
1

1

SQL Injection

The ability to inject SQL commands into
the database engine through an existing
application

2

What is SQL?
SQL stands for Structured Query Language
Allows us to access a database
ANSI and ISO standard computer language

The most current standard is SQL99
SQL can:

execute queries against a database
retrieve data from a database
insert new records in a database
delete records from a database
update records in a database

2

3

SQL is a Standard - but...
There are many different versions of the
SQL language
They support the same major keywords in a
similar manner (such as SELECT, UPDATE,
DELETE, INSERT, WHERE, and others).
Most of the SQL database programs also
have their own proprietary extensions in
addition to the SQL standard!

4

SQL Database Tables
A relational database contains one or more tables
identified each by a name
Tables contain records (rows) with data
For example, the following table is called "users" and
contains data distributed in rows and columns:

dthompsondthompsonThompsonDaniel3

qwertyadamtTaylorAdam2

hellojsmithSmithJohn1

PasswordLoginLastNameNameuserID

3

5

SQL Queries
With SQL, we can query a database and
have a result set returned
Using the previous table, a query like this:
SELECT LastName

FROM users
WHERE UserID = 1;

Gives a result set like this:
LastName

Smith

6

Data Manipulation Language
(DML)

SQL includes a syntax to update,
insert, and delete records:

SELECT - extracts data
UPDATE - updates data
INSERT INTO - inserts new data
DELETE - deletes data

4

7

Data Definition Language
(DDL)
The Data Definition Language (DDL) part of SQL
permits:

Database tables to be created or deleted
Define indexes (keys)
Specify links between tables
Impose constraints between database tables

Some of the most commonly used DDL statements
in SQL are:

CREATE TABLE - creates a new database table
ALTER TABLE - alters (changes) a database table
DROP TABLE - deletes a database table

8

How common is SQL injection?
It is probably the most common Website
vulnerability today
It is a flaw in "web application" development,
it is not a Database or web server problem

Most programmers are still not aware of this problem
Many tutorials and demo “templates” are vulnerable
Even worse, a lot of solutions posted on the Internet are
not good enough

5

9

Vulnerable Applications
Almost all SQL databases and programming languages are
potentially vulnerable

MS SQL Server, Oracle, MySQL, Postgres, DB2, MS Access,
Sybase, Informix, etc

Accessed through applications developed using:
Perl and CGI scripts that access databases
ASP, JSP, PHP
XML, XSL and XSQL
Javascript
VB, MFC, and other ODBC-based tools and APIs
DB specific Web-based applications and API’s
Reports and DB Applications
3 and 4GL-based languages (C, OCI, Pro*C, and COBOL)
…

10

How does SQL Injection work?
Common vulnerable login query

SELECT * FROM users
WHERE login = 'victor'
AND password = '123'

(If it returns something then login!)
ASP/MS SQL Server login syntax

var sql = "SELECT * FROM users
WHERE login = '" + formusr + "'
AND password = '" + formpwd + "'";

6

11

Injecting through Strings
formusr = ' or 1=1 – –
formpwd = anything

Final query would look like this:
SELECT * FROM users
WHERE username = ' ' or 1=1
– – AND password = 'anything'

12

The power of '
It closes the string parameter
Everything after is considered part of the
SQL command
Misleading Internet suggestions include:

Escape it : replace ' with ''
String fields are very common but there
are other types of fields:

Numeric
Dates

7

13

If it were numeric?
SELECT * FROM clients
WHERE account = 12345678
AND pin = 1111

PHP/MySQL login syntax
$sql = "SELECT * FROM clients WHERE " .
"account = $formacct AND " .
"pin = $formpin";

14

Injecting Numeric Fields
$formacct = 1 or 1=1 #
$formpin = 1111

Final query would look like this:
SELECT * FROM clients
WHERE account = 1 or 1=1
AND pin = 1111

8

15

Evasion Techniques
Input validation circumvention and
IDS Evasion techniques are very
similar and rely on "signatures"
Signatures can be evaded easily
Input validation, IDS detection AND
strong database and OS hardening
must be used together

16

IDS Signature Evasion
Evading ' OR 1=1 signature

' OR 'unusual' = 'unusual'
' OR 'something' = 'some'+'thing'
' OR 'text' = N'text'
' OR 'something' like 'some%'
' OR 2 > 1
' OR 'text' > 't'
' OR 'whatever' IN ('whatever')
' OR 2 BETWEEN 1 AND 3

9

17

SQL Injection Characters
' or " character String Indicators
-- or # single-line comment
/*…*/ multiple-line comment
+ addition, concatenate (or space in url)
|| (double pipe) concatenate
% wildcard attribute indicator
?Param1=foo&Param2=bar URL Parameters
PRINT useful as non transactional command
@variable local variable
@@variable global variable
waitfor delay '0:0:10' time delay

18

Input validation
Some people use PHP addslashes() function to escape
characters
single quote (') , double quote ("), backslash (\) , NUL (the

NULL byte)
This can be easily evaded by using replacements for
any of the previous characters in a numeric field
IDS and input validation can also be circumvented by
encoding

URL encoding
Unicode/UTF-8
Hex enconding
char() function

10

19

MySQL Input Validation
Circumvention using Char()

Inject without quotes (string = "%"):
' or username like char(37);

Inject without quotes (string = "root"):
' union select * from users where login =
char(114,111,111,116);

20

Defending against SQL injections
Sanitize all input.

Assume all input is harmful.
Validate user input that contains dangerous keywords or
SQL characters, such as “xp_cmdshell”, “- -”, and “;”.
Consider using regular expressions to remove unwanted
characters. This approach is safer than writing your own
search and replace routines.

Run with least privilege.
Do not execute an SQL SELECT statement as “sa”. Create
low-privilege accounts to access data.
Use SQL permissions to lock down databases, stored
procedures, and tables.
Remove unused stored procedures.

11

21

Defending against SQL injections
Do not allow clients to view ODBC/OLE DB error
messages. Handle these errors with your own code.
By default, ASP pages returns error messages to
clients.
Enable logging of all user access, and set alerts to
log all failed attempts to access objects.
Do not use string concatenations to build SQL
queries. Instead, use parameterized queries or
parameterized stored procedures, because they
explicitly define input and output values and do not
process multiple statements as a batch.

22

Back to a previous example
var sql = "SELECT * FROM users

WHERE login = '" + formusr + "'

AND password = '" + formpwd + "'";

is replaced by
SqlConnection objConnection=new SqlConnection(_ConnectionString);

objConnection.Open();

SqlCommand objCommand = new SqlCommand("SELECT * FROM User WHERE
login = @Name AND password = @Password", objConnection);

objCommand.Parameters.Add("@Name", NameTextBox.Text);

objCommand.Parameters.Add("@Password", PasswordTextBox.Text);

SqlDataReader objReader = objCommand.ExecuteReader();

if (objReader.Read())

{ ...

Why is it safer? Because the SQL server knows that the value of the
parameter is not actual code to execute, but data

