
Distributed Weighted Vertex Cover via Maximal
Matchings

Fabrizio Grandoni a,2,∗, Jochen Könemann b,1,
Alessandro Panconesi a,2

aInformatica, La Sapienza, via Salaria 113, 00198, Roma.
b Department of Combinatorics and Optimization, University of Waterloo, 200 University

Avenue West, Waterloo, ON N2L 3G1, Canada.

Abstract

In this paper we consider the problem of computing a minimum-weight vertex-cover in an
n-node, weighted, undirected graph G = (V,E). We present a fully distributed algorithm
for computing vertex covers of weight at most twice the optimum, in the case of integer
weights. Our algorithm runs in an expected number of O(logn + logŴ) communication
rounds, where Ŵ is the average vertex-weight. The previous best algorithm for this problem
requires O(logn(log n+ logŴ)) rounds and it is not fully distributed.

For a maximal matching M in G it is a well-known fact that any vertex-cover in G needs
to have at least |M| vertices. Our algorithm is based on a generalization of this combinatorial
lower-bound to the weighted setting.

Key words: Vertex cover, maximal matching, distributed algorithms, approximation
algorithms

∗ Corresponding author.
Email addresses: grandoni@disp.uniroma2.it (Fabrizio Grandoni),

jochen@uwaterloo.ca (Jochen Könemann), ale@di.uniroma1.it (Alessandro
Panconesi).
1 This work was done while being on leave at the Dipartimento di Informatica e Sis-
temistica at Università di Roma “La Sapienza”, Italy.
2 Supported by MIUR grant FIRB WebMinds.

Preprint submitted to Elsevier Science 1st April 2004

1 Introduction

We are given an undirected graph G = (V,E) and non-negative vertex weights wv

for all vertices v ∈ V . A vertex cover is a subset C ⊆ V such that each edge e ∈ E
has at least one end-point in C. In the minimum-weight vertex-cover problem we
want to compute a vertex-cover of smallest total weight.

Computing minimum-weight vertex-covers is NP-hard (4). Papadimitriou and Yan-
nakakis (14) show that the problem is APX-hard. More recently, Håstad (8) proves
that there is no (7/6−ε)-approximation algorithm for the vertex-cover problem for
any ε > 0 unless P= NP.

On the positive side, the best known algorithms for the vertex cover problem are
due to Bar-Yehuda and Even (1), and to Monien and Speckenmeyer (12). These al-
gorithms achieve an approximation ratio of (2− loglogn

2logn). In graphs with maximum
degree ∆, Hochbaum (9) gives a (2− 1/∆)-approximation algorithm for the prob-
lem. This was subsequently improved by Halldórsson and Radhakrishnan (5) who
present a (2− log(∆)+O(1)

∆)-approximation algorithm. Finally, Halperin (6) presents
the currently best algorithm for the problem with a performance ratio of (2− (1−
o(1))2lnln∆

ln∆).

In the distributed setting, it is known how to compute a 2-approximate vertex cover
in the unweighted case. This can be achieved by computing a maximal matching in
the graph and by including the matched nodes in the cover. A maximal matching
can be computed in O(log4 n) rounds via the algorithm of Hanckowiack et al. (7),
and in O(∆ + log∗ n) rounds via the algorithm of Panconesi and Rizzi (13). Both
algorithms are deterministic. Maximal matchings can also be computed in an ex-
pected number of O(logn) rounds via the randomized algorithm of Israeli and Itai
(10).

For the weighted case a (2 + ε)-approximation can be computed deterministically
in O(logn log 1

ε) many rounds by using the algorithm of Khuller et al. (11). Their
algorithm is stated as a PRAM algorithm, but it is readily seen to be a bona fide
distributed algorithm. Let Ŵ be the average weight. Then, by setting ε = 1/(nŴ +
1), the latter algorithm computes a 2-approximate vertex cover in O(logn(logn +
logŴ)) communication rounds. Note that the above choice of ε requires global
knowledge of the quantity nŴ . This assumption may not be realistic in all scenar-
ios.

In this paper we present an improved fully-distributed algorithm to compute a 2-
approximate weighted vertex cover, in the case of integer weights. Our main result
can be stated as follows:

Theorem 1 There is a fully distributed algorithm which computes a 2-approximate

2

weighted vertex cover in an expected number of O(logn + logŴ) communication
rounds. The message size is O(logW) and the local computation done in each round
is O(∆ log(∆W)) in expectation.

Our algorithm can be viewed as a generalization of the reduction from unweighted
vertex cover to maximal matching. The basic idea is to expand each node v of
weight wv into wv micro-nodes v(1),v(2) . . .,v(wv), and connect each v(i) to every
u(j) whenever vu is an edge of the network. Then a maximal matching in the aux-
iliary graph is computed. The vertex cover is given by the nodes such that all the
corresponding micro-nodes are matched. If the maximal matching is computed via
the fully-distributed algorithm of Israeli and Itai, the algorithm halts in an expected
number of O(logn+ logŴ) rounds.

A naive implementation of the matching algorithm by Israeli and Itai leads to
pseudo-polynomial message and time complexity in each round. The main insight
leading to the bounds on message-size and local computation time in Theorem 1 is
to keep an implicit representation of the auxiliary graph and a maximal matching
in it.

The rest of this paper is organized as follows. In Section 2 we introduce some pre-
liminaries. Our algorithm relies on a careful adaptation of the matching algorithm
by Israeli and Itai. We present this adaptation in Section 3. Finally, Sections 4 and
5 deal with the naive and refined versions of our weighted vertex cover algorithm,
respectively.

2 Preliminaries

The minimum-weight vertex cover problem can be formulated as an integer linear
program (ILP):

min ∑v∈V wvxv

s.t.
xv + xu ≥ 1, ∀vu ∈ E;
xv ∈ {0,1}, ∀v ∈V .

Each assignment of the variables which satisfies the constraints (feasible solution)
corresponds to a vertex cover containing exactly the nodes v with xv = 1. By (LP)
we denote the natural linear programming relaxation of (ILP).

Let N(v) be the set of neighbors of v. The linear programming dual (D) of (LP) is:

3

max ∑vu∈E yvu

s.t.
∑u∈N(v) yvu ≤ wv, ∀v ∈V ;
yvu ≥ 0, ∀vu ∈ E.

By weak duality (e.g., see (2)), the value of each feasible solution of (D) is a lower
bound for the value of every feasible solution of (LP) and hence (IPL).

In this paper we consider a synchronous message-passing model of computation.
The computation proceeds in rounds. In each round, a node can send/receive a
message (of unbounded size) to/from each one of its neighbors, and execute an un-
bounded amount of computation. No global knowledge is available (including the
number n of nodes in the graph). The algorithms presented can be easily modified
so as to work in a (non-faulty) asynchronous system also.

By B(p), p ∈ [0,1], we denote a 0-1 Bernoulli random variable, which takes value
one with probability p. A random bit is a Bernoulli variable B(0.5).

3 Distributed Maximal Matching

A matching of a graph G = (V,E) is a subset M ⊆ E such that no two edges of
M are incident to the same node. The results of the next sections are based on the
following simplified version M of the distributed maximal-matching algorithm of
Israeli and Itai (10).

Algorithm M works in phases, each one consisting of a constant number of rounds.
In each phase, a matching is computed and the edges incident on matched nodes
are removed. The algorithm halts when no edge is left. The maximal matching is
given by the union of the matchings found in the different phases.

In a given phase a matching is computed in the following way. Let G′ = (V ′,E ′)
be the current graph. By N ′(v) and δ′v we denote the set of neighbors of v and the
degree of v in G′, respectively. Each node v randomly decides to be a sender or a
receiver with probability one half. Note that the same node may play a different
role in different phases. Each sender u selects one neighbor v ∈ N ′(u) uniformly
at random and makes a proposal to v. Each receiver v which receives at least one
proposal, selects one of the proponents (arbitrarily) and accepts its proposal. The
matching is given by the edges corresponding to accepted proposals.

Let a node v be good if at least one third of its neighbors u have degree δu ≤
δv. To prove the bound on the number of rounds, we use the following simple
combinatorial result (10):

4

Lemma 1 At least one half of the edges of a graph are incident to good nodes.

Theorem 2 Algorithm M computes a maximal matching in O(logn) expected rounds.

Proof. The correctness of the algorithm is trivial.

We show that in each phase at least a constant fraction of the edges is removed
in expectation. This implies that the expected number of rounds is O(log(n2)) =
O(logn). Consider a good node v of G′ in a given phase. The probability P′

v that v
accepts a proposal is lower bounded by:

P′
v ≥

1
2

(
1− ∏

u∈N′(v)

(
1−

1
2δ′u

))
.

From the definition of good nodes:

∏
u∈N′(v)

(
1−

1
2δ′u

)
≤ ∏

u∈N′(v):δ′u≤δ′v

(
1−

1
2δ′v

)
≤

(
1−

1
2δ′v

)δ′v/3

≤ e−1/6.

Thus P′
v ≥ (1− e−1/6)/2 and the expected number of edges removed is at least a

fraction (1− e−1/6)/4 of the total. 2

4 Distributed Vertex Cover via Maximal Matchings

In this section we present a simple pseudo-polynomial reduction from the problem
of computing a 2-approximate vertex cover to the problem of computing a maximal
matching in an auxiliary graph. Thanks to this reduction, a 2-approximate vertex
cover can be computed in O(logn + logŴ) expected rounds via algorithm M of
section 3.

Consider the following auxiliary graph G̃. For each node v of G, G̃ contains wv

micro-nodes v(1),v(2) . . .v(wv). Two micro-nodes v(i) and u(j) are adjacent if and
only if vu is an edge of G. In Figure 1 an example of the reduction is given.

Let M be a maximal matching in G̃. By V (M) we denote the set of nodes v of G
such that all the corresponding micro-nodes v(i) are matched by M.

Lemma 2 Set V (M) is a 2-approximate vertex cover of G.

Proof. Assume by contradiction that V (M) is not a vertex cover. Thus there are two
adjacent nodes v and u in G which do not belong to V (M). This implies that there
are two adjacent micro-nodes v(i) and u(j) in G̃ which are not matched by M. Then
the set M′ = M∪{v(i)u(j)} is a matching, which contradicts the maximality of M.

5

Figure 1 A weighted graph G (on the left) with the corresponding auxiliary graph
G̃. A maximal matching M of G̃ is indicated via dashed lines. The dashed nodes of
G form a vertex cover.

3

2 1

Let apx and opt denote the weight of the vertex cover found and that of a min-
imum weight vertex cover, respectively. Moreover, let zv be the number of micro-
nodes in {v(1),v(2) . . .v(wv)} that are matched by M. A feasible solution of (D)
is obtained by assigning to each dual variable yvu the number of edges of the kind
v(i)u(j) ∈ M. This solution is feasible since, for every v ∈V :

∑
u∈N(v)

yvu = zv ≤ wv.

By weak duality we obtain

apx ≤ ∑
v∈V

zv ≤ 2 ∑
vu∈E

yvu ≤ 2opt

and hence V (M) is 2-approximate. 2

Lemma 2 suggests a strategy to compute a 2-approximate vertex cover distribu-
tively. The idea is to simulate the behavior of algorithm M on a virtual auxiliary
graph G̃, and then to select the nodes in the vertex cover as suggested by Lemma 2.

Specifically, each node simulates the execution of the algorithm on the correspond-
ing micro-nodes v(i) in G̃. Whenever two micro-nodes v(i) and u(j) of G̃ need to
communicate, nodes v and u are responsible for allowing such communication. The
vertex cover is given by the nodes v such that all the corresponding micro-nodes
v(i) are matched by the maximal matching computed.

Since the virtual auxiliary graph contains O(nŴ) nodes, the total number of rounds
is O(log(nŴ)) = O(logn+ logŴ).

This naive application of Lemma 2 has two major drawbacks. The first problem is
the large message size. In fact, in each phase all the micro-nodes of v may send a
proposal to some micro-node of u. Thus the message size is Ω(W).

A second problem is the time complexity of the algorithm: consider a node v in a

6

given phase. Each micro-node v(i) of v, with probability one half, needs to select
one neighbor out of Θ(∆W) uniformly at random. This random selection can be
performed in Θ(log(∆W)) expected time, assuming that the cost of generating a
random bit is O(1) (e.g., see (3)). Thus the expected time complexity of each phase
is Ω(W log(∆W)).

In next section we show how to solve both problems by creating the matchings
implicitly.

5 An Improved Algorithm

In this section we present an improved fully distributed algorithm A for computing
a 2-approximate vertex cover. Algorithm A still requires O(logn+ logŴ) expected
rounds, but it reduces the size of the messages to O(logW) and the expected time
complexity of each phase to O(∆ log(∆W)).

The basic structure of algorithm A is analogous to the structure of the naive algo-
rithm described in previous section: in each phase, a matching in the current auxil-
iary graph G̃′ is computed, and the matched nodes are removed from G̃′ (together
with all the edges incident to them). The algorithm halts when no edge is left. The
vertex cover is given by the nodes v such that all the corresponding micro-nodes
v(i) are matched by one of the matchings computed.

The main novelty in Algorithm A is that matchings are created implicitly: in each
phase each node only knows the number of the corresponding matched micro-
nodes. Intuitively, this simplification is allowed by the symmetry properties of G̃:
all the micro-nodes corresponding to a node v have the same degree and share the
same neighborhood. This invariant is kept by all the induced subgraphs of G̃.

Algorithm A , which is described in Figure 2, works in phases. Each phase consists
of a constant number of communication rounds. Each node v has an associated
state sv, which is initially active. In each phase, part of the active nodes switch to
the state inside or outside, and the algorithm terminates when no active node is left.
When a node leaves the active state, it halts. At the end of the algorithm, the inside
nodes form a vertex cover.

In more details, each node v has an associated residual weight w′
v, which is initially

wv. The residual weight w′
v can be interpreted as the number of micro-nodes v(i) of

v in the current auxiliary graph G̃′. Note that all the micro-nodes v(i) have the same
degree W ′

v :
W ′

v = ∑
u∈N(v)

w′
u.

In each phase, the expected residual weight of active nodes decreases. The decrease

7

Figure 2 Protocol for node v for 2-approximate vertex cover.

w′
v = wv; N′(v) = N(v), sv = active;

while (sv = active) {
send w′

v and receive w′
u to/ from all u ∈ N ′(v);

N′(v) = {u ∈ N(v) : w′
u > 0};

if (|N′(v)| = 0)
sv = outside;

else {
compute the proposals pv(u);
send pv(u) and receive pu(v) to/ from all u ∈ N ′(v);
compute the counter-proposals cv(u);
send cv(u) and receive cu(v) to/ from all u ∈ N ′(v);
for (all u ∈ N ′(v))

w′
v = w′

v − cv(u)− cu(v);
if (w′

v = 0) {
send w′

v to all u ∈ N ′(v);
sv = inside;

}
}

}

of w′
v in a given phase reflects the number of micro-nodes of v that have been

matched in that phase.

At the beginning of each phase, each active node v sends w′
v to all its currently

active neighbors N ′(v). The neighbors with w′
u = 0 are removed from N ′(v). If

N′(v) becomes empty, node v switches to the outside state. In fact, in this case the
degree W ′

v of the micro-nodes v(i) is zero, and thus they will never be matched.

Otherwise, v sends a proposal pv(u) to each active neighbor u∈ N ′(v). The value of
pv(u) can be interpreted as the number of proposals directed from the micro-nodes
of v to the micro-nodes of u. Let p′v be the sum of the proposals pv(u):

p′v = ∑
u∈N′(v)

pv(u).

This quantity can be viewed as the number of micro-senders among v(1),v(2) . . .v(wv).
We postpone a detailed description of how proposals are fixed until later.

For each proposal pu(v) received, node v replies with a counter-proposal cv(u).
The counter-proposal cv(u) can be interpreted as the number of micro-nodes of v
which accept proposals of micro-nodes of u. Let c′v = w′

v − p′v be the number of
micro-receivers of v. The sum of the counter-proposals for node v then needs to
be at most c′v. At the same time each counter-proposal cv(u) must not exceed the
corresponding proposal pu(v). Given these restrictions we choose a feasible set of
counter-proposals {cv(u)}u∈N′(v) arbitrarily such that their sum is maximum, i.e.

∑
u∈N′(v)

cv(u) = min

{
c′v, ∑

u∈N′(v)

pu(v)

}
.

8

Eventually, node v decrements w′
v by the sum of all the counter-proposals cv(u) and

cu(v) which have been sent and received by v, respectively:

w′
v = w′

v − ∑
u∈N′(v)

(cv(u)+ cu(v)) .

This decrement reflects the number of micro-nodes of v which are matched in the
considered phase.

If w′
v becomes zero, node v sends w′

v to all its neighbors (for the last time) and
switches to the inside state (since all the corresponding micro-nodes are matched).

We now show how proposals are fixed by each node v. If the number w′
v of micro-

nodes v(i) is “sufficiently” small, the proposals pv(u) are fixed according to algo-
rithm M . Otherwise, they are fixed in a more efficient way, while keeping the same
expected value.

In more details, there are two different strategies, depending on whether w′
v < 2δ′v or

not, where δ′v = |N′(v)| is the number of currently active neighbors of v. If w′
v < 2δ′v,

the proposals pv(u) are initially set to zero. Then, for w′
v times, an active neighbor

u ∈ N′(v) is selected at random with probability proportional to w′
u, and the cor-

responding proposal pv(u) is incremented by one with probability one half. Note
that each pv(u), considered separately, is the sum of w′

v i.i.d. Bernoulli variables
B(w′

u/(2W ′
v)):

pv(u) =
w′

v

∑
i=1

B

(
w′

u

2W ′
v

)
. (1)

Otherwise (w′
v ≥ 2δ′v), the value of each pv(u) is independently set to:

pv(u) =

⌊
w′

vw′
u

2W ′
v

⌋
+B

(
w′

vw′
u

2W ′
v
−

⌊
w′

vw′
u

2W ′
v

⌋)
. (2)

Note that, in both cases, the sum p′v of the proposals is upper bounded by w′
v. In the

first case this is trivially true. In the second case, this is a consequence of the small
value of δ′v:

∑
u∈N′(v)

pv(u) ≤ ∑
u∈N′(v)

(
w′

vw′
u

2W ′
v

+1

)
=

w′
v

2
+δ′v ≤ w′

v.

Moreover, in both cases E[p′v] = w′
v/2.

The following technical property of proposals will be useful in later parts of the
analysis.

9

Lemma 3 For any two given nodes v and u ∈ N ′(v) we have

Eu,v = E

[(
1−

1
w′

v

)pu(v)
]
≤

(
1−

1
W ′

u

)w′
u/4

.

Proof. If w′
u < 2δ′u, by Equation (1):

Eu,v = E

(

1−
1

w′
v

)∑w′u
i=1 B

(
w′v

2W ′
u

)
=

E

(

1−
1

w′
v

)B
(

w′v
2W ′

u

)

w′
u

=

=

(
1−

w′
v

2W ′
u
+

w′
v

2W ′
u

(
1−

1
w′

v

))w′
u

≤

(
1−

1
W ′

u

)w′
u/2

.

Consider now the case w′
u ≥ 2δ′u. By Equation (2), if w′

uw′
v/(2W ′

u) ≥ 1:

Eu,v ≤ E

[(
1−

1
w′

v

)bw′
uw′

v/(2W ′
u)c
]
≤

(
1−

1
w′

v

)w′
uw′

v/(4W ′
u)

≤

(
1−

1
W ′

u

)w′
u/4

.

Otherwise (w′
uw′

v/(2W ′
u) < 1):

Eu,v = E

(

1−
1

w′
v

)B
(

w′uw′v
2W ′

u

)
=

1−
w′

uw′
v

2W ′
u

+
w′

uw′
v

2W ′
u

(
1−

1
w′

v

)
= 1−

w′
u

2W ′
u
≤

(
1−

1
W ′

u

)w′
u/2

. (3)

2

Lemma 4 Algorithm A computes a 2-approximate vertex cover.

Proof. The algorithm halts. In fact, the residual weight of each active node de-
creases by at least one in each round with positive probability. It follows that the
nodes which do not switch to the outside state, switch to the inside state in a finite
expected number of rounds.

Assume by contradiction that, at the end of the algorithm, the inside nodes do not
form a vertex cover. This implies that there is an outside node v which has at least
one outside neighbor. Let v switch to the state outside in phase p. At the beginning
of phase (p− 1), all the neighbors of v are either inside or active nodes. Consider
the active neighbors of v in phase (p− 1). These nodes are not active any more
when phase p starts. But they cannot switch to the state outside in phase (p− 1),
since their active degree is greater than zero in that phase. Thus they all switch to
the state inside, which is a contradiction.

10

Let zv be the difference between wv and the final residual weight w′
v. A feasible

solution of (D) is obtained by assigning to each dual variable yvu the sum of all the
counter-proposals of the kind cv(u) and cu(v). Let apx and opt be the weight of
the vertex cover found and that of a minimum vertex cover, respectively. By weak
duality:

apx ≤ ∑
v∈V

zv ≤ 2 ∑
vu∈E

yvu ≤ 2opt.

Thus the vertex cover found is 2-approximate. 2

Lemma 5 Algorithm A sends messages of size O(logW). Each phase of algorithm
A has time complexity O(∆ log(∆W)) in expectation.

Proof. Both proposals and counter-proposals can be packed in messages of size
O(logW).

The time complexity of each phase is upper bounded by the cost of computing
the proposals. Computing the proposals is as expensive as selecting O(∆) times
an element out of O(∆W) ones uniformly at random. Each random selection can
be performed by generating O(log(∆W)) random bits in expectation. By assuming
a O(1) cost for generating a random bit, the total expected cost of each phase is
O(∆ log(∆W)). 2

Recall that a node is good if at least one third of its neighbors have degree smaller
or equal than its own degree. Consider a node v in G. The degree of all the micro-
nodes corresponding to v in G̃ is:

Wv = ∑
u∈N(v)

wu.

Thus a micro-node v(i) is good if and only if:

∑
u∈N(v):Wu≤Wv

wu ≥
Wv

3
.

Note that, if a micro-node v(i) is good, all the micro-nodes v(j), j ∈ {1,2 . . .wv},
are good and vice-versa. We call a node of G heavy if all its micro-nodes in G̃ are
good. The next observation can be seen as the weighted analogue of Lemma 1.

Lemma 6 Let EH ⊆ E be the subset of edges incident to heavy nodes. Then:

∑
vu∈EH

wvwu ≥
1
2 ∑

vu∈E
wvwu.

Proof. Consider the auxiliary graph G̃. The number of edges of G̃ that are incident

11

to good nodes is:

∑
{v,u}∈EH

wvwu.

Since the number of edges of G̃ is:

∑
{v,u}∈E

wvwu,

the claim follows from Lemma 1. 2

We use the properties of heavy nodes to prove the following bound on the number
of rounds.

Lemma 7 Algorithm A halts in O(logn+ logŴ) expected rounds.

Proof. We show that the residual weight of heavy nodes decreases by at least a
positive constant factor in expectation in each phase. It follows from Lemma 6 that
the same holds for the potential function:

0 ≤ ∑
vu∈E

w′
vw′

u < (nŴ)2,

thus implying the claim.

Consider a heavy node v in a given phase. Let w′′
v be the values of w′

v at the end
of the phase. The residual weight of v decreases by at least the sum of the counter-
proposals cv(u) sent by v:

w′′
v ≤ w′

v − ∑
u∈N′(v)

cv(u)= p′v + c′v

(
1−

min{c′v,∑u∈N′(v) pu(v)}

c′v

)

= p′v +(w′
v − p′v)

(
1−

min{c′v,∑u∈N′(v) pu(v)}

c′v

)
.

Note that:

(
1−

min{c′v,∑u∈N′(v) pu(v)}

c′v

)
= max

{
0,1−

∑u∈N′(v) pu(v)

c′v

}

≤

(
1−

1
c′v

)∑u∈N′(v) pu(v)

≤ ∏
u∈N′(v)

(
1−

1
w′

v

)pu(v)

.

12

Thus:

E[w′′
v] ≤

w′
v

2
+

w′
v

2 ∏
u∈N′(v)

E

[(
1−

1
w′

v

)pu(v)
]

,

where we used E[p′v] = w′
v/2.

By Lemma 3 and the definition of heavy nodes:

∏
u∈N′(v)

E

[(
1−

1
w′

v

)pu(v)
]
≤ ∏

u∈N′(v)

(
1−

1
W ′

u

)w′u
4

≤

∏
u∈N′(v):W ′

u≤W ′
v

(
1−

1
W ′

v

)w′u
4

≤

(
1−

1
W ′

v

)W ′
v

12

. (4)

The right-hand side is at most e−1/12 and it follows that:

E[w′′
v] ≤

1+ e−1/12

2
w′

v.

2

Lemmas 4, 5, and 7 together imply Theorem 1.

References

[1] R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the
weighted vertex cover problem. Journal of Algorithms, 2:198–203, 1981.

[2] V. Chvátal. Linear programming. Freeman, 1983.
[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.

MIT Press and McGraw-Hill Book Company, 6th edition, 1992.
[4] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the

Theory of NP-Completeness. Freemann, 1979.
[5] M. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating

independent sets in sparse and bounded-degree graphs. In ACM Symposium
on the Theory of Computing, pages 439–448, 23–25 1994.

[6] E. Halperin. Improved approximation algorithms for the vertex cover problem
in graphs and hypergraphs. SIAM Journal on Computing, 31(5):1608–1623,
Oct. 2002.

[7] M. Hańćkowiak, M. Karoński, and A. Panconesi. On the distributed complex-
ity of computing maximal matchings. SIAM Journal on Discrete Mathemat-
ics, 15(1):41–57, 2001.

[8] J. Håstad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, July 2001.

13

[9] D. S. Hochbaum. Efficient bounds for the stable set, vertex cover, and set
packing problems. Discrete Applied Mathematics, 6:243–254, 1983.

[10] A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for
maximal matching. Information Processing Letters, 22:77–80, 1986.

[11] S. Khuller, U. Vishkin, and N. Young. A primal-dual parallel approximation
technique applied to weighted set and vertex cover. Journal of Algorithms,
17(2):280–289, 1994.

[12] B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation
algorithm for the vertex cover problem. Acta Informatica, 22:115–123, 1985.

[13] A. Panconesi and R. Rizzi. Some simple distributed algorithms for sparse
networks. DISTCOMP: Distributed Computing, 14, 2001.

[14] C. Papadimitriou and M. Yannakakis. Optimization, approximization and
complexity classes. Journal of Computer and System Sciences, 43:425–440,
1991.

14

