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These notes complement Kleinberg’s paper by giving a full proof of the convergence of the
method.

1 The convergence of Hits

Let A be the adjacency matrix of the hubs/authorities graph, and let

B := AT A

Exercise 1 Show that B is symmetric.

Starting from a unit vector â0 the Hits algorithm computes the normalized sequences

ĥk =
Aâk−1

||Aâk−1||
.

and

âk =
AT ĥk

||AT ĥk||
so that

âk =
Bâk−1

||Bâk−1||

Exercise 2 Prove or disprove: AAT = AT A.

We want to show that, unless we are very unlucky with our choice of â0, the sequence âk always
converge (rather quickly) to the principal eigenvector of B of unit norm.

We will work with the the n eigenvalues of B and consider them as an ordered sequence

λ1, λ2, . . . , λn

where
|λ1| ≥ |λ2| ≥ . . . ≥ |λn|

and will denote the corresponding eigenvectors as

b1, b2, . . . , bn.

These eigenvectors can be assumed to be of unit norm.

Exercise 3 Show that if x is an eigenvector of a matrix A then so is cx, for any c.
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Exercise 4 Show that eigenvectors corresponding to different eigenvalues are linearly inde-
pendent.

Exercise 5 Show that eigenvectors corresponding to different eigenvalues of a symmetric ma-
trix are orthonormal.

Exercise 6 Show that the eigenvalues of a symmetric matrix are real.

In the rest of the section we shall prove the following.

Theorem 1 If the eigenvalues of B are all different, then âk converges to b1, provided that â0

and b1 are not orthogonal.

In the next section we will show the same convergence under the weaker assumption |λ1| > |λ2|.

Consider the non normalized sequence

ak = Bak−1 = Bka0.

where a0 = â0. By Exercise 4 the n eigenvalues form a basis. Thus,

a0 =
n∑

i=1

cibi

for some vector c := (c1, . . . , cn). Let us start by unfolding a1,

a1 = Ba0 = B
n∑

i=1

cibi =
n∑

i=1

ciBbi =
n∑

i=1

ciλibi

and then a2,

a2 = Ba1 = B
n∑

i=1

ciλibi =
n∑

i=1

ciλiBbi =
n∑

i=1

ciλ
2
i bi

Thus in general, by a trivial induction,

ak =
n∑

i=1

ciλ
k
i bi.

This vector tends to a vector parallel to b1. To see this, consider the vector

vk :=
ak

(λ1)k
= c1b1 +

n∑
i=2

ci

(
λi

λ1

)k

bi.

By our assumption that a0 is not perpendicular to b1, c1 6= 0. Therefore vk tends to c1b1 when
k goes to infinity.

Note: the above is nothing else than the well-known power method for computing the eigen-
values of a matrix.

Thus the non normalized sequence converges to a vector parallel to b1. Let us show now
that the normalized sequence converges to b1. The normalized sequence is defined as

â0 = a0

âk =
Bâk−1

||Bâk−1||
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We show by induction that
âk =

ak

||ak||
i.e., âk is a unit vector parallel to ak. The basis holds trivially. For the inductive step,

âk =
Bâk−1

||Bâk−1||
=

Bak−1

||ak−1|| ||Bâk−1||
=

Bak−1 ||ak−1||
||ak−1|| ||Bak−1||

=
Bak−1

||Bak−1||
=

ak

||ak||
.

2 Extending the method

We now show a more general form of Theorem 1, namely,

Theorem 2 If |λ1| > |λ2| then ak converges to b1, provided that a0 and b1 are not orthogonal.

This result too is well-known in computational linear algebra. To establish the result we
will show that under the current hypothesis we can find a set of eigenvectors that form an
orthonormal basis. Then the result follows from the analysis of the previous section.

We will use a well-known result of linear algebra that says that any square matrix can
be decomposed as the product of an upper-triangular matrix with a unitary matrix and its
inverse.

Definition 1 A matrix U is unitary if (a) its columns are orthogonal, unit vectors and (b)
UT = U−1, i.e, UT U = I.

Exercise 7 Show that the product of unitary matrices is unitary.

Exercise 8 Let A and B be square matrices. Show that (AB)T = BT AT . What if the matrices
are not square?

Lemma 1 (Schur’s Normal Form) Any square matrix A can be decomposed as

A = UTUT

where U is unitary and T is upper-triangular.

Proof. The proof is by induction on n, the number of rows of A. The base case (n = 1) is
trivial. For n > 1, let x1 be the unit-norm eigenvector corresponding to λ1 (every non null
matrix has at least one eigenvalue). Let y2, . . . , yn be unit vectors such that x1, y2, . . . , yn form
a basis. The matrix

U1 := [x1|y2| . . . |yn]

is unitary. Consider the matrix
B := UT

1 AU1.

This matrix is of the form

B =

[
λ1 v1

z A1

]
where z is a vector of n − 1 0’s, v1 is some real vector with n − 1 components, and A1 is a
n− 1× n− 1 real matrix. We now apply the induction hypothesis to the matrix A1 obtaining

A1 = UTUT
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where U is unitary and T upper triangular. If we define

U2 :=

[
1 zT

z U

]

where z is a vector of n− 1 zeroes, then U2 is unitary. Now,

A = U1BUT
1 = U1U2

[
λ1 v′1
0 T

]
UT

2 UT
1 .

The claim follows from Ex. 7. ?©

Theorem 3 Let A be a symmetric matrix. Then we can find n orthogonal eigenvectors of unit
norm.

Proof. By Lemma 1, A = UTUT , but A is symmetric hence,

UTUT = A = AT = (UTUT )T = UT T UT .

Thus T = T T , but this implies that T is a diagonal matrix. Since U is unitary, T then has the
n eigenvalues of A along its diagonal. ?©
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