
1

(Old) Java Security

Adapted from presentation by
David A. Wheeler

2

Outline
Java Basics

What is Java, Modes of Use, major components,
implications, implementations, politics

Security-related capabilities (JDK 1.0, 1.1,
“1.2”)
Selected subsequent developments
Miscellaneous

Past breaches, malicious applets, advantages &
disadvantages, key points

3

What is Java?
Java Technologies:

Java language
Virtual machine (VM)/class file format
Libraries

Can use only VM or language
Developed by Sun
Cross-Platform (WORA)

Compiler

Source code

Class files

Virtual Machine

Libraries U
se

r
D

ev
el

op
er

4

Java Modes of Use
Applets: Auto-run when view web page
Applications: Traditional program
(performance?)
Beans: Component
Servlets: Server-side applications
Aglets: Intelligent Agents
Doclets: Configurable doc generator
Embedded Systems
Smart Cards (“JavaCard”)

5

Java Language
Modern object-oriented (OO) language

OO with single inheritance + multiple “interfaces”
Classes grouped into hierarchical packages
Strong static typing (no arbitrary pointers)
Automatic garbage collection
Exceptions
Multithreaded

Lacks enumeration and templates (generics)
Syntax ~C++, semantics ~Ada95/Smalltalk

6

Java Virtual Machine (VM) and
Class File Format

Class file defines names/types/values of class
variables, constants, methods
Methods stored as instructions to stack-based
VM
VM executes class files (inc. collections of
them)

By interpretation, run-time compilation, or
combination; performance is a significant issue

Before execution, VM usually runs “byte-code
verifier” to check legality of class file

2

7

Java Libraries
Set of built-in APIs, including:

GUIs
Networking
Computation

Growth area
Several classes are security-related

This presentation will skim ordinary crypto
functions such as ones for encryption/decryption,
certificate management, etc., since they are not
essentially unique

8

Class and Method
Access Control Modifiers

Access Control
Modifier

Class or Interface
Accessibility

Member (Field or Method)
Accessibility

Public All All if class or interface is
accessible; interface members
always public

Protected N/A Same package OR subclass

“default”
(Package private)

Same package Same package

Private N/A Only same class (not
subclass)

9

Implications of Java Basics
No arbitrary pointers: references ~ capabilities

Only creator & createe have reference for new
object
If objectset doesn’t pass a reference, you can’t
manipulate that object

Can only manipulate objects in limited ways
If data private, can only manipulate via methods
Methods can be used to protect data
Constructor method can limit who can create an
object

10

Notes on Java Implementations

“Java” is the general technology
Multiple Java Implementations

Sun, Microsoft (derived), Kaffe, …
We emphasizes Sun’s implementations
Sun essentially controls the interface and
reference implementation

11

Java: Caught in Political Cross-fire
Microsoft

Intentionally “polluted” with incompatible unmarked
extensions to fool developers into un-portable code
Sun sued & won court injunction partly forbidding this

Sun
Promised to support standardization (they have before)
Customers trusted Sun & committed major resources
Sun flirted with ISO, then halted cooperation
Greatly angered users: “Sun lied”
Linux port taken without warning or acknowledgement
Suddenly charged royalties on enterprise edition, even
to those who had partially funded its development

12

Java: Recent Political Situation
Sun controls spec & primary implementation

“Community” license means “Sun controls everything”
Java is essentially Sun proprietary language/technology

Disincentive for other organizations
IBM, etc., don’t want to depend on a competitor
Sole-source dangerous: surprise fees, nasty changes

User best interests not in Sun/Microsoft interests
To avoid total dependence on a capricious
vendor:

Consider open source, Linux, standardized languages

3

13

Security-Related Capabilities (1 of 2)

JDK 1.0 (Fall 1995)

Policy: “Sandbox” for applets; others unlimited
Mechanisms: SecurityManager, Bytecode verifier,
Classloader

JDK 1.1 (Spring 1997)

Policy: can also grant total trust to signed applets
Mechanisms: Java Archive (JAR), crypto-related
APIs

Inflexible: Too little or too much privilege

14

Security-Related Capabilities (2 of 2)

Netscape & Microsoft Extensions
Enabled more flexible approaches
Incompatible with each other and with Sun

J2SE (Java 2 Platform Standard Edition) (Fall 1998)

Includes SDK 1.2 and runtime
Policy: can also grant fine-grained privileges to
specific applets/classes based on source and/or
signatures
Mechanisms: AccessController, ProtectionDomain,
CodeSource, Permission, GuardedObject, …
“Java Plug-in” supports both Microsoft & Netscape

15

Java 1.0 Security Policy
Sandbox Policy (for applets)

Cannot access local filesystem or devices
Network connections only to applet load source
Cannot invoke any local program or library
“Untrusted” indicator on top-level windows
Cannot manipulate basic classes or another
ThreadGroup
Appletviewer CL can be initialized to vary these

Applications unlimited in 1.0; can code a
policy

16

SecurityManager
Class defines check methods called by system

E.G. “checkRead(String filename)”
Method throws exception if invalid

To create a security policy from scratch:
Create a subclass (code) & instantiate
Install using System.setSecurityManager; this
cannot be revoked or replaced
This is used to create the Sandbox
If no SecurityManager installed, all privileges
granted

17

Bytecode Verifier
Checks a classfile for validity:

Code only has valid instructions & register use
Code does not overflow/underflow stack
Does not convert data types illegally or forge pointers
Accesses objects as correct type
Method calls use correct number & types of
arguments
References to other classes use legal names

Goal is to prevent access to underlying machine
via forged pointers, crashes, undefined states

18

ClassLoader
Responsible for loading classes

given classname, locates/generates its definition
always looks at “standard” classes first
every class has a reference to the classloader
instance that defined it
keeps namespaces of different applets separate
(different ClassLoader instances)
each ClassLoader instance ~ OS process
“CLASSPATH” classes trusted in JDK 1.0-1.1,
system classes trusted, otherwise invokes
bytecode verifier

4

19

Java Archive (JAR) Format (1.1)
Format for collecting & optionally signing sets of
files

ZIP format + manifest + optional signatures

Manifest
In file META-INF/MANIFEST.MF
Lists (some) JAR filenames, digests, digest
algorithm(s) (MD5, SHA)

Signatures
Separate manifest-like file, separate signature

20

Java Cryptography Architecture
(Added in 1.1)

Java cryptography architecture (JCA)
Framework (API) for access to services
implemented by pluggable “providers”
digital signature algorithms (DSA), message digest
algorithms (MD5 & SHA-1), key-generation
algorithms, simple certificate management (1.1
had no API for specific formats)
Simple key management tool (simple “database”)

21

Problems with 1.0 through 1.1
Sandbox too limiting
“Trusted” programs given too much power
Hard to define new security policy

Must write own SecurityManager
Must install it on own JVM

New privileges difficult to add
New method must be added to SecurityManager
Creates a backward incompatibility for each
addition

22

Security-Related Capabilities in
Java 2 (SDK 1.2)

Fine-grained configurable policies
Sample Security Policy
Runtime State: ProtectionDomain/CodeSource/Policy
Java 2 Runtime Security Check Algorithm
Permission & Its Subclasses
SecurityManager & AccessController
GuardedObject & Guard

Java Cryptography Architecture (JCA) changes
Java Cryptography Extension (JCE)

23

Sample Fine-Grained
Security Policy for One User

Source of Code (CodeSource)
Base URL Signature

Permissions

http://www.schwab.com/
classes/stockeditor.jar

Schwab’s signature • Read/write file
/home/daw/stocks

http://*.schwab.com/ (not required) • Connect/accept
bankofamerica.com
ports 1-1023

• Read file
/home/daw/logo.png

24

Java 2: Each Class Has A
ProtectionDomain

Class1

ClassLoader1 Policy
Instance1 Instance2

Class2

ProtectionDomain1
PermissionCollection
CodeSource

ProtectionDomain2
PermissionCollection
CodeSource

1

... ...

1

1 1

Asks

5

25

ProtectionDomain Class
ProtectionDomain class

Created from a CodeSource and a PermissionCollection
Defines the set of permissions granted to classes;
change the PermissionCollection to change permissions
Each class belongs to ONE ProtectionDomain instance,
set at class creation time (and never changed again)
Access to these objects restricted; getting its reference
requires RuntimePermission getProtectionDomain

One ClassLoader can have >1 protection domain

26

CodeSource Class
Created from:

a source (base) URL and
array of certificates

Immutable
“implies” method implements URL
partial matches

Permits policies to use URL patterns

27

Policy Class
Provides interface to user policy

Given a CodeSource, returns a
PermissionCollection
Used during setup of ProtectionDomain to
set a class’ permissions

28

How a Class and
ProtectionDomain Are Loaded
1. Loaded class C1 requests an unloaded class C2
2. C1’s ClassLoader called, loads C2’s class file,

calls bytecode verifier
3. C2’s CodeSource determined
4. Policy object given CodeSource, returns

Permissions
5. If an existing ProtectionDomain has same

CodeSource & Permissions, reused, else new
ProtectionDomain created; C2 assigned to it

29

Java 2 Runtime Security Check
Algorithm

If method M requires permission P
M’s implementation calls current
SecurityManager’s checkPermission(P)

By default this calls new “AccessController” class
For each call stack entry, unwind from caller:
if caller’s ProtectionDomain lacks P, exception (fail)
if caller called “doPrivileged” without context, return
if caller called “doPrivileged” with context, check it:
return if context permits P, else exception (fail).

30

Examples of Algorithm At Work
Multiple ProtectionDomains:

Instance1 M1 calls Instance2 M2 calls System1 M3
System1 M3 (in System’s ProtectionDomain) asks for
a permission check
Permissions checked against the ProtectionDomains
for System1, then Class2, then Class1

doPrivileged call (without context):
Same example, but first System1 M3 calls
doPrivileged
When permission check requested, ProtectionDomain
for System1 checked and no others checked

6

31

Context
getContext() takes a snapshot of current
execution context (“stack trace”)

snapshot includes ancestor threads
stored in type AccessControlContext
results can be stored & can used later to limit
privileges (instead of enabling “all” privileges)

Purpose: support actions “on behalf of another”
one thread posts event to another
delayed actions

32

Algorithm Implications
Default privileges are the intersection
(minimum) of all class’ permissions in call tree

Without doPrivilege, permissions only decrease
“doPrivilege” enables “all” class’ privileges

Like Unix “setuid”; enables trusted classes to use
their full set of privileges but only when requested
Without context enables all privileges
With context enables only those privileges also in
given context; safe because resulting privileges
always less than without context

33

Warning: Don’t Mix Protected
Variables and Permission Checks

If a method M1 is not overridden, the
ProtectionDomain of its defining superclass used
Methods running (even indirectly) with privilege
shouldn’t depend on protected variables

Attacker creates subclass with new method M2
M2 modifies protected variable used by M1
Cause M1 to be invoked; M1 influenced by M2!

Identified by David A. Wheeler Oct 1999

34

Permission Class
Permission class

Encapsulates a permission granted or
requested
Can be set “read-only” (from then on
immutable)
Can be grouped using classes
PermissionCollection and Permissions

35

Permission Subclasses:
FilePermission Class

Gives rights to local files/directories
Path name/pattern

Specific path: file, directory, directory/file
All files in directory: directory/*
All files recursively in directory: directory/-
For current directory, omit “directory/”
For all files (dangerous), “<<ALL FILES>>”

Rights set (1+): read, write, execute, delete

36

Permission Subclasses:
SocketPermission

Host
Local machine: “”, “localhost”
Given machine: IP address or hostname
All hosts in a domain: *.domain
All hosts: *

Portrange
Single port: portnumber
Port range: port1-port2, port1-, -port2

Actions (1+): accept, connect, listen, resolve

7

37

Permission Subclasses:
PropertyPermission

Gives rights to properties
Similar to OS environment variables

Target
Specific property: os.name
Pattern: java.*

Actions (1+): read, write

38

Permission Subclasses: Other
Permission Subclasses

RunTimePermission: string with permission
name

createClassLoader
getClassLoader
setSecurityManager
exitVM
...

Many other specialized Permission subclasses
AllPermission

special class meaning “all permissions”

39

SecurityManager Changes
New method checkPermission(P)

Throws exception if permission P not held, else
returns
All previous “check” methods rewritten in terms of
checkPermission
Permits creation of new Permissions without
changing SecurityManager

By default, calls on AccessController class
AccessController implements the new algorithm

40

GuardedObject (1 of 3)
To protect one method in all instances,
use SecurityManager directly as seen so
far
To protect a reference to an individual
instance, consider using “GuardedObject”:

requesting
class GuardedObject

Guard

object-to-guard
getObject()

2 checkGuard()

3
reply with
object-to-
guard

1

41

GuardedObject (2 of 3)
GuardedObject class encapsulates object-to-
guard

asks “Guard” interface to determine if access ok
Permission implements Guard by calling
SecurityManager. checkPermission(self)
PermissionCollection doesn’t implement

Provider of object-to-guard does the following:
Instantiates new Guard (e.g., a Permission)
Instantiates GuardedObject, using object-to-guard and
the guard
Gives GuardedObject’s reference to requestors

42

GuardedObject (3 of 3)
Clients who wish to use object-to-guard
call GuardedObject’s getObject()

GuardedObject instance calls its Guard’s
checkGuard()
if ok, object-to-guard’s reference returned
if not ok, security exception thrown

8

43

Java Cryptography Architecture
(JCA) Changes in 1.2

Adds more APIs that providers can support
Keystore creation and management
Algorithm parameter management
Algorithm parameter generation
Conversions between different key representations
Certificate factory support to generate certificates
and certificate revocation lists (CRLs) from their
encodings (Sun implements X.509’s)
Random-number generation (RNG) algorithm

44

Java Cryptography Extension
(JCE)

Adds encryption, key exchange, key
generation, message authentication code
(MAC)

Multiple “providers” supported
Keys & certificates in “keystore” database

Separate due to export control

45

Other Areas In Development:
JSSE and JAAS

Java Secure Socket Extension
Implements SSL

Java Authentication and Authorization Service
Based on PAM: pluggable authenticators for
passwords, smart cards, biometric devices, etc.
Authenticators may be required, requisite (stop on
failure), sufficient (but not required), or optional
Adds user-centric (vs. code-centric) control:
permissions granted to Principal (not just
CodeSource), implemented through a modified
SecurityManager

46

Past Java Security Breaches (1 of 2)

8 Serious Breaches listed in Java Security
(1997)

“Jumping the Firewall” (DNS interaction)
“Slash and Burn” (slash starts classname)
“Applets running wild” (evil class loader
installed and creates type confusion)
“Casting Caution” (failed to test if method
private, type casting)
“Tag-Team Applets” (create type confusion)

47

Past Java Security Breaches (2 of 2)

“You’re not my type” (flaw in array implementation -
type confusion)
“Casting Caution #2” (as before, but in a loop test
wasn’t repeated)
“Big Attacks Come in Small Packages” (untrusted
code could be loaded into sensitive packages, e.g.
com.ms, and gain their privileges)

Others have been announced since
See http://java.sun.com/sfaq/chronology.html
Many are problems in bytecode verifier or
classloader

48

Malicious Applets
(Staying Within the Sandbox)

Denial of Service
Deny platform use (busy threads, loop, exhaust GUI
resources)
Kill other threads

Invasion of Privacy
Annoyance: constant sound
Flashing display (causes seizures in some users)
Steal CPU cycles (e.g. crack encryption)

9

49

Java Advantages
Permits controlled execution of less
trusted code (vs. ActiveX)
Permits fine-grained permission control
Attention paid to security
Portability
“Instant installation”
Sun’s source reviewable (not open
source)

50

Java Security Disadvantages (1 of 3)

Hard to prove correct
complex from security point-of-view
rapidly expanding/changing
VM+libraries lacks formal security model

Many internal interdependencies (vs. reference
monitors); often breaks “all the way”
Complex dependencies on other systems

OS, browsers, network (DNS), PKI

51

Java Security Disadvantages (2 of 3)

Applets evade many security measures
(e.g. most firewalls)
Breaches demonstrated
No standardized auditing (MS extension)
Simplifies reverse engineering of code
(problem?)
Poor performance may encourage
security-weakening “shortcuts”

52

Java Security Disadvantages (3 of 3)

Weak against denial-of-service & nuisances
Insecure implementation defaults (e.g. null
ClassLoader or SecurityManager)
Security policy management too complex for
end-users and weak administrative support
Flexible policies accepted by users may
permit hidden breaching interactions

53

Key Points
Progression of Access Control Flexibility

JDK 1.0: Sandbox + total trust of local applications
JDK 1.1: Above + optional total trust with signature
SDK 1.2: Above + Fine-grained access control

Java 2 ProtectionDomains
Checks call tree, by default intersection of
permissions
doPrivilege permits permissions to be re-enabled

GuardedObject to protect specific objects

54

Useful References
Li Gong, Inside Java 2 Platform Security,
1999, Palo Alto, CA: Addison-Wesley.
G. McGraw & E. Felten, Java Security: Hostile
Applets, Holes, and Antidotes, 1997, NY: John
Wiley & Sons.
G. McGraw & E. Felten, Securing Java:
Getting Down to Business with Mobile Code,
1999, NY: John Wiley & Sons,
http://www.securingjava.com
Sun’s Java website: http://java.sun.com

