Topics in Distributed Computing

Lecture 4

(Lack of) Consensus in Asynchronous Systems

Lecturer: Alessandro Panconesi Scribe: Ojvind Johansson

11 April 1997

4.1 Consensus in Asynchronous Systems

In this lecture we study the consensus problem in message—passing, asyn-
chronous systems. In such systems each process runs according to its own
clock and no assumption is made about the relative speeds of different clocks.
Processes communicate solely by sending messages which are neither cor-
rupted nor lost, but there is no guarantee on the time of delivery. This
scenario is actually prevalent in real systems such as distributed networks.
The problem we want to study is the same consensus problem defined in the
context of Byzantine Agreement. That is, we have a set of n > 1 processes
denoted by p1,...,p,. For each i, p; has an input bit, b; € {0,1}, and is to
decide on an output bit, d;. The protocol should satisfy the following three
conditions:

Non-triviality: If all processes have input bit 0 (1) then, the only possible decision
value is 0 (1).

Agreement: All correct processes choose the same decision value.
Limited dithering: Eventually all correct processes decide.

Notice that we replaced Limited Bureacracy with Limited Dithering which
leaves open the possibility that a protocol runs forever (even though the
decision must be taken in a finite number of steps). This assumption will
make our lower bound result stronger.

An important difference between the situation we study now and byzan-
tine agreement is that we will be considering crash failures only. When a
crash failure occurs a process stops functioning forever (it “dies”). Obviously,
this type of faulty behaviour is much more benign than byzantine failures.
A process who dies is said to be faulty, and correct otherwise. As before,
processes communicate by exchanging messages. The message-passing mech-
anism is secure and point-to-point: messages are sent directly to the recipient
and are neither corrupted nor lost. The system is asynchronous, i.e.

Processes have no clocks.

There is no guarantee on the time of message delivery.

Intuitively, reaching consensus in such systems is impossible because pro-
cesses cannot tell whether another process is dead or just temporarily iso-
lated from the outside world because its messages are delayed. If they wait,
they might do so forever, and if they decide, they might find out that the
other process already came to a different decision. This rough intuition is
formalized in the following seminal result by Fischer, Lynch, and Paterson

[2].

Theorem 1. There is no 1-resilient deterministic protocol for consensus in
message-passing, asynchronous systems. That 1s, no protocol can tolerate
one (or more) crash failures.

This result highlights the enourmous difference existing between syn-
chronous and asynchronous systems. As we saw, if the system is synchronous,
up to ¢ — 1 malicious faults can be tolerated— there exist protocols which
work correctly in spite of the arbitrary behaviour of (almost) one third of
the processes. In sharp contrast to this, if the system is asynchronous not
even one crash failure can be tolerated. This result does depends on the
asynchronous nature of the system. For instance, the same impossibility
result (and in fact essentially the same proof) extends to shared-memory
systems, where processes communicate by asynchronously reading and writ-
ing a shared memory accessible to all (see, for instance, [1, 3]).

We now turn to the proof of the Theorem 1. First off, we give a formal-
ization of the model. Message passing is performed by means of Send and
Receive operations. There is a buffer of messages B containing messages
that have been sent but not yet received. The buffer contains messages of
the form m = (p,¢) where ¢ is the content of the message and p is the re-
cipient. If ¢ performs a Send(m) operation, the message m is added to the
buffer B. To get a message, a process ¢ samples the buffer by executing a
Receive(q) operation. The semantics of Receive(q) is specified as follows.
If there are no messages for ¢, ¢ will simply receive a null marker, L. If there
are messages ready for ¢ in the buffer, say m; = (¢;,q) (i > 1), either ¢ will
receive any one of them or ¢ will receive L. In case a message m is delivered
to ¢, m is removed from the buffer. We make only a minimal assumption
about the buffer. Namely,

‘ Each message is received within a finite number of attempts. ‘

That is, if a message m = (¢,¢) is in the buffer and ¢ performs infinitely
many Receive(q) operations, sooner or later ¢ will receive m. Notice that
the message delivery discipline can be assumed to be anything (e.g. FIFO,
last-in first-out, etc).

Processes are modeleled as deterministic automata, possibly with in-
finitely many states. A process p works in steps; in each step, p performs

Receive(p), computes (in a finite time) the next state, and sends a finite
number of messages. Moreover, we may assume that each correct process
goes on like this forever; we can always modify our protocol to satisfy this
(we are assuming Limited Dithering). A protocol consists of a collection of
automata, one for each process. From now on we shall assume that we are
given a protocol P.

We continue with some definitions, which are relative to a given protocol
P. A configuration C' is a vector containing the process states and the
message buffer content. An event is a pair e = (p, m) where p is a process
and m is a message or the null marker, L. The event e = (p, m) is applicable
to a configuration C if m is in the buffer, or if m = 1, i.e. (p, L) is always
applicable. When e = (p,m) is applicable to C, the reception of m by
p defines the next step in the system, taken by p. This will give a new
configuration, which we write as e(C'). We let e1e3(C') denote ez(e1(C)),
and so forth. We record the following definition for future reference.

Definition 1. Given a protocol P, a run (from C') is a (possibly empty)
sequence of events that can be applied in turn, starting from C'.

Finally, a configuration D is accessible if it can be reached from an initial
configuration, i.e. if D = o(C) for some initial configuration C' and run
o. From now on, when we talk of a configuration, we mean an accessible
configuration. We classify configurations into three categories:

¢ A configuration is 0-valent if some process has decided 0 or if in all
configuration which are accessible from it the decision value is 0;

e A configuration is 7-valent if some process has decided 1 or if in all
configuration which are accessible from it the decision value is 1;

¢ A configuration C'is bivalent if for some of the configuration accessible
from it the decision value is 0 and for others the decision value is 1.

A configuration is univalent if it is either 0-valent or 1-valent.

Definition 2. We say that a run is admissible if every process, except pos-
sibly one, takes infinitely many steps.

Without loss of generality we shall consider admissible runs only.

Definition 3. We say that a run is unacceptable if every process, except
possibly one, takes infinitely many steps without deciding.

Clearly, if, given a protocol P, we can exhibit an unacceptable run, P
is not a valid consensus protocol. We shall show that, given any protocol
P, we are always able to exhibit an unacceptable run, thereby proving the
impossibility of consensus in asynchronous systems. In fact, we shall exhibit
an unacceptable run in which no process crashes (i.e. every process takes
infinitely many steps without deciding).

Lemma 1. There is a bivalent initial configuration.

Proof. Let Cy be the initial configuration where b; = 0 for all 7, and for
1 <5 <m,let C; be the initial configuration where b; =1 for 1 <¢ < j and
b; = 0 for all remaining 7. Notice that the non-triviality property implies
that Cg is 0-valent and C,, is 1-valent. We now show that at least one
configuration among C1,...,C,_1 is bi-valent. For if not, let 7 be the lowest
number such that C; is 1-valent. Obviously, C';_; must then be 0-valent.
Since we suppose our protocol to be 1-resilient, we can let p; be dead from
the beginning; there is still a finite run ¢ (thus not involving p;) from C;
such that a decision is made. But b; is the only input bit where C';_; and
C; differ. Therefore, o is a run also from C’;_;, and in particular, it will lead
to the same decision there. This will contradict either C';_; being 0-valent
or C; being 1-valent. O

The following is an easy technical lemma which will come handy.

Lemma 2. (Commutativity Lemma) Let 01 and oy be runs from C', and
suppose that the set of processes taking steps in o1 is disjoint from the set of
processes taking steps in o3. Then o109 and o901 are both runs from C', and
they lead to the same configuration.

Proof. Homework. O

Let C be a configuration and e = (p, m) an event applicable to C'. Notice
that if e is applicable to C' it remains applicable until its corresponding step
is executed. A run o = ejey...¢€, is e-free if it does not contain e.

Lemma 3. Let C be bivalent, and let e be any event applicable to C. Then,
there is a (possibly empty) e-free run o such that e(o(C')) is bivalent.

With this lemma we can prove the theorem. To see this, construct an
admissible run by starting with an initial bivalent configuration Cy, whose
existence is guaranteed by Lemma 1, as follows. Let py,pa,...,p, be any
ordering of the processes. Pick any applicable event e; = (p1,m1) and
apply the lemma, thereby obtaining a second bivalent configuration €7 =
e1(01(Cp)). To make things more concrete, e; = (p1,m1) can be selected
such that m; was the first message ever sent to p; or L if there is none. Then,
apply the lemma again by picking an event e; = (p2, m2) applicable to Cy
(notice p; # p2), obtaining another bivalent configuration Cy = ez(02(C1)).
As before, my can be the first message ever sent to po still present in the
buffer. By proceeding in a round robin fashion— making p; perform step
ei+kn(k > 0)— we obtain an unacceptable run.

Proof. Assume there is no such . Then e(C) must be uni-valent; assume
without loss of generality that it is 0-valent. We want to show the existence
of an e-free run ¢ leading from C' to a configuration D such that e(D) is

H

Figure 4.1: Finding A and B

1-valent. This means that on the way from C to D, there must be two
neighboring configurations A and B such that B = f(A), where f is some
event where e(A) is 0-valent and e(B) is 1-valent. We illustrate the situation
in Figure 4.1. To prove the existence of oy notice first that since C' is bi-
valent, there is a run oy such that £ = ¢;(C') is 1-valent. Then, we distiguish
between two cases:

o If 0; is e-free, let g := o1 and we are done because D := 0¢(C) = F
is 1-valent and, obviously, e(D) is also 1-valent.

o Otherwise, let og be the largest e-free prefix of o1, and let D := 0¢(C).
By assumption, (D) = e(0¢(C')) cannot be bivalent. And since there
is a (possibly empty) run from e(D) to £, e(D) cannot be 0-valent, so
it must be 1-valent.

Focus now on A and B = f(A) (refer always to Figure 4.1). We first show
that the processes taking steps in e and f cannot be different. For if they
were, according to Lemma 2, we would have e(B) = e(f(A)) = f(e(A)). But
this is impossible, since e(B) is 1-valent, and e(A) is 0-valent. Thereafter,
we show that we will still end up with a contradiction. Let p be the process
taking steps in e and f. Since our protocol is supposed to be 1-resilient,
there is a run p in which p does not take any steps, leading from A to some
configuration R where a decision has been taken. See Figure 4.2.

However, the decision can neither be 0 nor 1:

o By Lemma 2, we have p(e(B)) = p(e(f(A))) = e(f(p(A))) = e(f(R)).

Since e(B) is 1-valent, R cannot be 0-valent.

e But according to Lemma 2, we also have p(e(A)) = e(p(A)) = e(R).
Since e(A) is 0-valent, R cannot be 1-valent.

This final contradiction concludes the proof. O

Figure 4.2: R cannot be univalent

Bibliography

[1] H. Attiya, Lecture Notes for Distributed Algorithms, Course # 236357,
Dept of CS, The Technion, January 1994.

[2] M. Fischer, N. Lynch, and M. Paterson, Impossibility of distributed
consensus with one faulty process, JACM, Vol. 32, No.2, April 1985,
pp. 374-382

[3] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers,
Inc., San Francisco 1996

