

Recursive	Recursive Computation of n	
Define 0! = 1		
4! = 4 * 3! 3! = 3 * 2! 2! = 2 * 1! 1! = 1 * 0! 0! = 1	<pre>// multiplication awaits evaluation of 3! // need value of 2! // need value of 1! // need value of 0! // know 0! = 1 (stopping condition)</pre>	
1! = 1 * 0! = 1	<pre>// compute 1! with value of 0!</pre>	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<pre>// compute 2! with value of 1!</pre>	
3! = 3 * 2! = 3 * 2 = 6	<pre>// compute 3! with value of 2!</pre>	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<pre>// compute 4! with value of 3!</pre>	

Recursive Computation of
1 + 2 + ... + n
Example:
$$s(5) = 5 + (4 + 3 + 2 + 1) = 5 + s(4)$$
 $S(n) = \begin{cases} 1 & n = 1 & \text{stopping condition} \\ S(n - 1) + n & n > 1 & \text{recursive step} \end{cases}$
public static int sumToN(int n)
 $\begin{cases} \text{if } (n == 1) \\ \text{return } 1; \\ \text{else} \\ \text{return sumToN(n-1) + n;} \end{cases}$

