
Copyright © 2008 by Michael Reiter
All rights reserved. 1

1

Capture-Resilient Cryptographic Devices

Mike Reiter

University of North Carolina at Chapel Hill

2

Relevant Trends

Proliferation of mobile devices

Proliferation of networking

Proliferation of security-relevant apps using these
In civilian applications, device may

Enable access to virtual private networks, corporate data
Enable modification of corporate assets (documents, code)

In military applications, device may
Send intelligence data, target coordinates, unit status
Enable access to mission data, status and readiness of other units,
orders from unit commander

Copyright © 2008 by Michael Reiter
All rights reserved. 2

3

Capture and Misuse
Physical capture a recognized problem

Four computers stolen from Wells Fargo, lost social security numbers
of customers [Los Angeles Times, Nov 4, 2004]
General who heads Israel’s foreign intelligence agency had cell phone
stolen from car in Tel Aviv, leaking numbers of agents and secret
service heads [Reuters, Mar 3, 2004]
Laptop stolen from UC Berkeley Graduate Division Offices that
contained names and social security numbers of over 98,000 people
[UC Berkeley News, Mar 28, 2005]
478 laptops lost or stolen from the IRS between 2002−2006; 112 held
sensitive taxpayer data, including SSNs [WTOP, Nov 15, 2006]

Vulnerability due to device capture will grow as uses proliferate
Captor gains privileges (crypto keys) that device engenders (holds)

4

Capture-Resilient Cryptographic Devices

A capture-resilient device is one that cannot be used by other
than its rightful owner

No amount of reverse engineering exposes its cryptographic secrets
Does not rely on tamper-resistant hardware; a software-only solution

Approach leverages networked nature of device
Most interesting uses of a key require network anyway

Idea: The environment confirms that the device remains in its
owner’s possession before permitting its key to be used

Component in environment is called a “capture-protection server”

Copyright © 2008 by Michael Reiter
All rights reserved. 3

5

Security Goal #1

Server

If attacker captures device, then he can do no better than an
online dictionary attack

Formally, can forge for device with probability q/|D| after making q
password guesses to server, where password is drawn from dictionary D
Server can detect and stop attack

?
…, π3, π2, π1

6Using the Network
[Lomas et al. 1989; Bellovin & Merritt 1992; …; Perlman & Kaufman 1999]

Store private key in a protected server that authenticates user
before sending the private key

Server
User:Bob
Pwd :π
Key :

Use π to set up strong
encryption key

Eavesdropper gains nothing to use in offline dictionary attack
But … break-in at server leaks private key

Possibly after an offline dictionary attack

π

Copyright © 2008 by Michael Reiter
All rights reserved. 4

7

Security Goal #2

π

If attacker compromises server (and password), then he still
cannot forge signatures for the device

Server is untrusted in this sense

Server

π

8Reducing Trust in the Server
[w/ MacKenzie]

Keep the key at the client, but in a disabled state

Server
Server confirms that π is

password of user who
initialized device

π

Break-in at server leaks nothing
Online dictionary attack possible only after device is captured

Server can again detect and stop the attack
Offline attack requires capture of both client device and server

Copyright © 2008 by Michael Reiter
All rights reserved. 5

9

Device Initialization

Requires
secret key for the device SKdvc

public key for the server PKsvr

one-way function h
pseudorandom function f

Steps
v ←R {0,1}κ

b ← h(π)
c ← f (v, π) ⊕ SKdvc

τ← EPKsvr(<b, c>)
save v, τ

(b, c, SKdvc are deleted)

10

SKdvc ← η ⊕ ρ ⊕ f(v, π)

Key Retrieval Protocol

v, τ

β ← h(π)
ρ←R {0,1}λ
γ← EPKsvr(<β, ρ>) γ, τ

< β, ρ> ← DSKsvr(γ)
<b, c> ← DSKsvr(τ)
abort unless b = β
η ← c ⊕ ρη

Copyright © 2008 by Michael Reiter
All rights reserved. 6

11

Security Goal #3

If attacker compromises device and password, then he can forge
only until the device key is disabled at the server.

Serverπ
π

12Reducing Trust in the Client
[w/ MacKenzie; see also Boneh et al. 2001; c.f., Ganesan 1985]

Can disable the device if stolen
Even if attacker knows the user’s password

Server
Server confirms that π is

password of user who
initialized device

π

p ← start(, m)
ps ← finish(, p, m)

Same properties as before, plus disabling
Known techniques depend on particular form of private key

All use function sharing primitives

Copyright © 2008 by Michael Reiter
All rights reserved. 7

13

Example: RSA Signatures

Private key is <d, N>
Public key is <e, N>
N is the product of two large primes
ed ≡ 1 mod Φ(N)

Φ is Euler’s totient function

Signature on m is σ = H(m)d mod N
H is a collision-resistant hash function

14

RSA Signing Initialization

Requires
secret key for the device <d, N>
public key for the server PKsvr

one-way function h
pseudorandom function f

Steps
v0 ←R {0,1}κ

b ← h(π)
d0 ← f (v0, π)
d1 ← d – d0 mod Φ(N)
τ← EPKsvr(<b, d1, N>)

save v0, τ
(b, d, d0, d1 are deleted)

Copyright © 2008 by Michael Reiter
All rights reserved. 8

15

RSA Signing Protocol

v0, τ

β ← h(π)
ρ←R {0,1}λ
γ← EPKsvr(<m, β, ρ>) γ, τ

< m, β, ρ> ← DSKsvr(γ)
<b, d1, N > ← DSKsvr(τ)
abort unless b = β
μ ← H(m)d1 mod N
η ← μ ⊕ ρη

μ ← η ⊕ ρ
d0 ← f(v0, π)
σ← μ(H(m)d0) mod N

16

The Cost of Disabling

Public key
operation

Private key
operation Messages Device

exps
Server
exps

ElGamal
encryption
(q = p–1)

DSA
signatures

r ←R Zq
c1← gr mod p
c2 ← myr mod p
return <c1,c2>

return c2/(c1)x mod p

r ←R Zq
s1← gr mod p
s2 ←
(H(m)+xs1)/r mod q

return <s1 mod q,s2>

z ← (s2)–1 mod q
verify
s1≡q gH(m)zys1z mod p

2

4

5

46

5

50

RSA
signatures

s ← H(m)d mod n
return s

verify
se mod n = H(m) 2 2 3

Copyright © 2008 by Michael Reiter
All rights reserved. 9

17

A Closer Look at Disabling

Only the user should be able to disable her key
Can’t require user to have the device to disable
Can’t authenticate the user using only her password (too weak)

Our approach adds two new values to initialization
t ←R {0,1}κ

u ← h(t)
Value u is inserted into the ticket

τ← EPKsvr(<b, u, d1, N>)

User copies t off device, and disables by sending t to server
Server ignores any ticket containing u = h(t)

18Delegation
[w/ MacKenzie]

Authorize

Authorize

Authorize

Copyright © 2008 by Michael Reiter
All rights reserved. 10

19

Delegation Framework

svr

π

svr : v0, τ svr′

svr′: v0′, τ′

Delegation: Interact with svr to create v0′, τ′ for use with svr′
Revocation: Unilaterally revoke (erase) v0, τ for any svr

20

Delegation and Dictionary Attacks

Delegation must be a password-protected operation
Otherwise, attacker can delegate to a server he controls to conduct an
undetectable (offline) dictionary attack

svr

svr : v0, τ

?

svr′: v0′, τ′
svr′

Copyright © 2008 by Michael Reiter
All rights reserved. 11

21

Delegation and Dictionary Attacks (cont.)

Can we ensure that attacker can forge with probability no
better than q/D, after making q queries to svr′?

Requires that attacker learned nothing about π in role as svr

π svr

1. Active svr is corrupt

π svr

svr′

2. Delegation to server svr′

π svr′

3. Corrupt svr is revoked

svr′
?

4. Device is captured

22

Delegation and Dictionary Attacks (cont.)

Unfortunately, some information about π must leak, namely the
number of incorrect password guesses (mistypes)

Server presumably must count these, to limit online dictionary attacks

But, we modify our protocol to make sure that the number of
mistypes is the only information that leaks

Even hide the frequency of a given mistype

We then prove security in a model where the adversary controls
when mistypes occur (and so the number of mistypes he sees)

Copyright © 2008 by Michael Reiter
All rights reserved. 12

23

Limiting Password Information Leakage
Initialization

v1 ←R {0,1}κ
b ← f1(v1, π)
…
τ← EPKsvr(<b, …>)

Protocol
v0, v1, τ

v2 ←R {0,1}κ
β ← f2(f1(v1, π), v2)
…
γ← EPKsvr(<… v2, β …>) γ, τ

< … v2, β …> ← DSKsvr(γ)
<b, …> ← DSKsvr(τ)
abort unless f2(b, v2) = β

24

Who Creates Tickets?

π

svr : v0, v1, τ svr′
svr′: v0′, v1′, τ′

svr

Question: When delegating from svr to svr′, who creates τ′ ?
If svr, then it knows share of svr′

Revoking svr still enables offline
attack with device capture

π

svr : v0, v1, τ svr′
svr′: v0′, v1′, τ′

svr π

svr : v0, v1, τ svr′
svr′: v0′, v1′, τ′

svr

If device, then it can replace u with
something else

Disabling won’t be possible

Copyright © 2008 by Michael Reiter
All rights reserved. 13

25

Distributed Ticket Creation
svr

d1

Δ + d11′ u

svr′

π

d0

d0′ + d10′ − Δ

d1′ ← d10′ + d11′

svr binds
u to key

svr doesn’t know d10′
or thus d1′

26

Distributed Ticket Creation (cont.)

svr′ can recover d1′ by
decrypting τ′ and then ζ′

svr

svr : v0, v1, τ

η

save <svr′: v0′, v1′, τ′>

<Δ, ζ′> ← ρ ⊕ η
d0 ← f(v0, π)
d0′ ← f(v0′, π)
d10′ ← d0 − d0′ + Δ
τ′ ← EPKsvr′(<b, d10′, ζ′, N>)

Δ ←R {0,1}λ+κ

d11′ ← d1 − Δ
ζ′ ← EPKsvr′(<u, d11′>)
η ← ρ ⊕ <Δ, ζ′>

… …

Copyright © 2008 by Michael Reiter
All rights reserved. 14

27Proactivity
[Ostrovsky & Yung 1991; Canetti & Herzberg 1994; Herzberg et al. 1995; …]

Can be achieved using delegation.Proactive update “erases”
server key disclosures

π

π Device capture ?

Device capture ?

28

Definitions

Attackers (static)
A1: Does not compromise device.
A2: Compromises device, does not compromise π, and any server
authorized when device is captured is never compromised.
A3: Compromises device, does not compromise π, and some server
authorized when device is captured is compromised.
A4: Compromises device and password, but does not compromise any
server.

Other
D is the dictionary from which password is chosen.
n is number of servers.
Server encryption E is adaptive chosen ciphertext secure.
qsvr (qdvc, …) are number of queries to servers (device, …).

Copyright © 2008 by Michael Reiter
All rights reserved. 15

29

Theorem 1

A1: Does not compromise device.
Assumptions

f0 is a pseudorandom function family

Thm (informal): If an A1 attacker forges with probability ε, then
there is a forger that forges in the underlying the RSA signature
scheme with probability ε′ ≈ ε.

30

Theorem 2
A2: Compromises device, does not compromise π, and any
server authorized when device is captured is never compromised.
Assumptions

f0, f1, f2 are pseudorandom function families

Thm (informal): If an A2 attacker forges with probability
ε = qsvr/|D| + ψ

then either there is an attacker that breaks encryption with
probability

ε′ ≈ ψ/(2n(2qdvc+1))
or there is a forger that forges in the underlying the RSA
signature scheme with probability

ε′ ≈ ψ/2.

Copyright © 2008 by Michael Reiter
All rights reserved. 16

31

Theorem 3

A3: Compromises device, does not compromise π, and some
server authorized when device is captured is compromised.
Assumptions

f0, f1, f2 are random oracles
Mistypes are diffuse:

∀π : Pr[π0 ←R D; π ← mistype(π0)] = 1/|D|

Thm (informal): If an A3 attacker forges with probability
ε = (qf0 + qf1 + qf2)/|D| + ψ

then there is a forger for the underlying RSA signature scheme
that forges with probability

ε′ ≈ ψ.

32

Theorem 4

A4: Compromises device and password, but does not
compromise any server.
Assumptions

Underlying RSA signature scheme is deterministic.

Thm (informal): If an A4 attacker forges after disabling with
probability ε, then either there is an attacker that breaks
encryption with probability

ε′ ≈ ε/(2n(qdvc+1))
or there is a forger that forges in the underlying the RSA
signature scheme with probability

ε′ ≈ ε/2.

Copyright © 2008 by Michael Reiter
All rights reserved. 17

33

Security Costs of Delegation

If each server permits q
guesses, then k authorized
servers permit kq guesses

?

svr : v0, v1, τ

svr′

svr′: v0′, v1′, τ′

svr

svr′′: v0′′, v1′′, τ′′
svr′′

π

svr : v0, v1, τ

svr′

svr′: v0′, v1′, τ′

svr

svr′′: v0′′, v1′′, τ′′
svr′′

Every admissable server
must be disabled to ensure
that the key will not be used

34Regaining Control Using Shared Objects
[w/ Samar & Wang]

Challenges in storing and maintaining the counter
Naively storing it in one location undercuts the purpose of delegation
No global view of the authorized servers at any time

Our goal: a “minimal” object sharing infrastructure that
Enables accurate maintenance of a shared counter despite compromises
Effectively utilizes locality of reference and adapts to delegations

?

svr : v0, v1, τ

svr′

svr′: v0′, v1′, τ′

svr

svr′′: v0′′, v1′′, τ′′
svr′′

bad
guesse

s

Servers share a
counter per device

Increment counter per
wrong password guess
Set to max value for
disabled device

Copyright © 2008 by Michael Reiter
All rights reserved. 18

35

Arrow Initialization

Each server maintains an “arrow” indicating the direction in
which the counter lies
Arrow for newly delegated server is initialized with consenting
server for the delegation

svr : v0, v1, τ

svr′

svr′: v0′, v1′, τ′

svrπ

svr′.arrow ← svrτ′
Contains id
of svr

36

Retrieving the Counter

π π

Copyright © 2008 by Michael Reiter
All rights reserved. 19

37

Mutual Exclusion

?
tπ1 π2

0

0
1 1

D

D
D

D

38

Conclusion

An approach for defending a key from misuse even if device
holding it is captured and reverse-engineered

Requires network connectivity to reach a “capture protection server”
Requires human operator to have (possibly low-entropy) secret
Does NOT expose key to server
Server can be used to disable device even if attacker knows password

Delegation enables new servers to be authorized dynamically
Revocation enables authorization to be removed, with the security
being essentially as if server was never authorized
Results in substantive changes to protocols
Significantly extends today’s key management approaches

Copyright © 2008 by Michael Reiter
All rights reserved. 20

39

Bibliography

P. MacKenzie and M. K. Reiter. Networked cryptographic
devices resilient to capture. International Journal of
Information Security 2(1):1–20, November 2003.
P. MacKenzie and M. K. Reiter. Delegation of cryptographic
servers for capture-resilient devices. Distributed Computing
16(4):307–327, December 2003.
M. K. Reiter, A. Samar and C. Wang. The design and
implementation of a JCA-compliant capture protection
infrastructure. In Proceedings of the 22nd IEEE Symposium on
Reliable Distributed Systems, October 2003.

