for removing code
without actually removing it:

static final boolean doAsserts = false;

public void method() {
 if (doAsserts) assert expression;
}

Because doAsserts is final, the Java compiler is required to remove this line of code
from the execution, resulting in savings in both time and space.

WARNING Removing assertions is strongly discouraged unless there is good reason, such
as the need to run with a very small memory footprint. Assertions are most
useful if they can be turned on at any time, even long after the release of the
software.

jdk.book Page 182 Monday, March 11, 2002 3:38 PM

Working with assertions 183

6.2.6 Determining if assertions are enabled
There are times when you might need to determine whether assertions are enabled.
For example, your assertions might need to do extra calculations in order to prop-
erly check your code, and you might want to avoid doing those calculations if asser-
tions are disabled.

 The following fragment of code tests to see whether assertions are enabled or
not:

public void method() {
 boolean assertionsAreEnabled = false;

 assert (assertionsAreEnabled = true);

 if (assertionsAreEnabled) {
 System.out.println("Assertions are enabled!");
 } else {
 System.out.println("Assertions are disabled!");
 }
}

Note the trickiness here—that’s a single equals sign inside the assertion expression,
so it’s an assignment rather than a comparison. Instead of checking whether asser-
tionsAreEnabled is true, it actually sets assertionsAreEnabled to be true.

 It is, in general, a bad idea to put any kind of side effects inside an assert
expression, because you don’t know if the expression will even get executed—that
depends on whether assertions are enabled. This case is an exception, though—not
only is the side effect localized to this fragment, but it is in fact the point of the con-
struction. We allow the assertion status to have a side effect because we want to
know if assertions are enabled.

 One thing you might want to do in very critical applications is to refuse to run
without assertions. This is somewhat nonstandard, since assertions, by their very
nature, are supposed to be enabled at the whim of the person running the program,
rather than at the whim of the programmer. However, if it is important to ensure
that they are on, the following can be done:

public void method() {
 boolean assertionsAreEnabled = false;

 assert (assertionsAreEnabled = true);

 if (!assertionsAreEnabled) {
 throw new RuntimeException("Assertions must be enabled!");
 }
}

jdk.book Page 183 Monday, March 11, 2002 3:38 PM

184 CHAPTER 6

Assertion facility

Be careful not to fall into the trap of using an assertion to do this check. The fol-
lowing code won’t work if assertions are turned off, and thus misses the whole
point:

public void method() {
 boolean assertionsAreEnabled = false;

 assert (assertionsAreEnabled = true);

 assert assertionsAreEnabled;
}

6.2.7 Catching an assertion failure
Since assertions fail by throwing an error, it’s possible to catch an assertion failure.
Under normal circumstances, you should rethrow the error, because it is crucial
that assertion failures come to the attention of the operator of the program as soon
as possible.

 However, there are times when you might want to catch an AssertionError, do
something, and then rethrow the error. If your application has a network console,
you might want to send the assertion failure across the network to the console
before quitting.

 If you do catch an assertion failure, make sure to rethrow it! It’s okay to catch an
exception, because exceptions are designed to be caught. But an assertion failure
generally implies a really unexpected failure—something that deserves immediate
attention.

 In the example in listing 6.1, we trap the AssertionError in order to get stack
trace information. We then rethrow the AssertionError from within the catch block.

public void method() {
 AssertionError ae = null;

 try {

 int a = anotherMethod();

 // ...

 assert i==10;

 // ...

 } catch(AssertionError ae2) {

 ae = ae2;

 StackTraceElement stes[] = ae.getStackTrace();

Listing 6.1

o The assertion

o Trapping the assertion failure

jdk.book Page 184 Monday, March 11, 2002 3:38 PM

Working with assertions 185

 if (stes.length>0) {
 StackTraceElement first = stes[0];
 System.out.println("NOTE: Assertion failure in "+
 first.getFileName()+" at line "+first.getLineNumber());
 } else {
 System.out.println("NOTE: No info available.");
 }

 throw ae;
 }
}

6.2.8 Assertions and class initialization
According to the assertion specifications, whether or not assertions are turned on
for a class is determined during the initialization process. In most circumstances, a
class cannot be used before it has been initialized. But there are some cases in which
this is not true, which presents an ambiguity: if a class is not yet initialized, are asser-
tions on or off?

 Listing 6.2 presents an example of how code in a class can be run before it is fin-
ished initializing. It makes use of a certain paradoxical relationship between two
classes, CircularA and CircularB.

public class CircularA
{
 static {
 CircularB.report();
 }
}

public class CircularB extends CircularA
{
 static public void report() {
 boolean assertionsOn = false;
 assert assertionsOn=true;
 System.out.println("Assertions are "+
 (assertionsOn?"on":"off"));
 }

 static public void main(String args[]) {
 report();
 }
}

Listing 6.2

o Rethrowing the assertion failure

jdk.book Page 185 Monday, March 11, 2002 3:38 PM

186 CHAPTER 6

Assertion facility

Here’s the problem: CircularB must be initialized before its main() method can
run, and CircularB is a subclass of CircularA, so CircularA must be initialized
before CircularB can be initialized. However, CircularA has a static initializer that
makes a call to CircularB, so CircularB.report() gets called before CircularB is
fully initialized.

 By running CircularA with assertions fully disabled, you can see that assertions
are nevertheless enabled during initialization:

java -da -dsa CircularB
Assertions are on
Assertions are off

The assertion specification requires that assertions be enabled within a class during
its initialization period, regardless of any other command-line settings or Class-
Loader settings that have been (or will be) put into effect. This is the reason that the
first call to report() states that assertions are on. Because of this, if a class checks,
using the usual methods, to see if assertions are on, it will get a false positive during
the initialization process.

 The following method allows you to find out whether assertions will be enabled
or not after initialization is complete. This is a method of Class.

public boolean desiredAssertionStatus();

In the few cases where you might validly make an execution decision based on
whether assertions are enabled or not, this method can help you find this out dur-
ing the initialization process.

 Let’s take a look at CircularA again. It was shown originally in listing 6.2, but in
listing 6.3 it has been modified to check the real assertion status using desired-
AssertionStatus():

public class CircularA
{
 static {
 CircularB.report();
 }
}

public class CircularB extends CircularA
{
 static public void report() {
 boolean assertionsOn = false;
 assert assertionsOn=true;
 boolean assertionsWillBeOn =
 new CircularA().getClass().desiredAssertionStatus();

Listing 6.3

jdk.book Page 186 Monday, March 11, 2002 3:38 PM

Assertion examples 187

 System.out.println(
 "Assertions in CircularA: current="+assertionsOn+
 " desired="+assertionsWillBeOn);
 }

 static public void main(String args[]) {
 report();
 }
}

Here’s the output:

java -da -dsa CircularB
Assertions in CircularA: current=true desired=false
Assertions in CircularA: current=false desired=false

As you can see, the desired assertion status is always false, even though assertions
are temporarily on during initialization.

6.3 Assertion examples

This section presents examples of the kinds of conditions you might check for inside
an assertion. We’ll use both flavors of assertions so that you get a feel for each one.

6.3.1 Avoiding inconsistent states
The most common application of assertions is to ensure that the program remains
in a consistent state.

JARGON A consistent state is any configuration of your program that makes sense ac-
cording to the logic you’ve defined for it. An inconsistent state is any configu-
ration that should never be reached.

Here’s an example that checks for an inconsistent state. Let’s say your program
makes use of a PipedInputStream/PipedOutputStream pair.

import java.io.*;

public class Example
{
 private PipedInputStream pin;
 private PipedOutputStream pout;

 private void initializePipe() throws IOException {
 pin = new PipedInputStream();
 pout = new PipedOutputStream(pin);
 }
}

jdk.book Page 187 Monday, March 11, 2002 3:38 PM

188 CHAPTER 6

Assertion facility

When the program starts, it has not yet created these objects, so it is in the state
shown in table 6.2. Although the pipe cannot be used (because it is not there), this
is nevertheless a consistent state, because it is intentional: before we’ve created our
pipe, these variables must necessarily be null.

Later on, we create the pipe by calling initializePipe(), at which point the state
of our variables has changed, as shown in table 6.3. We’re still in a consistent state,
because here we define consistency to mean a state in which we have both ends of
the pipe available to us.

Still later, our program closes the pipe and sets both variables to null, as shown in
table 6.4. This is again a consistent state, representing the fact that we’re done with
the pipe.

When our code has become much more complicated, however, we find that we have
a bug in which, for some complicated reason, pin was set to null while pout was still
pointing to an object (see table 6.5). This is an inconsistent state. As the designers of
the code, we know that this state should never be entered. It represents no concep-
tual state that we could name. It does not represent the state in which we haven’t
started using the pipe, nor the state in which we are in the middle of using the pipe.

Table 6.2 Before the pipe is created, the variables must be null.

Variable Value

pin null

pout null

Table 6.3 After the pipe is created, the state of the variables changes.

Variable Value

pin java.io.PipedInputStream@3fbdb0

pout java.io.PipedOutputStream@3e86d0

Table 6.4 When the pipe is closed, the state of the variables is set to null.

Variable Value

pin null

pout null

jdk.book Page 188 Monday, March 11, 2002 3:38 PM

Assertion examples 189

Realizing this, we decide to add assertions in various places to check for this incon-
sistent state. We want to make sure that both objects are null at the same time.

public void someMethod() {
 assert (pin==null) == (pout==null) :
 "Warning: pipe is inconsistent");
}

We can sprinkle this assertion all over the code, as necessary.

6.3.2 Narrowing the range of states
There are times when we need to restrict the set of states that our program can be
in, but we wouldn’t really call it an issue of consistency. Generally this is as simple as
trying to ensure that a particular variable contains a value within a certain subrange
of possible values.

 Let’s say that our program is a little physics simulation, and our math should
ensure that the velocities of our objects don’t get out of control. Let’s make sure:

public void runSimulation() {
 // ...

 assert
 Math.abs(velocity) < 2000 :
 "Object way too fast! velocity="+velocity;
}

This example ensures that velocity never gets to be 2,000 or greater.

6.3.3 Ensuring consistency between container objects and contained
objects
We’ll use a somewhat more complex program to give a sense of what it means for a
program to be in an inconsistent state and demonstrate the use of assertions. Our
example will be an excerpt from a hypothetical chat server.

 The ChatServer object maintains two lists of Connection objects. Each Connec-
tion object represents the connection to a Client and can be in one of two states:
active or suspended. A suspended Client is one whose user has left his computer for
a while.

Table 6.5 A bug causes one variable to be non-null.

Variable Value

pin null

pout java.io.PipedOutputStream@3e86d0

jdk.book Page 189 Monday, March 11, 2002 3:38 PM

190 CHAPTER 6

Assertion facility

 The ChatServer object also has two methods for sending out messages to con-
nected clients:

� sendMessage() sends a message to a particular connection
� sendMessageToAll() iterates through all of the active connections and calls

sendMessage() on each one to send it a message

The problem is to make sure that the active list only contains active clients, and that
the suspended list only contains suspended clients. To this end, we create a couple
of methods, setActive() and setSuspended(). These set the state of a connection
and also move it to the correct list:

import java.io.*;
import java.net.*;

public class ChatServer
{
 private List activeConnections;
 private List suspendedConnections;

 // ...

 synchronized void setActive(Connection connection) {
 connection.setActive();
 suspendedConnections.remove(connection);
 activeConnections.add(connection);
 }

 synchronized void setSuspended(Connection connection) {
 connection.setSuspended();
 passiveConnections.remove(connection);
 suspendedConnections.add(connection);
 }

 synchronized private void sendMessageToAll(Message message) {
 for (Iterator iter=activeConnections.iterator();
 iter.hasNext();) {
 Connection connection = (Connection)iter.next();
 sendMessage(connection, message);
 }
 }

 synchronized private void sendMessage(Connection connection,
 Message message) {
 // ... send the message out to a particular connection
 }
}

Creating methods to perform list maintenance doesn’t solve the problem entirely.
Other code in our class, not seen here, might modify the activeConnections and
suspendedConnections lists. Sometimes this happens on behalf of code we don’t

jdk.book Page 190 Monday, March 11, 2002 3:38 PM

Assertion examples 191

have control over (or even have source code for). Even when we do control the
code entirely, we still might make a mistake and fail to maintain the lists properly.

 This is a perfect job for assertions:

import java.io.*;
import java.net.*;

public class ChatServer
{
 private List activeConnections;
 private List suspendedConnections;

 // ...

 synchronized void setActive(Connection connection) {
 connection.setActive();
 suspendedConnections.remove(connection);
 activeConnections.add(connection);
 }

 synchronized void setSuspended(Connection connection) {
 connection.setSuspended();
 passiveConnections.remove(connection);
 suspendedConnections.add(connection);
 }

 synchronized private void sendMessageToAll(Message message) {
 for (Iterator iter=activeConnections.iterator();
 iter.hasNext();) {
 Connection connection = (Connection)iter.next();
 assert connection.isActive();
 sendMessage(connection, message);
 }
 }

 synchronized private void sendMessage(Connection connection,
 Message message) {
 assert activeConnections.contains(connection);
 // ... send the message out to a particular connection
 }
}

You might have noticed that there is some redundancy to the assertions. sendMes-
sageToAll() iterates through the connections, and then calls sendMessage() for each
connection. Both methods use assertions to make sure messages are never sent to a
suspended connection. We’re really getting two assertions per connection, which
isn’t necessary unless we suspect that the status of a connection can be changing at
any time, and it probably can’t because we’re using proper synchronization.

 If the preceding code were the only code in the class, we might consider taking
out the second assertion, because it isn’t necessary. But we might have other places

jdk.book Page 191 Monday, March 11, 2002 3:38 PM

192 CHAPTER 6

Assertion facility

in our code that call sendMessage() directly, so we want to make sure we have an
assertion happening in that case.

TIP We don’t need to worry so much about the efficiency of assertions, because,
in real usage, the assertions don’t even get run. They only get run in a devel-
opmental context, where we don’t mind wasting a few CPU cycles if it means
our code is more stable.

6.3.4 More complicated consistency checks
Sometimes, there are consistency checks that are just too complicated to easily fit
inside a single expression on a single line. In such cases, we can make a helper
method that does the consistency check, and use an assertion to call it.

 For example, suppose we have a class called EmployeeDatabase that contains a
number of interlocking maps, lists, and sets. If you’re not careful, it’s easy to get
some of the relationships between these objects into an inconsistent state.

 At the same time, checking for consistency involves traversing the lists, keeping
track of which things are on which lists, comparing sets of membership states, and
so on. Often, consistency checking for such data structures involves building up a
subset of the relationship from scratch while making sure it is consistent.

 Since an assertion is an assertion of a single expression, it can be awkward, or
even impossible, to put a complicated calculation right inside the assert expression,
so we move it out to a helper method:

public class EmployeeDatabase()
{
 private Set employees;
 private Map employeeGroups;
 private SortedMap employeeTitles;
 private Set groups;
 private Map groupMemberships;
 private Set projects;
 private List groupDeadlines;

 public void doSomething() {

 // ...
 assert isConsistent() : "Error: inconsistent state!";
 }

 private boolean isConsistent() {

 // check lots and lots of stuff here
 // ...
 }
}

jdk.book Page 192 Monday, March 11, 2002 3:38 PM

Knowing when to use assertions 193

Setting things up this way can make code a lot easier to read, since the safety checks
are all in one place. It also helps avoid having multiple copies of the safety checks in
several places in the code, thus reducing code size and eliminating redundancy.

6.4 Knowing when to use assertions

The trickiest thing about assertions isn’t knowing how to use them—it’s knowing
when and where to use them. This section outlines a number of guidelines, summa-
rized in table 6.6, which should help you understand what assertions are appropri-
ate for, and what they are not appropriate for.

6.4.1 Rules of use
An assertion is not just a concise way to say if (expression) then. Rather, it is the
basis of a discipline for making programs more robust.

Table 6.6 Assertions are often confused with regular conditionals. Follow these rules to distinguish
what your particular situation calls for.

Assertion do’s Assertion don’ts

Do use to enforce internal assumptions about
aspects of data structures

Don’t use to enforce command-line usage

Do use to enforce constraints on arguments to
private methods

Don’t use to enforce constraints on arguments to
public methods

Do use to check conditions at the end of any kind
of method

Don’t use to enforce public usage patterns or proto-
cols

Do use to check for conditional cases that should
never happen

Don’t use to enforce a property of a piece of user-
supplied information

Do use to check for conditional cases that should
never happen, even if you’re really sure they can
never happen

Don’t use as a shorthand for if (something)
error();

Do use to check related conditions at the start of
any method

Don’t use as an externally controllable conditional

Do use to check things in the middle of a long-
lived loop

Don’t use as a check on the correctness of your com-
piler, operating system, or hardware, unless you have
a specific reason to believe there is something wrong
with it and are in the process of debugging it

Do use in lieu of nothing

jdk.book Page 193 Monday, March 11, 2002 3:38 PM

194 CHAPTER 6

Assertion facility

 It is very important to distinguish between situations where an assertion is
needed and situations where a regular conditional is needed. The following rules
should give you an idea of when assertions are appropriate, and when they are not.

Rule: do not use assertions to enforce command-line usage
Programs that use command-line arguments should always check the validity of the
arguments, but this should be done with a regular conditional. The following
example is an inappropriate use of an assertion:
public class Application
{
 static public void main(String args[]) {
 // BAD!!
 assert args.length == 3;

 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int c = Integer.parseInt(args[2]);
 }
}

It may be true that your program simply cannot run unless it is supplied with three
arguments on the command line, but in this case it would be better to throw a
proper RuntimeException:

public class App
{
 static public void main(String args[]) {
 if (args.length != 3)
 throw new RuntimeException("Usage: <progname> a b c");

 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int c = Integer.parseInt(args[2]);
 }
}

Assertions are meant to require that the program be consistent with itself, not that
the user be consistent with the program.

Rule: use assertions to enforce constraints on arguments to private methods
The following private method takes two arguments; one is required, and one is
optional:

private void method(Object required, Object optional) {
 assert(required != null) : "method(): required=null";
}

jdk.book Page 194 Monday, March 11, 2002 3:38 PM

Knowing when to use assertions 195

In general, private methods are probably being called by code we have control
over, and which we expect are written correctly and consistently. As a result, we
would like to think that all calls to our method are correct. We enforce this assump-
tion with an assertion.

 The same reasoning may apply to protected and package-protected methods.

Rule: do not use assertions to enforce constraints on arguments to public
methods
The following public method takes two arguments: a source and a sink that are con-
nected. Before disconnecting them, we’d like to ensure that they are connected to
begin with:

public void disconnect(Source source, sink sink) {
 // BAD!!
 assert source.isConnected(sink) :
 "disconnect(): not connected "+source+","+sink;
}

In this example, disconnect() can only remove a connection between a Source and
a Sink if they are in fact connected. However, because this method is public, the
code that calls it might not be under your control.

 More importantly, a public method guarantees that it will enforce the require-
ments of its specified interface in all situations. Assertions, on the other hand, are
not guaranteed to run—they will only enforce their constraints if assertions are
enabled in the runtime environment. This violates the promises made by the public
method.

 In this case, you should assume that the calling code might be in error, and
throw a proper exception:

public void disconnect(Source source, sink sink) throws IOException
{
 if (!source.isConnected(sink)) {
 throw new IOException(
 "disconnect(): not connected "+source+","+sink);
 }
}

This exception will be thrown regardless of whether assertions are on or off.

Rule: do not use assertions to enforce public usage patterns or protocols
The following public class can be in one of two states: open or closed. It is an error
to open a Connection that is already open, or to close one that is already closed.
However, we would not use an assertion to ensure that these mistakes are not made:

jdk.book Page 195 Monday, March 11, 2002 3:38 PM

196 CHAPTER 6

Assertion facility

public class Connection
{
 private boolean isOpen = false;

 public void open() {
 // ...
 isOpen = true;
 }

 public void close() {
 // BAD!!
 assert isOpen : "Cannot close a connection that is not open!";
 // ...
 }
}

The programmer has attempted to enforce the requirement that a Connection can
only be closed if it is already open.

 This usage is valid if and only if the Connection class were a private class, or
were otherwise guaranteed to be invisible to the outside, and if we were willing to
ensure and assume that any code that uses this class is written correctly. In this case,
it would be legitimate to enforce this assumption with an assertion.

 However, if the Connection class is used publicly, it would not be surprising to
find a bug in which someone tried to close a Connection that wasn’t open in the
first place. In this case, a regular exception would be better:

public class Connection
{
 private boolean isOpen = false;

 public void open() {
 // ...
 isOpen = true;
 }

 public void close() throws ConnectionException {
 if (!isOpen) {
 throw new ConnectionException(
 "Cannot close a connection that is not open!");
 }

 // ...
 }
}

If you go the other route, and attempt to ensure that this code is only called from
call sites you control, think twice. Any code you write now may be used or reused
later in a different configuration. Anything can happen after the initial revision, so
it’s best to be on the safe side. Using an explicit exception provides the most infor-
mation to a frustrated programmer down the line.

jdk.book Page 196 Monday, March 11, 2002 3:38 PM

Knowing when to use assertions 197

Rule: do not use assertions to enforce a property of a piece of user-supplied
information
In the following code fragment, the programmer has used an assertion to make sure
that a ZIP code has either five or nine digits:

public void processZipCode(String zipCode) {
 if (zipCode.length() == 5) {
 // ...
 } else if (zipCode.length() == 9) {
 // ...
 } else {
 // BAD!!
 assert false : "Only 5- and 9-digit zip codes supported";
 }
}

Assertions should be used to enforce internal consistency, not correct input. The
preceding code would be better served by using an explicit exception:

public void processZipCode(String zipCode)
 throws ZipCodeException {
 if (zipCode.length() == 5) {
 // ...
 } else if (zipCode.length() == 9) {
 // ...
 } else {
 throw new ZipCodeException(
 "Only 5- and 9-digit zip codes supported");
 }
}

6.4.2 What to check for
Once you know where assertions should be used, you have to decide what to check
and what not to check. Assertions are often used to check for things that are usually
neglected, so keep the following rules in mind when you are deciding where to use
assertions.

Rule: use assertions to enforce internal assumptions about aspects of data
structures
The following private method takes an array of three integers. We use an assertion
to make sure that the array is of the correct length:

private void showDate(int array[]) {
 assert(array.length==3);
}

jdk.book Page 197 Monday, March 11, 2002 3:38 PM

198 CHAPTER 6

Assertion facility

We expect calls to this code to be written properly, and thus to only supply arrays of
length three. This assertion merely enforces this assumption.

 Java does have bounds-checked arrays, which means that this assertion isn’t
quite as crucial as it would be in a language like C or C++. However, this does not
mean that using an assertion here isn’t a good idea.

Rule: use assertions to check conditions at the end of any kind of method
Let’s enhance the previous example with a few postconditions—that is, conditions
checked after the body of a method, just before returning:

public class Connection
{
 private boolean isOpen = false;

 public void open() {
 // ...

 isOpen = true;

 // ...

 assert isOpen;
 }

 public void close() throws ConnectionException {
 if (!isOpen) {
 throw new ConnectionException(
 "Cannot close a connection that is not open!");
 }

 // ...

 isOpen = false;

 // ...

 assert !isOpen;
 }
}

These assertions might seem redundant, but there’s no telling what might come
between the line where isOpen is set to true, and the line where isOpen is asserted
to be true.

 The assignment might eventually be put inside a conditional, removing the
direct redundancy. Someone might forget to throw an exception, causing the asser-
tion to be reached when it should have been skipped. The method might grow to
be much larger, and get factored into several methods for readability. There’s no
telling what might happen to your code.

jdk.book Page 198 Monday, March 11, 2002 3:38 PM

Knowing when to use assertions 199

Rule: use assertions to check for conditional cases that should never happen
In the following code, the assertion checks for a conditional case that can’t happen:

private int getValue() {
 if (/* something */) {
 return 0;
 } else if (/* something else */) {
 return 1;
 } else {
 return 2;
 }
}

public void method() {
 int a = getValue(); // returns 0, 1, or 2

 if (a==0) {
 // deal with 0 ...
 } else if (a==1) {
 // deal with 1 ...
 } else if (a==2) {
 // deal with 2 ...
 } else {
 assert false : "Impossible: a is out of range";
 }
}

In this example, we are receiving a value that we believe can only be in a certain
range. It is valid in this case to use an assertion because method() makes no prom-
ises about handling values other than 0, 1, or 2.

 Here is another way to write the code for method():

public void method() {
 int a = getValue(); // returns 0, 1, or 2

 if (a==0) {
 // deal with 0 ...
 } else if (a==1) {
 // deal with 1 ...
 } else {
 assert a==2 : "Impossible: a is out of range";
 // deal with 2 ...
 }
}

This code is semantically equivalent to the original version.
 Here is yet another equivalent implementation of the same method:

jdk.book Page 199 Monday, March 11, 2002 3:38 PM

200 CHAPTER 6

Assertion facility

public void method() {
 int a = getValue(); // returns 0, 1, or 2

 switch(a) {
 case 0:
 // deal with 0 ...
 break;
 case 1:
 // deal with 1 ...
 break;
 case 2:
 // deal with 2 ...
 break;
 default:
 assert false : "Impossible: a is out of range";
 break;
 }
}

Rule: use assertions to check for conditional cases that should never hap-
pen, even if you’re really sure they can never happen
This next example might seem overly cautious:

public void method() {
 int a = getValue(); // returns 0, 1, or 2

 assert a>=0 && a<=2 : "Impossible: a is out of range";

 // ...

 if (a==0) {
 // deal with 0 ...
 } else if (a==1) {
 // deal with 1 ...
 } else {
 assert a==2;
 // deal with 2 ...
 }
}

In the preceding code fragment, it looks like we’ve checked twice for the same exact
condition. As written, the assertions are redundant, because the value doesn’t
change between the first and second assertions. But let’s take a look at the same
code two releases later:

public void method() {
 int a = getValue(); // returns 0, 1, or 2

jdk.book Page 200 Monday, March 11, 2002 3:38 PM

Knowing when to use assertions 201

 assert a>=0 && a<=2 : "Impossible: a is out of range";

 // ...

 boolean shouldPromote = shouldPromote(b, c, d);
 if (shouldPromote && somethingElse)
 a++;
 a = modifyMaybe(a);

 // ...

 if (a==0) {
 // deal with 0 ...
 } else if (a==1) {
 // deal with 1 ...
 } else {
 assert a==2;
 // deal with 2 ...
 }
}

See? Without intending to complicate the invariants of your code, you or someone
else has made the situation rather more complicated. Someone has inserted code
between the first assertion and the second assertion that changes the value of the
variable being checked. The second assertion is no longer redundant.

TIP It is good programming discipline to always have a final else {} case for any
conditional. If you add one, but you know that it should never be reached,
add an assert false;.

Rule: use assertions to check related conditions at the start of any method
In this example, the method processZipCode() wants to make sure that the pro-
gram has already loaded a valid ZIP code map before it can process a ZIP code:

public void processZipCode(String zipCode) {
 assert zipCodeMapIsValid();

 // ...
}

It is a fine idea to check related data structures in select locations, just in case. The
idea here is to catch bugs early and often.

Rule: use assertions to check things in the middle of a long-lived loop
The Server class shown in listing 6.4 contains an inner loop that listens for network
connections. This code might run for hours or days.

jdk.book Page 201 Monday, March 11, 2002 3:38 PM

202 CHAPTER 6

Assertion facility

public class Server
{
 private ServerSocket serverSocket;

 public void acceptConnections() {
 while (true) {
 Socket socket = serverSocket.accept();

 assert socketListIsValid();

 // deal with new connection ...
 }
 }
}

A check placed in the middle of the long-lived loop ensures that assumptions that
were made at the start of the loop continue to hold after time has passed.

6.4.3 Miscellaneous rules
This section highlights a few rules that don’t fit into either of the previous two cat-
egories. Many of them serve to prevent the use of assertions where a stronger form
of error-checking is preferable.

Rule: do not use an assertion as a shorthand for “if (something) error();”
Here, we incorrectly use an assertion to make sure that a port number is 1024 or
greater:

public class Server
{
 private int port;

 public void listen() {
 // BAD!!
 assert port >= 1024 : "No permission to listen on port "+port;

 // ...
 }
}

In the preceding code, the programmer has been a little bit lazy, using an assertion
for a valid, exceptional condition. Apparently he has forgotten that assertions gener-
ally do not run outside the development process. This should be an exception:

public class Server
{
 private int port;

Listing 6.4

o Long pause here

o It’s good to check some stuff

jdk.book Page 202 Monday, March 11, 2002 3:38 PM

Knowing when to use assertions 203

 public void listen() {
 if (port < 1024) {
 throw new RuntimeException(
 "No permission to listen on port "+port);
 }

 // ...
 }
}

This version of the code ensures that the port number will be checked even when
assertions are not enabled.

Rule: do not use an assertion as an externally controllable conditional
Here’s a clever trick you might be tempted to do:

public class Application
{

 static private boolean turnLoggingOn() {
 // Turn logging on
 // ...

 return true;
 }

 static public void main(String args[]) throws Exception {
 // ...

 // BAD!!
 assert turnLoggingOn();
 }
}

java -da Application

java -ea Application

As we saw in section 6.2.3, you can enable or disable assertions from the command
line. You could use this ability to enable or disable something else by invoking that
something else from within an assertion.

 As clever as this is, it’s bad idea, because it changes the semantics of the -ea and
-da switches, and hijacks this facility for another purpose. End users should be able
to enable or disable assertions purely on the basis of how vigilant they want the soft-
ware to be during its execution; they should not have to worry about otherwise
changing the semantics of the program.

WARNING Assertions should never have side effects, because the semantics of your pro-
gram would be subject to whether assertions are enabled are not.

jdk.book Page 203 Monday, March 11, 2002 3:38 PM

204 CHAPTER 6

Assertion facility

Rule: do not use assertions to check the correctness of your compiler, oper-
ating system, or hardware, unless you are debugging it
This code is clearly redundant:

public void method() {
 int a = 10;

 // REDUNDANT!!
 assert a==10;
}

As written, this assertion cannot possibly be triggered without a serious problem
with your system at some level. A compiler bug might cause this assertion to trig-
ger, and if you suspect that your compiler has a bug, this is a perfectly valid thing to
do. However, putting such things in your code as a matter of course can confuse
someone who might read it down the line, causing them to spend a good deal of
time trying to figure out why the assertion was added in the first place.

Final rule: any assertion is better than nothing
As we saw at the beginning of the chapter, assertions are meant, above all, to be
convenient enough to be added as an afterthought. Any time you suspect that you
might be making an assumption that might not be true, and it makes you at all ner-
vous, add an assertion. An assertion that is never triggered is far better than one
that would have been triggered but isn’t there.

6.5 Summary

In the computer science community, assertions are widely understood to be a pow-
erful and flexible way to allow code to check itself for errors. It is designed to be as
convenient as possible so that programmers can use it during development without
distracting themselves from the task at hand.

 In this sense, assertions have a psychological design as much as they have a tech-
nological design. Assertions are relatively cheap to implement, and while the imple-
mentation can differ from platform to platform, it is safe to assume that assertions
can be used freely without a loss of program speed. The result will be better, more
reliable code.

jdk.book Page 204 Monday, March 11, 2002 3:38 PM

