Eigenvalues and Search Engines

Alessandro Panconesi
Informatica, La Sapienza
via Salaria 113, piano III
00198 Roma, Italy

These notes complement Kleinberg's paper by giving a full proof of the convergence of the method.

1 The convergence of Hits

Let A be the adjacency matrix of the hubs/authorities graph, and let

$$
B:=A^{T} A
$$

Exercise 1 Show that B is symmetric.
Starting from a unit vector \hat{a}_{0} the Hits algorithm computes the normalized sequences

$$
\hat{h}_{k}=\frac{A \hat{a}_{k-1}}{\left\|A \hat{a}_{k-1}\right\|}
$$

and

$$
\hat{a}_{k}=\frac{A^{T} \hat{h}_{k}}{\left\|A^{T} \hat{h}_{k}\right\|}
$$

so that

$$
\hat{a}_{k}=\frac{B \hat{a}_{k-1}}{\left\|B \hat{a}_{k-1}\right\|}
$$

Exercise 2 Prove or disprove: $A A^{T}=A^{T} A$.
We want to show that, unless we are very unlucky with our choice of \hat{a}_{0}, the sequence \hat{a}_{k} always converge (rather quickly) to the principal eigenvector of B of unit norm.

We will work with the the n eigenvalues of B and consider them as an ordered sequence

$$
\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}
$$

where

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|
$$

and will denote the corresponding eigenvectors as

$$
b_{1}, b_{2}, \ldots, b_{n}
$$

These eigenvectors can be assumed to be of unit norm.
Exercise 3 Show that if x is an eigenvector of a matrix A then so is cx, for any c.

Exercise 4 Show that eigenvectors corresponding to different eigenvalues are linearly independent.

Exercise 5 Show that eigenvectors corresponding to different eigenvalues of a symmetric matrix are orthonormal.

Exercise 6 Show that the eigenvalues of a symmetric matrix are real.
In the rest of the section we shall prove the following.
Theorem 1 If the eigenvalues of B are all different, then \hat{a}_{k} converges to b_{1}, provided that \hat{a}_{0} and b_{1} are not orthogonal.

In the next section we will show the same convergence under the weaker assumption $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$.

Consider the non normalized sequence

$$
a_{k}=B a_{k-1}=B^{k} a_{0}
$$

where $a_{0}=\hat{a}_{0}$. By Exercise 4 the n eigenvalues form a basis. Thus,

$$
a_{0}=\sum_{i=1}^{n} c_{i} b_{i}
$$

for some vector $c:=\left(c_{1}, \ldots, c_{n}\right)$. Let us start by unfolding a_{1},

$$
a_{1}=B a_{0}=B \sum_{i=1}^{n} c_{i} b_{i}=\sum_{i=1}^{n} c_{i} B b_{i}=\sum_{i=1}^{n} c_{i} \lambda_{i} b_{i}
$$

and then a_{2},

$$
a_{2}=B a_{1}=B \sum_{i=1}^{n} c_{i} \lambda_{i} b_{i}=\sum_{i=1}^{n} c_{i} \lambda_{i} B b_{i}=\sum_{i=1}^{n} c_{i} \lambda_{i}^{2} b_{i}
$$

Thus in general, by a trivial induction,

$$
a_{k}=\sum_{i=1}^{n} c_{i} \lambda_{i}^{k} b_{i} .
$$

This vector tends to a vector parallel to b_{1}. To see this, consider the vector

$$
v_{k}:=\frac{a_{k}}{\left(\lambda_{1}\right)^{k}}=c_{1} b_{1}+\sum_{i=2}^{n} c_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} b_{i} .
$$

By our assumption that a_{0} is not perpendicular to $b_{1}, c_{1} \neq 0$. Therefore v_{k} tends to $c_{1} b_{1}$ when k goes to infinity.

Note: the above is nothing else than the well-known power method for computing the eigenvalues of a matrix.

Thus the non normalized sequence converges to a vector parallel to b_{1}. Let us show now that the normalized sequence converges to b_{1}. The normalized sequence is defined as

$$
\begin{aligned}
\hat{a}_{0} & =a_{0} \\
\hat{a}_{k} & =\frac{B \hat{a}_{k-1}}{\left\|B \hat{a}_{k-1}\right\|}
\end{aligned}
$$

We show by induction that

$$
\hat{a}_{k}=\frac{a_{k}}{\left\|a_{k}\right\|}
$$

i.e., \hat{a}_{k} is a unit vector parallel to a_{k}. The basis holds trivially. For the inductive step,

$$
\hat{a}_{k}=\frac{B \hat{a}_{k-1}}{\left\|B \hat{a}_{k-1}\right\|}=\frac{B a_{k-1}}{\left\|a_{k-1}\right\|\left\|B \hat{a}_{k-1}\right\|}=\frac{B a_{k-1}\left\|a_{k-1}\right\|}{\left\|a_{k-1}\right\|\left\|B a_{k-1}\right\|}=\frac{B a_{k-1}}{\left\|B a_{k-1}\right\|}=\frac{a_{k}}{\left\|a_{k}\right\|} .
$$

2 Extending the method

We now show a more general form of Theorem 1, namely,
Theorem 2 If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$ then a_{k} converges to b_{1}, provided that a_{0} and b_{1} are not orthogonal.
This result too is well-known in computational linear algebra. To establish the result we will show that under the current hypothesis we can find a set of eigenvectors that form an orthonormal basis. Then the result follows from the analysis of the previous section.

We will use a well-known result of linear algebra that says that any square matrix can be decomposed as the product of an upper-triangular matrix with a unitary matrix and its inverse.

Definition $1 A$ matrix U is unitary if (a) its columns are orthogonal, unit vectors and (b) $U^{T}=U^{-1}$, i.e, $U^{T} U=I$.

Exercise 7 Show that the product of unitary matrices is unitary.
Exercise 8 Let A and B be square matrices. Show that $(A B)^{T}=B^{T} A^{T}$. What if the matrices are not square?

Lemma 1 (Schur's Normal Form) Any square matrix A can be decomposed as

$$
A=U T U^{T}
$$

where U is unitary and T is upper-triangular.
Proof. The proof is by induction on n, the number of rows of A. The base case $(n=1)$ is trivial. For $n>1$, let x_{1} be the unit-norm eigenvector corresponding to λ_{1} (every non null matrix has at least one eigenvalue). Let y_{2}, \ldots, y_{n} be unit vectors such that $x_{1}, y_{2}, \ldots, y_{n}$ form a basis. The matrix

$$
U_{1}:=\left[x_{1}\left|y_{2}\right| \ldots \mid y_{n}\right]
$$

is unitary. Consider the matrix

$$
B:=U_{1}^{T} A U_{1} .
$$

This matrix is of the form

$$
B=\left[\begin{array}{cc}
\lambda_{1} & v_{1} \\
z & A_{1}
\end{array}\right]
$$

where z is a vector of $n-10$'s, v_{1} is some real vector with $n-1$ components, and A_{1} is a $n-1 \times n-1$ real matrix. We now apply the induction hypothesis to the matrix A_{1} obtaining

$$
A_{1}=U T U^{T}
$$

where U is unitary and T upper triangular. If we define

$$
U_{2}:=\left[\begin{array}{cc}
1 & z^{T} \\
z & U
\end{array}\right]
$$

where z is a vector of $n-1$ zeroes, then U_{2} is unitary. Now,

$$
A=U_{1} B U_{1}^{T}=U_{1} U_{2}\left[\begin{array}{cc}
\lambda_{1} & v_{1}^{\prime} \\
0 & T
\end{array}\right] U_{2}^{T} U_{1}^{T}
$$

The claim follows from Ex. 7.

Theorem 3 Let A be a symmetric matrix. Then we can find n orthogonal eigenvectors of unit norm.

Proof. By Lemma 1, $A=U T U^{T}$, but A is symmetric hence,

$$
U T U^{T}=A=A^{T}=\left(U T U^{T}\right)^{T}=U T^{T} U^{T}
$$

Thus $T=T^{T}$, but this implies that T is a diagonal matrix. Since U is unitary, T then has the n eigenvalues of A along its diagonal.

