
1

Data Structures for Java
William H. Ford
William R. Topp

Chapter 6
Recursion

Bret Ford

© 2005, Prentice Hall

The Concept of Recursion

An algorithm is recursive if it can be broken
into smaller problems of the same type.
Continue this decomposition until one or more
of the smaller problems has a solution.
Backing up a directory and its subdirectories
is recursive. At each step, the backup copies
files in the current directory and then repeats
the process in a subdirectory. Eventually, the
backup reaches a directory with no
subdirectories.

2

Iterative factorial()

// n is a non-negative integer
public static int factorial(int n)
{

int factValue = 1;
while (n >= 1)
{

factValue *= n;
n--;

}
return factValue;

}

n-factorial is the product of the first n integers.

n! = n * (n-1) * (n-2) * ... * 2 * 1

n! can be computed iteratively.

Recursive Computation of n!

Define 0! = 1

4! = 4 * 3! // multiplication awaits evaluation of 3!
3! = 3 * 2! // need value of 2!
2! = 2 * 1! // need value of 1!
1! = 1 * 0! // need value of 0!
0! = 1 // know 0! = 1 (stopping condition)

1! = 1 * 0! // compute 1! with value of 0!
= 1

2! = 2 * 1! // compute 2! with value of 1!
= 2 * 1 = 2

3! = 3 * 2! // compute 3! with value of 2!
= 3 * 2 = 6

4! = 4 * 3! // compute 4! with value of 3!
= 4 * 6 = 24

3

Recursive Computation of n!
(continued)

The computation of n! can be viewed
recursively as follows:

n! = n * (n-1)!
(n-1)! = (n-1) * (n-2)!
...
2! = 2 * 1
1! = 1 * 0!
0! = 1 (stopping condition)

After reaching the stopping condition, revisit the
multiplication steps in reverse order.

Describing a Recursive
Algorithm

The design of a recursive method
consists of the following elements:

One or more stopping conditions that can be
directly evaluated for certain arguments.
One or more recursive steps, in which a
current value of the method can be
computed by repeated calling of the method
with arguments that will eventually arrive at
a stopping condition.

4

Implementing Recursive
Methods

Use an if-else statement to distinguish
between a stopping condition and a
recursive step.

// n is a non-negative integer
public static double factorial(int n)
{

if (n == 0)
// stopping condition
return 1;

else
// recursive step
return n * factorial(n-1);

}

Recursive Computation of
1 + 2 + ... + n

Example: S(5) = 5 + (4 + 3 + 2 + 1) = 5 + S(4)

⎪⎩

⎪
⎨
⎧

>+−
=

=
steprecursive1nn1)S(n
conditionstopping1n1

S(n)

public static int sumToN(int n)
{

if (n == 1)
return 1;

else
return sumToN(n-1) + n;

}

5

Infinite Recursion
A recursive algorithm must lead to a
stopping condition. Infinite recursion
occurs when a stopping condition is
never reached.

Example:
⎪⎩

⎪
⎨
⎧

≥++
=

=
1,)14/(

0,0
)(

nnnf
n

nf

f(5) = f(5/4 + 1) + 5; // recursive call to f(5/4 + 1) = f(2)
f(2) = f(2/4 + 1) + 2; // recursive call to f(2/4 + 1) = f(1)
f(1) = f(1/4 + 1) + 1; // recursive call f(1/4 + 1) = f(1)

. . . // infinite recursion!

How Recursion Works

Think of factorial(n) as a machine called
n-Fact that computes n! by carrying out
the multiplication n*(n-1)!. The machine
must be networked with a series of other
n-Fact machines that pass information
back and forth.
The 0-Fact machine is an exception and
can work independently and produce the
result 1 without assistance from another
machine.

6

The n-Fact Machine

4-Fact Starts up the 3-Fact machine
Waits for return value (3!) from 3-Fact.
Computes 4 * 3! = 24 and returns to main

3-Fact Starts up the 2-Fact machine
Waits for return value (2!) from 2-Fact.
Computes 3 * 2! = 6 and returns to 4-Fact

2-Fact Starts up the 1-Fact machine
Waits for return value (1!) from 1-Fact.
Computes 2 * 1! = 2 and returns to 3-Fact

1-Fact Starts up the 0-Fact machine
Waits for return value (1!) from 1-Fact.
Computes 1 * 0! = 1 and returns to 2-Fact

0-Fact Determines that 0! = 1
Returns 1 to 1-Fact

The n-Fact Machine (concluded)

7

Multibase Representations
Decimal is only one representation for numbers.
Other bases include 2 (binary), 8 (octal), and 16
(hexadecimal).

Hexadecimal uses the digits 0-9 and a=10, b=11, c=12,
d=13, e=14, f=16.

95 = 10111112 // 95 = 1(26)+0(25)+0(24)+0(23)+1(22)+1(21)+1(20)
= 1(64)+0(32)+1(16)+1(8)+1(4)+1(2)+1

95 = 3405 // 95 = 3(52) + 4(51) + 0(50)
= 3(25) + 4(5) + 0

95 = 1378 // 95 = 1(82) + 3(81) + 7(80)
= 1(64) + 3(8) + 7

748 = 2ec16 // 748 = 2(162) + 14(161) + 12(160)
= 2(256) + 14(16) + 12
= 512 + 224 + 12

Multibase Representations (2)

An integer n > 0 can be
represented in different bases using
repeated division.

Generate the digits of n from right to
left using operators '%' and '/'. The
remainder is the next digit and the
quotient identifies the remaining
digits.

8

Multibase Representations (3)

Multibase Representations (4)

Convert n to base b by converting
the smaller number n/b to base b
(recursive step) and adding the
digit n%b.

9

MultibaseRepresentations (5)

// returns string representation
// of n as a base b number
public static String baseString(int n, int b)
{

String str = "", digitChar = "0123456789abcdef";

// if n is 0, return empty string
if (n == 0)

return "";
else
{

// get string for digits in n/b
str = baseString(n/b, b); // recursive step
// return str with next digit appended
return str + digitChar.charAt(n % b);

}
}

Multibase Representations (6)

10

Towers of Hanoi
You are given a stack of n graduated disks and a
set of three needles called A, B, and C. The initial
setup places the n disks on needle A. The task is
to move the disks one at a time from needle to
needle until the process rebuilds the original
stack, but on needle C. In moving a disk, a larger
disk may never be placed on top of a smaller disk.

Towers of Hanoi Example 1

11

Towers of Hanoi Example 2

Towers of Hanoi Example 3

12

Method hanoi()
The method hanoi() has arguments n, the
number of disks, and three string arguments
that denote the name of the starting needle
(initNeedle), the destination needle
(endNeedle), and the intermediate needle
(tempNeedle) that temporarily holds disks
during the moves.

// move n disks from initNeedle to endNeedle
// using tempNeedle for temporary storage
public static void hanoi(int n, String initNeedle,

String endNeedle, String tempNeedle)

Method hanoi() (continued)

Move n-1 disks from initNeedle to tempNeedle
using endNeedle for temporary storage.

hanoi(n-1, initNeedle, tempNeedle, endNeedle);

Move largest disk to endNeedle.
System.out.println("Move " + initNeedle + " to " +

endNeedle);

Move n-1 disks from tempNeedle to endNeedle
using initNeedle for temporary storage.

hanoi(n-1, tempNeedle, endNeedle, initNeedle);

13

Method hanoi() (continued)

// move n disks from initNeedle to endNeedle, using tempNeedle
// for intermediate storage of the disks
public static void hanoi(int n, String initNeedle,

String endNeedle,
String tempNeedle)

{
// stopping condition: move one disk
if (n == 1)

System.out.println("move " + initNeedle +
" to " + endNeedle);

else
{

// move n-1 disks from initNeedle to
// tempNeedle using endNeedle
// for temporary storage
hanoi(n-1,initNeedle,tempNeedle,endNeedle);

Method hanoi() (concluded)

// move largest disk to endNeedle
System.out.println("move " + initNeedle +

" to " + endNeedle);

// move n-1 disks from tempNeedle to
// endNeedle using initNeedle
// for temporary storage
hanoi(n-1,tempNeedle,endNeedle,initNeedle);

}
}

14

Program 6.2
import java.util.Scanner;

public class Program6_2
{

public static void main(String[] args)
{

// number of disks and the needle names
int n;
String beginNeedle = "A",

middleNeedle = "B",
endNeedle = "C";

// the keyboard input stream
Scanner keyIn = new Scanner(System.in);
// prompt for n and solve
// the puzzle for n disks
System.out.print("Enter the number of disks: ");
n = keyIn.nextInt();

Program 6.2 (concluded)

System.out.println("The solution for n = " + n);
hanoi(n, beginNeedle, endNeedle, middleNeedle);

}

< method hanoi() listed in the program discussion >
}

Run:

Enter the number of disks: 3
The solution for n = 3
Move A to C
Move A to B
Move C to B
Move A to C
Move B to A
Move B to C
Move A to C

15

Evaluating Recursion

Sometimes recursion simplifies algorithm
design, but it is sometimes not efficient
and an iterative algorithm is preferable.

For the Towers of Hanoi, a recursive solution
is elegant and easier to code than the
corresponding iterative solution.
For some problems, a recursive solution is
inefficient.

Fibonacci Numbers

Fibonacci numbers are the sequence of integers
beginning with position n = 0. The first two
terms are 0 and 1 by definition. Each subsequent
term, beginning at n = 2, is the sum of the two
previous terms.

3+586

2+355

1+234

1+123

0+112

SumValuen

16

Recursive method fib()

// compute Fibonacci number n using recursion
public static int fib(int n)
{

if (n <= 1) // stopping conditions
return n;

else
return fib(n-1) + fib(n-2); // recursive step

}

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥
=
=

+
=

2n
1n
0n

2),-fib(n1)-fib(n
1,
0,

fib(n)

Recursive method fib()
(continued)

The recursive method fib() makes multiple
calls to itself with the same argument. This
creates enounous redundancy. If numCall(n) is
the number of recursive calls required to
evaluate fib(n), then it can be shown that

numCall(n) = 2 * fib(n+1) - 1
For example, numCall(35) = 29,860,703

Because fib(n) gets large quickly, recursion is
not an efficient way to compute the Fibonacci
numbers.

17

Iterative method fibIter()
// compute Fibonacci number n iteratively
public static int fibIter(int n)
{

int oneback = 1, twoback = 0, current = 0;
int i;
// return is immediate for first two numbers
if (n <= 1)

current = n;
else

for (i = 2; i <= n; i++)
{

current = oneback + twoback;
// update for next calculation
twoback = oneback;
oneback = current;

}
return current;

}

Program 6.3
import ds.time.Timing;

public class Program6_3
{

public static void main(String[] args)
{

int fib_45;
Timing timer = new Timing();
double fibTime;
// evaluate fibIter(45) using iterative method
System.out.println(“Value of fibIter(45) by “ +

“iteration is “ + fibIter(45));
// evaluate fib(45) using recursive method
System.out.print("Value of fib(45) by recursion is ");
// start/stop timing the recursive method
timer.start();
fib_45 = fib(45);
fibTime = timer.stop();

18

Program 6.3 (concluded)

// output the value for fib(45) and time of computation
System.out.println(fib_45);
System.out.println(

" Time required by the recursive version is " +
fibTime + " sec");

}
< recursive method fib() defined in the
previous discussion >

< iterative method fibIter() defined in the
previous discussion >

}

Run:
Value of fibIter(45) by iteration is 1134903170
Value of fib(45) by recursion is 1134903170

Time required by the recursive version is 34.719 sec

Criteria of Using Recursion
With the overhead of method calls, a
simple recursive method could
significantly deteriorate runtime
performance. In the case of the
Fibonacci numbers, use the O(n)
iterative solution in preference to the
recursive version.
Use recursion when it enhances the
algorithm design and provides a
method implementation that runs with
reasonable space and time efficiency.

