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Device-Enabled Authorization

Smartphones on a trajectory to “win” in the market
Stand to inherit mobile phone market that shipped overStand to inherit mobile phone market that shipped over 
1.1 billion units in 2007 [IDC]—or more than one phone 
per six people in the world

Goal: to use smartphones to intelligently control environment
Loan you my car without giving you my phone
Send money from my phone to my daughter’s phone
Gi il i h liGive my secretary temporary access to my email without revealing 
information (e.g., password) that could be used at a later time
Use my phone to open my hotel room door, without ever stopping by 
the front desk

… and do it all from a distance
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The Grey System
Universal, flexible, end-user-driven 
access-control system for physical and y p y
virtual resources
Deployed in CMU’s Collaborative 
Innovation Center

Approximately 35 Grey-capable doors and 
30+ users at the moment
Grey-compatible Windows XP and Linux 
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login modules 
Access-control module for web servers 
under development

Plus a deployment coming at UNC

Distributed Access Control

Scott can access gold.
- Sir Mike

Mike is in 
charge of gold

- The King

The King

Demonstrate that the King 
authorized access to the goldAdvantages of distributed policy

Allows decentralized administration
Better suited for systems in which there 
is no central authority
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Scott

Sir Mike

I want gold.
- ScottExplanation of why 

The King allows 
access to gold
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Logic-Based Access Control
Advantages of expressing policy in logic

Unambiguous policy specification
All fl ibl d l i d l d iAllows flexible delegation, and role and group creation
Greater assurance of correctness

Demonstration can take the form of a logical proof
Efficiently verifiable
Resource monitor (knight) verifies that:

Th d ti l lid
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The credentials are valid
The credentials imply that access should be granted

Knight need not know the entire policy beforehand

Challenge: proof construction must be efficient

Challenges in Proof Construction
Potentially many different ways to derive authority

Must look for them all before determining that access is not authorizedMust look for them all before determining that access is not authorized

Credentials are distributed
Nodes not always online
Communication may incur a high latency

Desired feature: allow dynamic credential creation
Requesting a credential may result in user interaction 
M id i d i l
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Must guide user to create appropriate credential
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Sample Access-Control Logic
Expressing Beliefs:
Bob signed F

Bob states (cryptographically) that he believes that F is true
Bob says F

It can be inferred that Bob believes that F is true

Types of Beliefs:
Bob says open(resource, nonce)

Bob wishes to access a resource
Bob says (Alice speaksfor Bob)

8

Bob wishes to delegate all authority to Alice
Bob says delegate(Bob, Alice, resource)

Bob wishes to delegate authority over a specific resource to Alice
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Example Inference Rules

A signed F

A says (B speaksfor A)

A says F

B says F

A says F
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A says delegate(A, B, resource)

A says open(resource)

B says open(resource)

Example Scenario
Alice must 

authorize access
I need to grade the 

midterms for Alice’s class
Bob is one of 
my Students

Alice’s office, D208Alice

Bob

1. Hi, Please open D208

2. Prove Alice says open(D208)How should I 
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2. Prove Alice says open(D208)
construct a

proof?
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Common Proving Approach: Backward Chaining
Used by Prolog

Decompose goal into subgoals using tactics
A tactic applies one or more inference rules in a single step

Recursively try to prove each subgoal
Only performs computation relevant to query at hand
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Example Proof (Using Backward Chaining)

Bob signed open(D208)
Alice signed (Bob 

??
Alice.Students says 
open(D208)

Alice signed delegate(Alice, 
Alice.Students, D208)

Bob signed open(D208)speaksfor Alice.Students)

??

? ?
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?
Alice says open(D208)

???
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Previous approaches generate proof in a centralized manner

Traditional Approach to Proof Generation
Alice’s Office, D208Alice Bob

1. Hi, Please open D208

2. Prove Alice says open(D208)3. Alice signed Bob speaksfor Alice?

4. Alice signed delegate(Alice,Bob,D208)?

5 Alice signed Bob speaksfor Alice Secretary?

No

No

13We classify this approach as “Eager”

6. Alice signed Charlie speaksfor Alice?

…

100. Proof of  Alice says open(D208)

5. Alice signed Bob speaksfor Alice.Secretary?

No
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Our Proposal:  A Lazy Approach
Ask Alice to prove Alice says open(D208)
Alice’s prover may use its local knowledge to complete proofAlice s prover may use its local knowledge to complete proof

Certificate lookups may now be performed locally, rather than remotely

More generally, when reasoning about the beliefs of principal A,
Always ask A to prove A says F

15

Lazy Proof Generation
Alice’s Office, D208Alice Bob

Generate credential
stating my desire
to open D208

This is Alice’s 
belief.  I’ll ask
Alice for help.

1. Hi, Please open D208

2. Prove Alice says open(D208)

3 P Ali (D208)

Students can get
into office.  Bob
is a student…

16

5. Proof of Alice says open(D208)

3. Prove Alice says open(D208)
(given that Bob says open(D208))

4. Proof of Alice says open(D208)
(given that Bob says open(D208))



9

Talk Outline
Introduction
Distributed Proof ConstructionDistributed Proof Construction

Lazy proving strategy
Evaluation

Efficient Proving for Practical Systems
Identifying and Resolving Policy Misconfigurations
Related Work and Conclusions

17

Analysis
No loss in proving ability compared to eager approach

Proof in paper

Evaluation metric: number of network interactions (requests) made 
by prover

Lazy Requests Proof requests
Eager Requests Credential lookups

Requests can incur a high latency delay proof construction

18

Requests can incur a high latency, delay proof construction
Requests may travel over the cellular network or result in user interaction

Simulate proof construction for all authorized accesses; average



10

Policy for Simulations Based on real policy for 
ECE Department
Delegations are made to 
roles, then principals 
bound to those rolesbound to those roles
CA run by university, 
binds principal names 
to public keys
Simulate various policy 
sizes by specifying the 
branching coefficients 
for the tree rooted at 
CMU
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Principals that Cache Results

LazyEager LazyEager
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900

1000

ce
ss Eager: First Access

Eager: Second Access

300

400

500

600

700

800

e 
N

um
be

r o
f R

eq
ue

st
s 

pe
r A

c Eager: Second Access

Lazy: First Access

Lazy: Second Access

Gain from 
distributed cache

22

0

100

200

(2,1,1) (2,2,2) (2,2,10) (2,4,10) (2,4,30)
Authorization Tree

A
ve

ra
ge

distributed cache

9                    17                49                 93            253
Users



12

Limitations
Asking CMU to prove CMU says open(X)results in:

CMU receiving a large number of requestsg g q
An unnecessary request if derivable from local credentials
Both of these addressed in next section

Consistency
Certificates may be created and revoked
Need to update all corresponding positive and negative caches
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Use mechanism of [Minami and Kotz ’06]
Frequent changes all credentials might not be simultaneously valid

Use multiple rounds or commitments [Lee and Winslett ’06]

Checkpoint
Distributed (lazy) proof construction :

Completes proofs with fewer requests than eagerp p q g
Distributed cache enables further gains for lazy 

Caching negative results reduces queries by 75% 
(for both lazy and eager) in our tests

24
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Related Work and Conclusions

Requirement #1: Minimize Expensive Subgoals
Prover can progress by proving different “expensive” subgoals

“Ask Alice for help”p
“Ask Charlie for help”
“Prompt user to modify policy”

One may be the obvious choice to a human, but prover will 
investigate them in the order they are found

26

Requirement: aggregate choices and ask user for input
Avoids avenues that are unlikely to succeed
Increases computation – must determine all possible next steps
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Requirement #2: Guided Credential Creation
Alice Bob

Alice’s Office
D208

1. Hi, Please open D208

2. Prove Alice says open(D208)3. Prove Alice says open(D208)
(given Bob says open(d208))

27

Prover must reason about ALL 
credentials that could be created

Increased computation

Requirement #3: Local Proving
Requirement: only ask for help if local knowledge is 
insufficient to generate proofg p

I.e., may not always ask A to prove A says F
Previously, cache responses to requests
However, cached credentials can derive other formulas too

Increases computation – must try to prove all formulas locally

28
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Prover Must Support:
1) User-guided proving

User intuition helps avoid fruitless searchp

2) Guided credential creation
Prover tells user what credentials could grant access

3) Local proving
Only ask for help when absolutely necessary

St i htf d i l t ti i ffi i t
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Straightforward implementations very inefficient
Prior to this work, best version took 5 minutes to construct the list of 
choices on Alice’s phone
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R l t d W k d C l i
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Related Work and Conclusions
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Naïve Approach (We built it: it was abysmal)

Use Backward Chaining
Easier to reason about hypothetical credentials than alternativesyp

Started with tactics = inference rules
Hand-tuned to gain efficiency

Sacrificed some proving ability
Kept needing to expand tactics to cover unforeseen scenarios

Tedious to construct

31

Tedious to construct
Difficult to analyze formally

Very slow: Alice’s prover will take almost 5 minutes

Reasons for Complexity
Multiple rules to apply to each formula

No proof from local credentials must exhaustively find all 
expensive subgoals

Must reason about hypothetical credentials
Many different credentials could be created
Ali ld d l t
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Alice could delegate as Alice, Dept.Faculty,
Alice.machine-room.staff, CMU.CA.Alice

To determine who Alice should delegate to, must finish proof with 
unbound variables vastly more possibilities to explore
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Insight
Computation that occurs off of the critical path of access is 
transparent to the user

Goal: move all possible computation off of the critical path
Precomputation done without knowing which resource user will access

33

Common Proving Approach: Forward Chaining
Forward Chaining

Combine credentials in every way allowable by the inference rulesy y y
Stop if goal is derived or no inferences can be made
Can be run incrementally, adding one credential to KB at a time

34
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Approach
Use FC to precompute all possible facts from cached 
credentials

At time of access, simply look for precomputed proof

At the time of access: if no proof can be found need to 
identify all expensive subgoals

Identify who to ask for assistance, or what credentials could be created
Take advantage of FC results 

If it’s not in cache, don’t try to derive it from credentials

35

If it s not in cache, don t try to derive it from credentials

Improvement: also precompute all possible paths of delegations 
Tactics can then traverse a series of delegations in single step
Paths of delegation not expressible directly in the logic
Precomputed using Path Compression algorithm

Identifying Expensive Subgoals
(when no proof derivable from local knowledge)

Use backward chaining with tactics that use precomputed results 
Tactics called LR (for left/right)

Each inference rule becomes two tactics: left and right
Left: use PC results
Right: use FC results
Systematically constructed from rules of the logic (no hand-tuning)

O i i d i ’
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Optimized version: LR’
Only suggests credentials where Alice delegates as herself
Covers vast majority of practical scenarios
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Right Tactics: Use Forward Chaining Results

P i

Prior to access Time of access

B says FA says
(B speaksfor A)

?

Previous
approach

Our

? A says F

?

Proof of
B says FA says

(B speaksfor A)
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?

A says F

Proof of
B says F

?Our
technique

Left Tactics: Use Path Compression Results

P i

Prior to access Time of access

? B says F

Previous
approach

Our ?

?B says F 
A says F

?

?

?

?

A says F

B says F(B says F 

38

Our
technique

?

?

?

?

?

?

A says F

A says F)
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Algorithm Execution (Summary)
Run before the time of access

Forward Chainingg
Path Compression

At the time of access
If no proof in FC results, find expensive subgoals using LR tactics
Use FC and PC results to avoid exploring all possibilities

39
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Related Work and Conclusions
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Analysis – Tactic Sets
No loss in proving ability

If a proof can be found using IR tactics, it will be found using LR

Primary evaluation metric: amount of work done at time of access
Will vary the tactic sets used by Backward Chaining
Previous work:

IR: inference rules
IR-NC: inference rules with basic cycle detection
HC: hand-crafted tactics

New tactic sets (used with FC, PC):
LR: left right

41

LR: left-right
LR’:  optimized LR tactics

Platforms
Nokia N70 smartphone
Dual 2.8Ghz Xeon workstation, 1GB RAM

Computation Time for Alice (on phone)
IR and IRNC crash 
on phone

Crash!

LR wins when 
credential missing
LR wins by larger 
margin when proof 
completable
LR’ dominates

42
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Large Policies (on workstation, credential missing)

Complexity indicative of 
university-wide policy
IR crashes
IR-NC crashes for sizes > 
50
HC only finds 21% of 
possible solutions
LR finds all solutions
LR’ finds all solutions in

43

LR  finds all solutions in 
the subset it is looking for

Tabling
Tabling eliminates redundancy in proof search by internally 
caching resultsg
Similar to our use of FC, but no precomputation
Compare IR vs LR (both with tabling)
Restrict depth of nested names used by IR to prevent infinite 
expansion

Fi di
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Findings:  
LR much faster for small policies with tabling enabled
LR faster if IR allowed 2 or more degrees of nesting on larger policies
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Effects of Precomputing Results
Cache size

Must all fit in memoryy
Linear w.r.t. the number of credentials

Total precomputation time
Amortized over many accesses
Quadratic w.r.t. the number of credentials

45

Centralized prover can handle 1000’s, but not 10,000’s of users
Distributed caches likely to be much smaller

Checkpoint
Distributed proof construction

Reduces queries by constructing proof on node with most relevant knowledge
E bl h d d f fl ibilit i h f i t t dEnables each node a degree of flexibility in how proof is constructed

Present an efficient proof construction strategy that supports
User guided proving
Credential creation
Local proving

Computation time reduced by utilizing pre-computed results to avoid 
exploring costly branches at the time of access

46

p g y
Forward Chaining: computes all true facts
Path Compression: computes all trust relationships
LR Tactics: systematically constructed to leverage above results

Our strategy is efficient enough to be practical
Has been deployed for two years
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A Misconfigured Access-Control Policy
Alice is a professor
Professors should be allowed access to the machine roomProfessors should be allowed access to the machine room
However, Alice has never needed physical access to her machines

It is 3am, and Alice learns that the machine room is overheating

Machine roomAlice

48

Please open

Prove Dept says open(machine-room)

I can’t construct 
a proof !!!
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Policy Misconfigurations
An incorrectly specified policy can:
1. Allow an access that should be denied
2. Deny an access that should be allowed

Generally, access-control systems focus on preventing #1
However, #2 can be bad also

Very annoying to users
Can have serious consequences if timely access is critical

S h ti i hi
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Servers overheating in machine room
Conjecture: denying legitimate access is so undesirable that many 
systems are (inadvertently) configured with overly permissive policy

In this talk, misconfiguration is a mistake in policy that results 
in #2

Types of Policy
Implemented policy: accesses that are permitted by the system
Intended policy: accesses that “should” be allowedIntended policy: accesses that should  be allowed

Inconsistencies between implemented and intended policy are 
misconfigurations
Can occur because:

New users or resources
Organizational changes

50

Organizational changes
Policy not fully specified at the outset
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Objective
Ideally, would like to correctly configure policy before Alice 
attempts to gain access to the machine roomp g

So Alice can immediately gain access

Mechanism involves two steps:
Identifying misconfigurations
Resolving misconfigurations

51

Construct a mechanism that is independent of policy-
specification language

Specifically, use only access logs
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Conclusions

52
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Identifying Misconfigurations
Observation: access-control policy exhibits patterns

Inconsistencies in these patterns can indicate misconfigurations
These patterns are observable from access-control logs
Need centralized collection of logs to analyze

Use Association Rule Mining [Agrawal and Srikant ’94]
Input: series of records characterized by a fixed number of attributes 

E.g., record is a shopping cart, attributes describe contents
Output: rules (or statistical patterns)
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Output: rules (or statistical patterns)
People who buy peanut butter and jelly usually buy bread

Use rules to identify anomalies
Alice bought peanut butter and jelly – did she forget bread?

Data Representation

AttA AttB AttC AttD

R d1 T - T -

T T - -

T T T -

T - T T

Record1

Record2

Record3

Record4

54

T - T TRecord4



28

Constructing Rules

1

AttA AttB AttC AttD

T - T -

T T - -

T T T -

T T T

Record1

Record2

Record3

Record4
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T - T TRecord4

Rule: A B Confidence = 0.5
Rule: A C Confidence = 0.75
Rule: A B Confidence = 0.5

Identifying Misconfigurations

ResA ResB ResC ResD Resources
T - T -

T T - -

T T T -

T T T

Alice

Bob

Charlie

David
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T - T TDavid

Rule: ResA ResCUsers
Potential Misconfiguration

(a.k.a., a prediction)



29

Dataset
Log of 10,911 accesses drawn from Grey deployment
Spans 16 monthsSpans 16 months
Contains accesses by 25 users to 29 resources

Policy matrix: indicates what accesses should be allowed under 
implemented and intended policy

Implemented: accesses that occurred in log 
h i d

57

assumes no unauthorized access
Intended: surveyed users

Identification Simulation

Chronological Access History

Compare

T - T -

T T - -

T T T -

T - T T

Intended
Policy Matrix

T - T -

- - - -

T - - -

T - - T

Access Matrix
T - T -

- - - -

T - T -

T - - T

T - T -

- - - -

T - T -

T - P T
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Mine Rules (A C)

Prediction correctly
identifies a misconfiguration
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Identification Metrics
Two measures of success:

Accuracy: what percentage of predictions are “correct”y p g p
Coverage: what percentage of misconfigurations are predicted

We measure accuracy and coverage versus intended policy
Results for implemented policy in paper

Parameter: minconf

59

a a ete : minconf
Only predict using rules with confidence > minconf

Prediction Accuracy (Intended Policy)

f

60

Rules with higher confidence
are more accurate
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Feedback
Some mined rules are not a good indicator of policy
Use feedback to prevent these rules from repeatedly makingUse feedback to prevent these rules from repeatedly making 
incorrect predictions

Incorrect prediction: decrease score
Correct prediction: increase score

If score of rule falls below a threshold, stop using rule

S h i f l i d d tl
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Score each premise of a rule independently
Allows us to quickly prune groups of similar rules
For details, see paper

Prediction Accuracy (Intended Policy)

f
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Feedback significantly
improves accuracy for

low-med confidence rules
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Accuracy/Coverage Tradeoff (with Feedback)

Good compromise:
~70% accuracy 
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y
~55% coverage:

0.3 < minconf < 0.5
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Resolving Misconfigurations Proactively
Once a misconfiguration is identified, a human must determine 
if it should be repaired – but which human?p
Want to figure out without bothering the user that might 
eventually need access
Single administrator trivial
Distributed administration multiple users can repair

Asking all of them is very annoying

65

Strategy: use logs to determine how similar misconfigurations 
were resolved in the past

Logs tell us who users asked to help resolve misconfigurations

Strategies for Directing Resolution Requests
Construct a candidate list of users based on previous history
Sort candidate list by the number of times they helpedSort candidate list by the number of times they helped

Strategies we evaluated for constructing candidate list:
OU: who helped when Other Users accessed this resource
OR: who helped when this user accessed Other Resources
OU + OR: Union of OU and OR
OU + OR + PPA: Union plus Principals who Previously Accessed this

66

OU + OR + PPA: Union plus Principals who Previously Accessed this 
resource
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Resolution Simulation
Chronological Access History

Identify
misconfigurations

Access Matrix
T - T -

- - - -

T - T -

T - P T

C

Logs of previously 
resolved 

67

Construct
candidate list

{ Bob, Charlie, … } Ask Bob to
resolve P

resolved 
misconfigurations

Resolution Metrics
Success rate: % of correctly predicted misconfigurations that 
can be repairedp

Essentially, how often we ask the right person
Identifying a misconfiguration is only useful if corrected

High-latency accesses: # of misconfigurations repaired at the 
time of access (fewer = better)

Each time, one user must be interrupted, and another user must wait

68

Total user interaction time: rough approximation of the 
amount of time all users spend interacting with the system
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Resolution Success Rate

95%
Li it 2 i  f l

75%

Limit=2 is useful
Limit=none is not useful
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High-Latency Accesses

44% reduction in 

70

44% reduction in 
high-latency accesses
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Total User Interaction Time

VERY rough approximation
Factors in time spent resolving predictions proactively and timeFactors in time spent resolving predictions proactively and time 
saved by reducing high-latency accesses

Times measured from our deployment, applied to simulated 
events
Places where user interaction is required:

Ti i hil i fi i i d

71

Time a user waits while misconfiguration repaired
Ranged between 25 seconds and 18.6 hours
Median = 98 seconds

Time user spends repairing misconfiguration
Avg = 23 seconds

Total User Interaction Time (across all users over 16 months)

All time spent resolving 
misconfigurations proactively 

is offset by time-of-access savings

72
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Partial Data
All data may not always be available

Users may opt out for privacy concernsy p p y
Some resources might not be logged

How well do our techniques work when some data is missing?
Grouped users by activity, removed data for one set at a time

Fi di
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Findings:
Withholding data for users primarily impacts those users

Checkpoint
Distributed proof construction

Reduces queries by constructing proof on node with most relevant knowledge
Enables each node a degree of flexibility in how proof is constructed

Efficient proving in practical scenarios
Dramatically more efficient on practical policies
Enables misconfigurations to be resolved at the time of access

Identifying and resolving policy misconfigurations
Policy misconfigurations can deny legitimate access

This is highly annoying to users
Can have severe consequences in some scenarios (e.g., overheating machine room)

74

For reasonable parameters, on our dataset we can simultaneously 
Identify ~55% of misconfigurations w.r.t. intended policy
Eliminate ~45% of misconfigurations that would delay an access
Reduce total user interaction time

Techniques work well with portions of the dataset removed
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Summary
Constructing proofs is difficult in a distributed access-control 
system using formal logicy g g

Credentials are distributed
Credentials may be created dynamically
Must consider human factors

We present a practical suite of proof-construction techniques
Distributed proving: reduces requests for assistance

76

Distributed proving: reduces requests for assistance
Efficient proving: reduces computation and incorporates user interaction
Resolving policy misconfigurations: reduces costly time-of-access 
delays
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