
RECURSION

For some problems, it’s useful to have a method call
itself.

Known as a recursive method.
Can call itself either directly or indirectly through another
method.

When a recursive method is called to solve a
problem, it actually is capable of solving only the
simplest case(s), or base case(s).

If the method is called with a base case, it returns a result.
If the method is called with a more complex
problem, it typically divides the problem into two
conceptual pieces

a piece that the method knows how to do and
a piece that it does not know how to do.

To make recursion feasible, the latter piece must
resemble the original problem, but be a slightly
simpler or smaller version of it.
Because this new problem looks like the original
problem, the method calls a fresh copy of itself to
work on the smaller problem

this is a recursive call (also called recursion step)
The recursion step normally includes a return
statement, because its result will be combined with
the portion of the problem the method knew how to
solve to form a result that will be passed back to the
original caller.

For recursion to eventually terminate, each time
the method calls itself with a simpler version of
the original problem, the sequence of smaller and
smaller problems must ‘converge’ on a base case.

When the method recognizes the base case, it returns a
result to the previous copy of the method.
A sequence of returns continues until the original
method call returns the final result to the caller.

A recursive method may call another method, which
may in turn make a call back to the recursive method.

This is known as an indirect recursive call or indirect
recursion.

Factorial of a positive integer n, written n! which is the
product

n · (n – 1) · (n – 2) · … · 1
with 1! equal to 1 and 0! defined to be 1.
The factorial of integer number (where number ≥ 0) can
be calculated iteratively (nonrecursively) using a for
statement as follows:

factorial = 1;
for (int counter = number; counter >= 1;
counter--)

factorial *= counter;

Recursive declaration of the factorial method is arrived at
by observing the following relationship:

n! = n · (n – 1)!
Figure 18.3 uses recursion to calculate and print the
factorials of the integers from 0 to 21.

The program uses type long so it can calculate
factorials greater than 12!.
The factorial method produces large values so
quickly that we exceed the largest long value when
we attempt to calculate 21!.
Package java.math provides classes BigInteger
and BigDecimal explicitly for arbitrary precision
calculations that cannot be performed with primitive
types.

BigInteger method compareTo compares the
BigInteger that calls the method to the method’s
BigInteger argument.

Returns -1 if the BigIteger that calls the method
is less than the argument, 0 if they are equal or 1 if
the BigInteger that calls the method is greater
than the argument.

BigInteger constant ONE represents the integer
value 1.
BigInteger methods multiply and subtract
implement multiplication and subtraction. Similar
methods are provided for other arithmetic operations.

