
Protocols for Byzantine Agreement

Alessandro Panconesi
DSI - La Sapienza

via Salaria 113, piano III
00198 Roma, Italy

After the impossibility proof of Consensus for n synchronous procesess, t
of which can be byzantine faults, t ≥ n/3, we now come to showing the
existence of protocols. We start with the simpler case of crash failures and
switch later to analizing the case of byzantine faults.

1 Withstanding Crash Failures

The case of crash (or fail-stop) failures is quite easy to handle. We will
consider the more difficult case of dirty faults. i.e. a process can fail during
the transmission of a message. As a result the message could reach a proper
subset of the set of processes. The protocol is shown in Figure 1 and its
basic idea is as follows. Each process maintains a set Sp of pairs (q, xq).
Essentially Sp is the set of all input bits that are known to p. For f + 1
rounds, every process broadcasts a pair only when it sees it for the first
time, where by “broadcast” we mean that the message is sent to all. In
other words, suppose that p receives the pair (q, xq) at round k for the first
time. Then, if k + 1 ≤ f + 1, p will broadcast this pair at round k + 1. This
pair will never be broadcast by p again.

As soon as a new pair is seen the set Sp is updated accordingly. At
the end (round f + 2) the decision bit of process p is the smallest input bit
contained in Sp. That is, if Sp contains a pair of the kind (q, 0) the decision
is 0, otherwise it is 1. Note that the decision rule is well defined because Sp

contains at least (p, xp).
As usual xp and yp denote, respectively, the input and the decision bit

of process p. We now verify that the protocol satisfies Limited Bureaucracy,
Non-Triviality, and Agreement.

1

round 1. Let xp be the input bit of p. Send (p, xp) to all. Sp := {(p, xp)}

round r. (2 ≤ r ≤ f + 1) Let Rr
p be the set of pairs (q, xq) received at the

end of round r− 1. If Rr
p contains a pair not in Sp then, send it to all.

Sp := Sp ∪Rr
p.

round f+2. Let Sp := Sp ∪ Rf+2
p , and let yp be the minimum value xq

among all pairs contained in Sp.

Figure 1: Consensus protocol for processor p. The number of faults that the
protocol withstands is denoted by f .

Limited Bureaucracy. The protocol terminates in f + 2 rounds.

Non Triviality. Let X be the set of values of the input bit, and S be the
set of values sent by processors during the execution of the protocol. Non
Triviality follows from the observation that S ⊆ X.

Agreement. The proof is by case analysis. Initially, there are two cases
two consider: (a) all correct processes decide 1. If this is the case, there is
nothing to prove. Otherwise, (b) there exists a correct process p that decides
0. In this case we have to show that every other correct process q decides 0.
We split this into two subcases. The first subcase is when xp, p’s input bit,
is 0. In this case, p sends 0 to everybody at round 1. The bit reaches every
other correct process before round 2. Hence every correct process sees a 0
value before the beginning of round f + 2, and the conclusion follows.

The other case to consider is when xp = 1. This being the case, p must
have received 0 from another process at some round r, for p’s decision is 0.
Again, we have two sub-sub-cases. If r < f +2 then, p echoes the 0 value to
all, and every correct process sees a 0 before the beginning of round f + 2,
and decides 0 accordingly. Otherwise, r = f + 2 and p does not have the
time to echo the value. How can we conclude the proof? Let a1 be the
process who sends the 0 value to p at round f + 1. If a1 is correct then,
every correct process receives the 0 value by round f + 2, and we are done.
Suppose then, by contradiction, that a1 is faulty. Now, from the definition
of the protocol, a process echoes a value as soon as it sees this value for
the first time. Therefore a1 must have received the 0 value from another
process a2, who sent it at round f . If a2 is correct we are done. Otherwise
we iterate the above reasoning. In this fashion we exhibit a chain of f + 1

2

faulty processes, each sending the 0 value:

a1 ← a2 ← . . .← af+1.

But this is impossible, since there are at most f faults.

2 Withstanding Byzantine Faults

We now come to showing a polynomial-time protocol for Consensus with-
standing t < n/3 byzantine faults. The idea is to adapt the protocol for
crash failures to the byzantine scenario. This will be accomplished by imple-
menting a consistent broadcast, a mechanism for passing messages between
processes with certain gurantees.

2.1 Consistent Broadcast

Consistent broadcast has two operations associated with it: BCast(m) and
Accept(m) that we want to implement by means of the communication prim-
itives send and receive. Recall that the underlying communication mecha-
nism provides point-to-point connections which are secure and authenti-
cated. That is, each process can send a message directly to any other pro-
cess and the receiver can be sure of the identity of the sender and of the
content of the message. Messages sent with the consistent broadcast facility
are made of three parts: m = (c, p, r), where c is the message content, p the
sending process, and r the round in which the message is sent. Consistent
broadcast has the following three properties:

correctness If m = (c, p, r) is BCast by p ∈ L at round r then all q ∈ L
Accept m by round r+2. Here, L, as before, denotes the set of correct
processes.

unforgeability If m = (c, p, r) is not BCast by p ∈ L, then no q ∈ L ever
accepts it.

relay If q ∈ L accepts m at round r, then every p ∈ L has accepted it by
round r + 1.

The protocol that is used to achieve the above is described next. As
before, there are at most f < n/3 faulty processes (implying that there are
at least 2f + 1 correct, or loyal). Recall that the communication channels
satisfy the following properties. The underlying network is a complete graph.

3

A message that is sent is received by the receiver in one round, and the
identity of the sender is known.

In the following, sending a message to “all” includes sending it to oneself.
The following describes the implementation of BCast(m) and Accept(m) in
terms of the primitive send and receive operations. Here a process p wants
to BCast(m) at round r.

round r The process p sends [INIT, (c, p, r)] to all processes.

round r + 1 If q receives [INIT, (c, p, r)] from process p, it sends [ECHO, (c, p, r)]
to all processes.

round t ≥ r + 2 If process q receives [ECHO, (c, p, r)] from at least f +
1 distinct processes, and it has not yet sent an echo, then it sends
[ECHO, (c, p, r)].

round t ≥ r + 2 If process q receives [ECHO, (c, p, r)] from at least 2f + 1
processes it performs Accept(c, p, r).

The protocol has the correctness property since when p ∈ L sends a
message at round r, it is echoed by 2f + 1 different q ∈ L at round r + 1,
and thus accepted by every q ∈ L at round r + 2.

The unforgeability property follows because to accept a message at least
2f + 1 echoes are required. An [ECHO, (c, p, r)] is triggered by two events
only. The first way to trigger an echo is for a process to receive the message
[INIT, (c, p, r)]. Since the underlying mechanism is point-to-point and the
identity of the sender known, if an init message is not sent it cannot be
forged. By the rules of the protocol then the only possibility is for a process
to receive f +1 echoes. Of these at most f are traitors. Therefore there must
be a correct process q1 that has sent the echo. Again, q1 must have received
f +1 echoes. Of these one must come from a new correct process q2, because
the protocol specifies that echoes be sent only once by every process. In this
fashion we construct a chain of correct processes q1q2 . . . q`, where ` is the
tital number of correct processes. The last process, q`, again must have sent
an echo because it has received f + 1 echoes, one of which from a correct
process. But there are no more corret processes, a contradiction.

The verification of the relay property is left as an exercise.

2.2 Implementation of Byzantine Agreement

The protocol for consistent broadcast can be used to implement Byzantine
agreement in 2f +3 rounds. Time is divided into f +1 phases, denoted by s

4

in the range 1 to f + 1 for the rest of this section. Each phase consists of 2
rounds, and one extra round is needed at the end of the protocol to decide.
There is no communication in the last round.

The protocol mimics the one described earlier in the context of crash
failures. The idea is that processes whose input bit is 1 would like to attack,
while processes whose input bit is zero would not. Let us call the processes
that want to attack bushonauts.

BCasts are executed at odd numbered rounds only, while Accepts can
be performed at any round. Processes with input bit 1 are bushonauts
and start by broadcasting their intention to attack. Process that initially
are not bushonauts join in if they receive an attack! message from a
sufficient number of bushonauts. The number of bushonauts needed at round
r := 2s−1 to trigger a decision to join and become a bushonaut is f +s−1.
This is called the threshold of round r. The threshold is f + 1 at round 3,
f + 2 at round 3, f + 3 at round 5, and so on. In the final round there is no
communication. Processes decide to attack if they have received opinions to
attack from at least 2f +1 bushonauts, otherwise they decide not to attack.

Note that a process BCasts at most once and it does so either at the very
beginning, if its input bit is 1, or in the middle of the protocol as soon as
the number of attack messages is above or equal to the threshold.

As usual, the inputs to the processes are denoted as xp, and the outputs
as yp. Below is a description of the protocol, which runs concurrently with
the protocol for consistent broadcast described before. Messages are of the
form m := (attack!, sender, timestamp) where the timestamp is the round
during which the message is sent.

Protocol Precognitive Attack

round 1 If xp = 1 then p executes BCast(attack!,p,1).

round r := 2s− 1, (s > 1) (odd rounds) Let Mp,r be the num-
ber of different processes from which p has accepted mes-
sages at round r or earlier. If Mp,r ≥ f +s−1, and process p
has not done it already, then p executes BCast(attack!,p,r).

round r := 2f + 3 (final round) Let Mp,r be defined as above.
Process p decides attack! (i.e., yp = 1) if Mp,r ≥ 2f + 1;
otherwise, it decides not to attack (i.e. yp = 0).

Notice that, as remarked, every correct process broadcasts at most once.
We now prove the three properties we require: non-triviality, agreement,
and limited bureaucracy.

5

First observe, that if at any round 2s− 1, for 1 ≤ s ≤ f + 1, all correct
processes have broadcast, all correct processes will eventually decide 1. This
follows from the correctness property of consistent broadcast which ensures
that a message sent by a correct process is accepted within two additional
rounds.

The non-triviality follows since if xp = 1 for all p ∈ L, all correct pro-
cesses start by broadcasting, and the observation above applies. If xp = 0
for all p ∈ L, none of the correct processes will ever start broadcasting be-
cause (a) at round 1 no correct process broadcasts and (b) the threshold for
broadcasting at subsequent phases is f +s−1 ≥ f +1. Therefore no correct
process will receive the 2f + 1 messages needed to decide on 1.

For the agreement property, we prove that for p ∈ L we have that if
p decides 1, then all correct processes decide 1. If dp = 1, process p has
accepted messages from at least 2f + 1 processes by round 2f + 3. Let I
denote the set of correct processes from which p has accepted messages; we
have |I| ≥ f + 1.

If all processes in I had input 1, every correct process accepts f + 1
messages at round 3 and then broadcasts, so again, the observation above
applies and we are done.

Otherwise, there is a process q for which xq = 0. Thus, process q broad-
casts at round 2s − 1 for some 2 ≤ s ≤ f + 1, which means that at round
2s − 1, process q has accepted messages from at least f + s − 1 processes
other than itself. These messages are accepted by all other correct processes
at round 2s (because of the relay property of consistent broadcast), and the
message from q itself reaches all other correct processes by round 2s + 1
(because of correctness of consistent broadcast). It follows that at round
2s + 1 (phase s + 1), each correct process has accepted messages from at
least f + s processes, and thus broadcasts since the new threshold for phase
s + 1 is reached (if s < f + 1), or decides 1 (if s = f + 1).

Finally, the bureaucracy is limited to 2f + 3 rounds.

6

