Eigenvalues and Search Engines

Alessandro Panconesi Informatica, La Sapienza via Salaria 113, piano III 00198 Roma, Italy

These notes complement Kleinberg's paper by giving a full proof of the convergence of the method.

1 The convergence of Hits

Let A be the adjacency matrix of the hubs/authorities graph, and let

$$B := A^T A$$

Exercise 1 Show that B is symmetric.

Starting from a unit vector \hat{a}_0 the Hits algorithm computes the normalized sequences

$$\hat{h}_k = \frac{A\hat{a}_{k-1}}{||A\hat{a}_{k-1}||}$$

and

$$\hat{a}_k = \frac{A^T \hat{h}_k}{||A^T \hat{h}_k||}$$

so that

$$\hat{a}_k = \frac{B\hat{a}_{k-1}}{||B\hat{a}_{k-1}||}$$

Exercise 2 Prove or disprove: $AA^T = A^T A$.

We want to show that, unless we are very unlucky with our choice of \hat{a}_0 , the sequence \hat{a}_k always converge (rather quickly) to the principal eigenvector of B of unit norm.

We will work with the n eigenvalues of B and consider them as an *ordered* sequence

$$\lambda_1, \lambda_2, \ldots, \lambda_n$$

where

$$|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$$

and will denote the corresponding eigenvectors as

$$b_1, b_2, \ldots, b_n$$
.

These eigenvectors can be assumed to be of *unit norm*.

Exercise 3 Show that if x is an eigenvector of a matrix A then so is cx, for any c.

Exercise 4 Show that eigenvectors corresponding to different eigenvalues are linearly independent.

Exercise 5 Show that eigenvectors corresponding to different eigenvalues of a symmetric matrix are orthonormal.

Exercise 6 Show that the eigenvalues of a symmetric matrix are real.

In the rest of the section we shall prove the following.

Theorem 1 If the eigenvalues of B are all different, then \hat{a}_k converges to b_1 , provided that \hat{a}_0 and b_1 are not orthogonal.

In the next section we will show the same convergence under the weaker assumption $|\lambda_1| > |\lambda_2|$.

Consider the non normalized sequence

$$a_k = Ba_{k-1} = B^k a_0.$$

where $a_0 = \hat{a}_0$. By Exercise 4 the *n* eigenvalues form a basis. Thus,

$$a_0 = \sum_{i=1}^n c_i b_i$$

for some vector $c := (c_1, \ldots, c_n)$. Let us start by unfolding a_1 ,

$$a_1 = Ba_0 = B\sum_{i=1}^n c_i b_i = \sum_{i=1}^n c_i Bb_i = \sum_{i=1}^n c_i \lambda_i b_i$$

and then a_2 ,

$$a_2 = Ba_1 = B\sum_{i=1}^{n} c_i \lambda_i b_i = \sum_{i=1}^{n} c_i \lambda_i Bb_i = \sum_{i=1}^{n} c_i \lambda_i^2 b_i$$

Thus in general, by a trivial induction,

$$a_k = \sum_{i=1}^n c_i \lambda_i^k b_i.$$

This vector tends to a vector parallel to b_1 . To see this, consider the vector

$$v_k := \frac{a_k}{(\lambda_1)^k} = c_1 b_1 + \sum_{i=2}^n c_i \left(\frac{\lambda_i}{\lambda_1}\right)^k b_i.$$

By our assumption that a_0 is not perpendicular to b_1 , $c_1 \neq 0$. Therefore v_k tends to c_1b_1 when k goes to infinity.

Note: the above is nothing else than the well-known power method for computing the eigenvalues of a matrix.

Thus the non-normalized sequence converges to a vector parallel to b_1 . Let us show now that the normalized sequence converges to b_1 . The normalized sequence is defined as

$$\hat{a}_0 = a_0$$

 $\hat{a}_k = \frac{B\hat{a}_{k-1}}{||B\hat{a}_{k-1}||}$

We show by induction that

$$\hat{a}_k = \frac{a_k}{||a_k||}$$

i.e., \hat{a}_k is a unit vector parallel to a_k . The basis holds trivially. For the inductive step,

$$\hat{a}_{k} = \frac{B\hat{a}_{k-1}}{||B\hat{a}_{k-1}||} = \frac{Ba_{k-1}}{||a_{k-1}|| ||B\hat{a}_{k-1}||} = \frac{Ba_{k-1} ||a_{k-1}||}{||a_{k-1}|| ||Ba_{k-1}||} = \frac{Ba_{k-1}}{||Ba_{k-1}||} = \frac{a_{k}}{||a_{k}||}.$$

2 Extending the method

We now show a more general form of Theorem 1, namely,

Theorem 2 If $|\lambda_1| > |\lambda_2|$ then a_k converges to b_1 , provided that a_0 and b_1 are not orthogonal.

This result too is well-known in computational linear algebra. To establish the result we will show that under the current hypothesis we can find a set of eigenvectors that form an orthonormal basis. Then the result follows from the analysis of the previous section.

We will use a well-known result of linear algebra that says that *any* square matrix can be decomposed as the product of an upper-triangular matrix with a unitary matrix and its inverse.

Definition 1 A matrix U is unitary if (a) its columns are orthogonal, unit vectors and (b) $U^T = U^{-1}$, i.e, $U^T U = I$.

Exercise 7 Show that the product of unitary matrices is unitary.

Exercise 8 Let A and B be square matrices. Show that $(AB)^T = B^T A^T$. What if the matrices are not square?

Lemma 1 (Schur's Normal Form) Any square matrix A can be decomposed as

$$A = UTU^T$$

where U is unitary and T is upper-triangular.

Proof. The proof is by induction on n, the number of rows of A. The base case (n = 1) is trivial. For n > 1, let x_1 be the unit-norm eigenvector corresponding to λ_1 (every non null matrix has at least one eigenvalue). Let y_2, \ldots, y_n be unit vectors such that x_1, y_2, \ldots, y_n form a basis. The matrix

$$U_1 := [x_1|y_2|\dots|y_n]$$

is unitary. Consider the matrix

$$B := U_1^T A U_1.$$

This matrix is of the form

$$B = \left[\begin{array}{cc} \lambda_1 & v_1 \\ z & A_1 \end{array} \right]$$

where z is a vector of n - 1 0's, v_1 is some real vector with n - 1 components, and A_1 is a $n - 1 \times n - 1$ real matrix. We now apply the induction hypothesis to the matrix A_1 obtaining

$$A_1 = UTU^T$$

where U is unitary and T upper triangular. If we define

$$U_2 := \left[\begin{array}{cc} 1 & z^T \\ z & U \end{array} \right]$$

where z is a vector of n-1 zeroes, then U_2 is unitary. Now,

$$A = U_1 B U_1^T = U_1 U_2 \begin{bmatrix} \lambda_1 & v_1' \\ 0 & T \end{bmatrix} U_2^T U_1^T.$$

The claim follows from Ex. 7.

Theorem 3 Let A be a symmetric matrix. Then we can find n orthogonal eigenvectors of unit norm.

Proof. By Lemma 1, $A = UTU^T$, but A is symmetric hence,

$$UTU^T = A = A^T = (UTU^T)^T = UT^T U^T.$$

Thus $T = T^T$, but this implies that T is a diagonal matrix. Since U is unitary, T then has the n eigenvalues of A along its diagonal.

 \bigotimes