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Device-Enabled Authorization

m Smartphones on a trajectory to “win” in the market

~ Stand to inherit mobile phone market that shipped over
1.1 billion units in 2007 [IDC]—or more than one phone
per six people in the world

m Goal: to use smartphones to intelligently control environment
~ Loan you my car without giving you my phone
~ Send money from my phone to my daughter’s phone

~ Give my secretary temporary access to my email without revealing
information (e.g., password) that could be used at a later time

~ Use my phone to open my hotel room door, without ever stopping by
the front desk

....and do it all from a distance




The Grey System

virtual resources
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Logic-Based Access Control

m Advantages of expressing policy in logic
~ Unambiguous policy specification
~ Allows flexible delegation, and role and group creation
~ Greater assurance of correctness

m Demonstration can take the form of a logical proof
~ Efficiently verifiable
~ Resource monitor (knight) verifies that:
N The credentials are valid
~ The credentials imply that access should be granted
~ Knight need not know the entire policy beforehand

m Challenge: proof construction must be efficient

Challenges in Proof Construction

m Potentially many different ways to derive authority
N Must look for them all before determining that access is not authorized

m Credentials are distributed
~ Nodes not always online
~ Communication may incur a high latency
m Desired feature: allow dynamic credential creation
~ Requesting a credential may result in user interaction
N Must guide user to create appropriate credential
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Sample Access-Control Logic

Expressing Beliefs:
Bob signed F

N Bob states (cryptographically) that he believes that F is true
Bob says F

~ It can be inferred that Bob believes that F is true

Types of Beliefs:
Bob says open(resource, nonce)
N Bob wishes to access a resource
Bob says (Alice speaksfor Bob)
~ Bob wishes to delegate all authority to Alice
Bob says delegate(Bob, Alice, resource)
N Bob wishes to delegate authority over a specific resource to Alice




Example Inference Rules

A signed F
A says F

A says (B speaksfor A) B says F

A says F

A says delegate(A, B, resource) B says open(resource)

A says open(resource)
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Example Scenario
Boblsoneof I need to grade the Alice must
my Students  : : midterms for Alice’s class { authorize acces
< " ﬁ
[ & &

Alice’s office, D208
1. Hi, Please open D208

Alice

How should |
construct a
proof?

2.Prove Alice says open(D208)
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Common Proving Approach: Backward Chaining

m Used by Prolog

m Decompose goal into subgoals using tactics
~ A tactic applies one or more inference rules in a single step

m Recursively try to prove each subgoal
m Only performs computation relevant to query at hand
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Example Proof (Using Backward Chaining)

Alice signed (Bob

speaksfor Alice.Students) Bob signed open(D208)

Alice signed delegate(Alice
Alice.Students, D208)

Alice.Students says
open(D208)

Alice says open(D208)
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Traditional Approach to Proof Generation

m Previous approaches generate proof in a centralized manner
Alice Bob Alice’s Office, D208

N

A 1. Hi, Please open D208

3. Alice signed Bob speaksfor Alice? 2.Prove Alice says open(D208)

4 No >
< 4. Alice signed delegate(Alice,Bob,D208)?

No
< 5. Alice signed Bob speaksfor Alice.Secretary?

No
< 6. Alice signed Charlie speaksfor Alice?

100. Proof of Alice says open(D208)>
m We classify this approach as “Eager” 13
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Our Proposal: A Lazy Approach

m Ask Alice to prove Alice says open(D208)

m Alice’s prover may use its local knowledge to complete proof
~ Certificate lookups may now be performed locally, rather than remotely

m More generally, when reasoning about the beliefs of principal A,
N Always ask Ato prove A says F
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Lazy Proof Generation

Alice Bob Alice’s Office, D208

H
0

1. Hi, Please open D208

2.Prove Alice says open(D208)

3. Prove Alice says open(D208)
(given that Bob says open(D208))

4. Proof of Alice says open(D208)
(given that Bob says open(D208))

> 5. Proof of Alice says open(D208)>
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Analysis

m No loss in proving ability compared to eager approach
~ Proof in paper

m Evaluation metric: number of network interactions (requests) made
by prover
N Lazy Requests = Proof requests
N Eager Requests > Credential lookups

m Requests can incur a high latency, delay proof construction
~ Requests may travel over the cellular network or result in user interaction

m Simulate proof construction for all authorized accesses; average
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Policy for Simulations

m Based on real policy for
ECE Department

m Delegations are made to
roles, then principals
bound to those roles

m  CArrun by university,
binds principal names

to public keys
m o m Dept. A Head . Dept. B Head ] ) )
\\@/’ \@(/ CMU.CA. Prin1 \w m Simulate various p0|lcy

sizes by specifying the
branching coefficients

(Foor 1 Worags®, | Foor2 Managei for the tree rooted at

CMU.CA Prin2 CMU.CA.Prin3

CMUsigner
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Principals that Cache Results

Eager

(P2
MUCA-m ﬁu\uc:\n
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Access by a Second Principal

1000

& s Fi
900 | Eager: First Access

M Eager: Second Access
800 T

B Lazy: First Access

700

B Lazy: Second Access
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100
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Limitations

m Asking CMU to prove CMU says open(X)results in:
~ CMU receiving a large number of requests
~ An unnecessary request if derivable from local credentials
~ Both of these addressed in next section

m Consistency
~ Certificates may be created and revoked
~ Need to update all corresponding positive and negative caches
~ Use mechanism of [Minami and Kotz ’06]
~ Frequent changes - all credentials might not be simultaneously valid
~ Use multiple rounds or commitments [Lee and Winslett 06]
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Checkpoint
m Distributed (lazy) proof construction :

~ Completes proofs with fewer requests than eager
~ Distributed cache enables further gains for lazy

m Caching negative results reduces queries by 75%
(for both lazy and eager) in our tests

24
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Requirement #1: Minimize Expensive Subgoals

m Prover can progress by proving different “expensive” subgoals
~ “Ask Alice for help”
~ “Ask Charlie for help”
~ “Prompt user to modify policy”

m One may be the obvious choice to a human, but prover will
investigate them in the order they are found

m Requirement: aggregate choices and ask user for input
~ Avoids avenues that are unlikely to succeed
~ Increases computation — must determine all possible next steps

26

13



Requirement #2: Guided Credential Creation

Alice’s Office
Alice Bob D208
L ] J'il' U
tl @ & ‘LLHJ |

1. Hi, Please open D208

2.Prove Alice says open(D208)

Allow once

Add to students
Add to faculty
Delegate directly

m Prover must reason about ALL
credentials that could be created
~ Increased computation
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Requirement #3: Local Proving

m Requirement: only ask for help if local knowledge is
insufficient to generate proof
~ l.e., may not always ask A to prove A says F
~ Previously, cache responses to requests
~ However, cached credentials can derive other formulas too

m Increases computation — must try to prove all formulas locally

28
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Prover Must Support:

1) User-guided proving

~ User intuition helps avoid fruitless search
2) Guided credential creation

~ Prover tells user what credentials could grant access
3) Local proving

~ Only ask for help when absolutely necessary

m Straightforward implementations very inefficient

~ Prior to this work, best version took 5 minutes to construct the list of
choices on Alice’s phone

29
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Naive Approach (we built it: it was abysmal)

m Use Backward Chaining
~ Easier to reason about hypothetical credentials than alternatives

m Started with tactics = inference rules
m Hand-tuned to gain efficiency
~ Sacrificed some proving ability
~ Kept needing to expand tactics to cover unforeseen scenarios
N Tedious to construct
~ Difficult to analyze formally

m Very slow: Alice’s prover will take almost 5 minutes

31

Reasons for Complexity

m Multiple rules to apply to each formula

m No proof from local credentials = must exhaustively find all
expensive subgoals

m Must reason about hypothetical credentials
~ Many different credentials could be created

~ Alice could delegate as Alice, Dept.Faculty,
Alice.machine-room.staff, CMU.CA.Alice

~ To determine who Alice should delegate to, must finish proof with
unbound variables = vastly more possibilities to explore

32
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Insight

m Computation that occurs off of the critical path of access is
transparent to the user

m Goal: move all possible computation off of the critical path
~ Precomputation done without knowing which resource user will access
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Common Proving Approach: Forward Chaining

m Forward Chaining
~ Combine credentials in every way allowable by the inference rules
~ Stop if goal is derived or no inferences can be made
~ Can be run incrementally, adding one credential to KB at a time

34
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Approach

m Use FC to precompute all possible facts from cached
credentials
~ At time of access, simply look for precomputed proof

m At the time of access: if no proof can be found - need to
identify all expensive subgoals
~ ldentify who to ask for assistance, or what credentials could be created
N Take advantage of FC results
~If it’s not in cache, don’t try to derive it from credentials

~ Improvement: also precompute all possible paths of delegations
~ Tactics can then traverse a series of delegations in single step
~ Paths of delegation not expressible directly in the logic

~ Precomputed using Path Compression algorithm
35

|dentifying Expensive Subgoals

(when no proof derivable from local knowledge)

m Use backward chaining with tactics that use precomputed results
N Tactics called LR (for left/right)
~ Each inference rule becomes two tactics: left and right
~ Left: use PC results
~ Right: use FC results
~ Systematically constructed from rules of the logic (no hand-tuning)

N Optimized version: LR’

~ Only suggests credentials where Alice delegates as herself
~ Covers vast majority of practical scenarios

36




Right Tactics: Use Forward Chaining Results

Previous
approach

Our
technique

Prior to access

Time of access

Proof of

L ) B says F

A says

Proof of
B says F

A says
(B speaksfor A)

A says F
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Left Tactics: Use Path Compression Results

Previous
approach

Our
technique

Prior to access

Time of access

) (?) B says F

(B says F > B says F

A says F) 0 o

A says F

38
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Algorithm Execution (Summary)

m Run before the time of access
~ Forward Chaining
~ Path Compression

m At the time of access
~ If no proof in FC results, find expensive subgoals using LR tactics
~ Use FC and PC results to avoid exploring all possibilities
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Analysis — Tactic Sets

m No loss in proving ability
~ If a proof can be found using IR tactics, it will be found using LR

m Primary evaluation metric: amount of work done at time of access
m  Will vary the tactic sets used by Backward Chaining
m Previous work:
~ IR: inference rules
N IR-NC: inference rules with basic cycle detection
N HC: hand-crafted tactics
m New tactic sets (used with FC, PC):
N LR: left-right
N LR’: optimized LR tactics

m Platforms
~ Nokia N70 smartphone
N Dual 2.8Ghz Xeon workstation, 1GB RAM
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Average Proof Generation Time {ms)

Computatipn Time for Alice (on phone)

400000

Poctem iz "osiee == m IR and IRNC crash
on phone
| m LR wins when
credential missing

1 m LR wins by larger
margin when proof
completable

| m LR’ dominates

350000

300000

290000

200000

150000

100000

D0000 -

IR IR-NC HC LR LR~
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fAverage Proof Generation Time {(ms)

Large Policies (on workstation, credential missing)

100000

e —1 ‘ ' ‘ m Complexity indicative of
LR == university-wide policy
1 m IR crashes

LR™
m IR-NC crashes for sizes >
50

m HC only finds 21% of
possible solutions

1 m LR finds all solutions

m LR’ finds all solutions in
the subset it is looking for

10000

1000
100
10 ¢
1
10 25 50 100 2

Number of Subordinates
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Tabling

m Tabling eliminates redundancy in proof search by internally
caching results

m Similar to our use of FC, but no precomputation
m Compare IR vs LR (both with tabling)

m Restrict depth of nested names used by IR to prevent infinite
expansion

m Findings:

~ LR much faster for small policies with tabling enabled
~ LR faster if IR allowed 2 or more degrees of nesting on larger policies

44
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Effects of Precomputing Results

m Cache size
~ Must all fit in memory
N Linear w.r.t. the number of credentials

m Total precomputation time
~ Amortized over many accesses
N Quadratic w.r.t. the number of credentials

m Centralized prover can handle 1000’s, but not 10,000’s of users
~ Distributed caches likely to be much smaller
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Checkpoint

Distributed proof construction
N Reduces queries by constructing proof on node with most relevant knowledge
~ Enables each node a degree of flexibility in how proof is constructed

Present an efficient proof construction strategy that supports

N User guided proving

N Credential creation

~ Local proving
Computation time reduced by utilizing pre-computed results to avoid
exploring costly branches at the time of access

~ Forward Chaining: computes all true facts

~ Path Compression: computes all trust relationships

N LR Tactics: systematically constructed to leverage above results
Our strategy is efficient enough to be practical

N Has been deployed for two years

46
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A Misconfigured Access-Control Policy

m Alice is a professor
m Professors should be allowed access to the machine room
m However, Alice has never needed physical access to her machines

m Itis 3am, and Alice learns that the machine room is overheating

Alice Machine room

x Please open U
| | > oD
Prove Dept says open(machine-room)
AL <

| can’t construct
a proof Il

48
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Policy Misconfigurations

m An incorrectly specified policy can:
1. Allow an access that should be denied
2. Deny an access that should be allowed

m Generally, access-control systems focus on preventing #1

m However, #2 can be bad also
~ Very annoying to users
~ Can have serious consequences if timely access is critical
~ Servers overheating in machine room

N Conjecture: denying legitimate access is so undesirable that many
systems are (inadvertently) configured with overly permissive policy

m In this talk, misconfiguration is a mistake in policy that results
in#2

49

Types of Policy

m Implemented policy: accesses that are permitted by the system
m Intended policy: accesses that “should” be allowed

m Inconsistencies between implemented and intended policy are
misconfigurations
m Can occur because:
~ New users or resources
~ Organizational changes
~ Policy not fully specified at the outset

50
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Objective

m ldeally, would like to correctly configure policy before Alice
attempts to gain access to the machine room
~ So Alice can immediately gain access

m Mechanism involves two steps:
~ ldentifying misconfigurations
~ Resolving misconfigurations

m Construct a mechanism that is independent of policy-
specification language
~ Specifically, use only access logs

51
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Identifying Misconfigurations

m Observation: access-control policy exhibits patterns
~ Inconsistencies in these patterns can indicate misconfigurations
~ These patterns are observable from access-control logs
~ Need centralized collection of logs to analyze

m Use Association Rule Mining [Agrawal and Srikant *94]
~ Input: series of records characterized by a fixed number of attributes
~ E.g., record is a shopping cart, attributes describe contents
~ Output: rules (or statistical patterns)
~ People who buy peanut butter and jelly usually buy bread

m Use rules to identify anomalies
~ Alice bought peanut butter and jelly — did she forget bread?

53

Data Representation

AttA  AttB  AttC  AttD

Record1 T - T -

54
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Constructing Rules

(AttA ) AttB [ AttC ) AttD
Record1 T - T
Record2 T T
Record3 T T T
Record4 T - T T
. J \ J \\ J
Rule:A=> B Confidence = 0.5
Rule:A=> C Confidence = 0.75
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Identifying Misconfigurations

Res Resources

esA| ResB | Res

Alice

Bob
Charlie

David

T - T T \
— —
Potential Misconfiguration
Users Rule: ResA > ResC

(a.k.a., a prediction)

56
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Dataset

m Log of 10,911 accesses drawn from Grey deployment
m Spans 16 months
m Contains accesses by 25 users to 29 resources

m Policy matrix: indicates what accesses should be allowed under
implemented and intended policy
~ Implemented: accesses that occurred in log
N assumes no unauthorized access
~ Intended: surveyed users

57

|dentification Simulation

Chronological Access History

[ ||

\_y_/ Intended
Access Matyix Policy Matrix
T-|T|f T-]T]- T|-]7]-

-p- ol I e T|T
T (7)) T-]T- T|T|T
Compare
T|-|-|T AR amia (A

Prediction correctly

I identifies a misconfiguration

Mine Rules [ (A= C)
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|dentification Metrics
m Two measures of success:

~ Accuracy: what percentage of predictions are “correct”
~ Coverage: what percentage of misconfigurations are predicted

m \We measure accuracy and coverage versus intended policy
~ Results for implemented policy in paper

m Parameter: minconf
~ Only predict using rules with confidence > minconf

59

Prediction Accuracy (Intended Policy)

1

Rules with higher confidence
are more accurate

Prediction Accuracy {Intended Policy}

. . .
a 6,1 a2 8.3 8.4 8.5 8.6 a.7 8.8
confidence
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Feedback

m Some mined rules are not a good indicator of policy

m Use feedback to prevent these rules from repeatedly making
incorrect predictions
~ Incorrect prediction: decrease score
~ Correct prediction: increase score

m If score of rule falls below a threshold, stop using rule

m Score each premise of a rule independently
~ Allows us to quickly prune groups of similar rules
~ For details, see paper

61

Prediction Accuracy (Intended Policy)

1

Feedback significantly
improves accuracy for
0.2 low-med confidence rules

No Feedback =——f—
Feedback Enabled +|
a 6,1 a2 8.3 8.4 8.5 8.6 8.7 0.8
confidence

Prediction Accuracy {Intended Policy}
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Accuracy/Coverage Tradeoff (with Feedback)

Accuracy {Feedback Enabled}
Coverage (Feedback Enabled}

Good compromise:
~70% accuracy
~55% coverage:

0.3 < minconf< 0.5

. . .
a a,1 a2 8.3 8.4 a.13 8.6 8.7 a.8
conf idence
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Resolving Misconfigurations Proactively

Once a misconfiguration is identified, a human must determine
if it should be repaired — but which human?

Want to figure out without bothering the user that might
eventually need access

Single administrator - trivial

Distributed administration = multiple users can repair
~ Asking all of them is very annoying

Strategy: use logs to determine how similar misconfigurations
were resolved in the past
~ Logs tell us who users asked to help resolve misconfigurations

65

Strategies for Directing Resolution Requests

m Construct a candidate list of users based on previous history
m Sort candidate list by the number of times they helped

m Strategies we evaluated for constructing candidate list:

~ OU: who helped when Other Users accessed this resource
~ OR: who helped when this user accessed Other Resources
N OU + OR: Union of OU and OR

N OU + OR + PPA: Union plus Principals who Previously Accessed this
resource

66
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Resolution Simulation

Chronological Access History

Identify Access Matrix

misconfigurations T -|T

|
HE
== B

Logs of previously
resolved
misconfigurations

Construct
candidate list

!

{ Bob, Charlie, ...} ———

Ask Bob to
resolve P
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Resolution Metrics

m Success rate: % of correctly predicted misconfigurations that
can be repaired
~ Essentially, how often we ask the right person
~ ldentifying a misconfiguration is only useful if corrected

m High-latency accesses: # of misconfigurations repaired at the
time of access (fewer = better)
~ Each time, one user must be interrupted, and another user must wait

m Total user interaction time: rough approximation of the
amount of time all users spend interacting with the system

68
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Resolution Success Rate

Linit=1 m—
Linit=2
Linit=none W

0.9 - Limit=2 is useful
Limit=none is not useful

8.8
75%
8.7
8.6
8.5
oy 114

Percentage of Predicted Hisconfigurations Resolved

95% (ol

OR + 0U
Strategy

OR + OU + PPR

High-Latency Accesses

High-Latency Accesses

268 Baseline z Mo Rule II.i.n.ingI
OU + OR + PPA, linit=1
0U + DR + PPR, li:it=2 :it

198

188

44% reduction in
high-latency accesses
508 -
a . .
-2 +3 4 3 .6
Confidence
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Total User Interaction Time

m VERY rough approximation

m Factors in time spent resolving predictions proactively and time
saved by reducing high-latency accesses

m Times measured from our deployment, applied to simulated
events

m Places where user interaction is required:
~ Time a user waits while misconfiguration repaired
~ Ranged between 25 seconds and 18.6 hours
N Median = 98 seconds
~ Time user spends repairing misconfiguration
~ Avg = 23 seconds
71

Total User Interaction Time (across all users over 16 months)

Baszeline = Ho Rule Hining

0U + OR + PPA, linit=1
OU + OR + PPA, linit=2

All time spent resolving
misconfigurations proactively
is offset by time-of-access savings

User Interaction Tine {(h}
]
-

.2 .3 .4 R Ni)
conf idence
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Partial Data

m All data may not always be available
~ Users may opt out for privacy concerns
~ Some resources might not be logged

m How well do our techniques work when some data is missing?
m Grouped users by activity, removed data for one set at a time

m Findings:
~ Withholding data for users primarily impacts those users
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Checkpoint

m Distributed proof construction
N Reduces queries by constructing proof on node with most relevant knowledge
~ Enables each node a degree of flexibility in how proof is constructed

m Efficient proving in practical scenarios
~  Dramatically more efficient on practical policies
~  Enables misconfigurations to be resolved at the time of access

m Identifying and resolving policy misconfigurations
~  Policy misconfigurations can deny legitimate access
~ This is highly annoying to users
~ Can have severe consequences in some scenarios (e.g., overheating machine room)

~ For reasonable parameters, on our dataset we can simultaneously
~ Identify ~55% of misconfigurations w.r.t. intended policy
~ Eliminate ~45% of misconfigurations that would delay an access
~ Reduce total user interaction time

N Techniques work well with portions of the dataset removed
74
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Summary

m Constructing proofs is difficult in a distributed access-control
system using formal logic
~ Credentials are distributed
N Credentials may be created dynamically
N Must consider human factors

m We present a practical suite of proof-construction techniques
~ Distributed proving: reduces requests for assistance
~ Efficient proving: reduces computation and incorporates user interaction

~ Resolving policy misconfigurations: reduces costly time-of-access
delays
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