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1 Introduction
TheL(h, k)-labeling problemconsists in assigning non negative integer labels to the nodes of a graph such
that nodes at distance two have labels which differ by at least k, and adjacent nodes have labels which
differ by at leasth. Thespanof anL(h, k)-labeling is the difference between the largest and the smallest
assigned frequency. The aim of theL(h, k)-labeling problem is to satisfy the distance constraints using
the minimum span. This graph theoretical problem arises from the problem of assigning frequencies to
the transcievers of a wireless network in order to avoid somekinds of interference (i.e. direct and hidden
collision); in this setting, the nature of the environment and the geographical distance are the major factors
determining parametersh andk, and it is usually assumedh ≥ k. Since its formal definition (18) the
L(h, k)-labeling problem has been widely studied by means of techniques from disparate research areas
and receiving many names (for a survey see (5)). However, almost all the literature concerns the special
case ofk = 1 andh = 2 or h = 1, and very few papers (8; 14; 15; 16; 20) investigate on the more
general problem. Nevertheless, the solution of the problemfor anyh andk is worthy since it allows one
to handle more realistic scenarios. Observe that, whenk = 0, for any fixedh, the problem is equivalent
to the classical vertex coloring problem, and whenh = k it becomes the problem of optimally coloring
the nodes of the square of the input graph; finally, whenh = 2k the problem has been called radio- or
λ-coloring problem. All these problems have been intensively studied.

The decisional version of theL(h, k)-labeling problem is NP-complete even for small values ofh and
k (2). This motivates seeking optimal solutions on particular classes of graphs.

In this paper, we completely solve theL(h, k)-labeling problem on cellular grids, finding exact values
of the span for each value ofh andk; only in a small interval we provide different upper and lower bounds.
For the sake of completeness, we study also hexagonal and squared grids.

Exploiting the upper bounds presented in this paper, a labelcan be assigned to any node in a distributed
fashion in constant time in all considered grids, provided that the relative position of the node in the
graph is locally known. In this paper, the presented upper bounds will be described by means of formulas
determining the color of a node as function of its own coordinates; nevertheless, figures will help to have
the intuition of the labeling schemes.

2 Preliminaries and Discussion of the Results
For any non negative real valuesk andh ≥ k, anL(h, k)-labelingof a graphG = (V, E) is a function
L : V → IR such that

- |L(u) − L(v)| ≥ h if (u, v) ∈ E and

- |L(u) − L(v)| ≥ k if there existsw ∈ V such that(u, w) ∈ E and(w, v) ∈ E.

Thespanof anL(h, k)-labeling is the difference between the largest and the smallest value ofL, so it
is not restrictive to assume 0 as the smallest value ofL. We denote byλh,k(G) the smallest integerλ such
that graphG has anL(h, k)-labeling of spanλ.

In this paper, we consider the infinite cellular hexagonal and squared grids, where the position of each
node is defined by a couple of integer coordinates, as shown inFig. 1. Given a certain node(x, y) in a
cellular grid, its neighbors are(x + 1, y), (x− 1, y), (x, y − 1), (x, y + 1), (x− 1, y − 1), (x + 1, y + 1).
The nodes at distance 2 from(x, y) are(x + 2, y), (x − 2, y), (x, y + 2), (x, y − 2), (x + 2, y + 1),
(x−2, y−1), (x+1, y−1), (x−1, y+1), (x+2, y+2), (x−2, y−2), (x+1, y+2) and(x−1, y−2).



OptimalL(h, k)-Labeling of Regular Grids 3

(0,0) (1,0)

(0,1)

(x,y)

(x,y+1) (x+1,y+1)

(x+1,y)

(x,y-1)

(x-1,y)

(x-1,y-1) (0,0)

(1,0)

(0,1) (x,y)
(x-1,y)

(x,y+1)

(x,y-1)

(0,0) (1,0)

(1,0)

(x,y) (x+1,y)(x-1,y)

(x,y+1)

(x,y-1)

Fig. 1: Cellular, hexagonal and squared grids, where the nodes at distance 1 and 2 from the general node(x, y) are
higlighted. Observe that in the hexagonal grid the coordinates of these nodes change according to the parity ofx.

The reader can easily determine the neighbors of(x, y) and the nodes at distance 2 from(x, y) in a
hexagonal and squared grid (highlighted by grey areas in Fig. 1.)

We will use these sets of nodes to prove that the presented labelings are feasible. For the regularity of
the grids, it is not restrictive to consider only nodes whosecoordinates are lexicographically greater than
(x, y) (otherwise it is enough to swap the role of the nodes).

In this paper we study theL(h, k)-labeling problem on the cellular gridC, proving that:

2h + 4k ≤ λh,k(C) ≤ min(6h, 8k) if k ≤ h ≤ 2k;
3h + 2k ≤ λh,k(C) ≤ min(4h, 11k) if 2k ≤ h ≤ 3k;
λh,k(C) = 3h + 2k if 3k ≤ h < 4k;
λh,k(C) = 2h + 6k if h ≥ 4k.

For the sake of completeness we study also the hexagonal gridH , showing that:

2h + k ≤ λh,k(H) ≤ min(3h, 5k) if k ≤ h ≤ 2k;
λh,k(H) = 2h + k if 2k ≤ h < 3k;
λh,k(H) = h + 4k if h ≥ 3k;

Finally, we improve the results by Georges and Mauro (13) achieved as a special case of the more
generalL(h, k)-labeling problem on product of paths. Here we state only theresults achieved in this
paper; see Figure 2 for the complete results.

2h + 2k ≤ λh,k(S) ≤ min(4h, 2h + 3k − 1, 6k) if k ≤ h ≤ 2k;
2h + 2k ≤ λh,k(S) ≤ min(3h, 2h + 3k − 1, 8k) if 2k ≤ h ≤ 3k.

The really important parameter is the ratioh/k. This is the reason why, in the graphical summary of
results depicted in Fig. 2,h is a function ofk.

TheL(h, k)-labeling problem on regular grids has already been studiedin (3) for h = 2 andk = 1, and
in (6) for h = 0, 1, 2 andk = 1. Of course, the results obtained in this paper include as special case the
previous ones. Also Griggs and Jin (17) have independently studied the same problem using completely
different techniques.
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Fig. 2: Summary of the results: grey areas denote gaps between the upper and the lower bounds.Bold lines represent
already known results.

In (20) the distance between two labelsi, j ∈ {0, 1, . . . , n − 1} is defined asmin{|i − j|, n − |i −
j|}. Using this definition and restrictingh andk to be integer, the authors study a variant ofL(h, k)-
labeling on triangular and squared grids (for a summary of their results see Fig. 3). We will callLc(h, k)-
labeling problem this variant. The authors of (20) approachtheLc(h, k)-labeling problem from a purely
combinatorial point of view, with completely different techniques, for each integerh andk. Furthermore,
observe that – despite the similarity ofL(h, k)- andLc(h, k)-labeling problems – it does not seem possible
to shift from results in (20) to ours (compare Fig. 2 and Fig. 3).

Before proving one by one all bounds listed above, we state some general results that will be useful in
the following.

Theorem 2.1 (13) Given any regular grid of the planeG with degree∆ (∆ = 3, 4 or 6), the following
conditions forλh,k(G) hold:

a. λh,k(G) ≥ 2h + (∆ − 2)k for anyk ≤ h ≤ ∆k;

b. λh,k(G) ≥ h + 2(∆ − 1)k for anyh ≥ ∆k.
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Fig. 3: Summary of the upper bounds forλc
h,k presented in (20), whereh andk are integer values.

Thanks to the generality of its statement, Theorem 2.1 will be exploited in the following in order to
obtain immediate lower bounds onλh,k. Before concluding this section, we depict in Fig. 4 optimal
L(1, 1)-, L(2, 1)- andL(3, 1)-labelings of the regular grids that will be used in the following.

3 Cellular Graphs
Given a cellular grid with an optimalL(h, k)-labeling, for any nodex we calla1, a2, . . . a6 its neighbors
arranged aroundx (see Fig. 5). It is not restrictive to assume thata1 has the smallest label, and that
L(a2) < L(a6).

In this section, we derive exact values ofλh,k(C) by proving coinciding upper and lower bounds, except
for intervalk ≤ h ≤ 3k, where bounds are slightly different.

3.1 k ≤ h ≤ 2k

Theorem 3.1 If k ≤ h ≤ 2k, then2h + k ≤ λh,k(C) ≤ min (6h, 8k).

Proof: Lower bound. It directly descends from Theorem 2.1 part a.
Upper bound. Given any node(x, y) of the cellular grid, consider the following labeling function (see

Fig. 6.a):
L((x, y)) = ((x + 4y)mod7)h.

This labeling is feasible, indeed|L((x + 1, y)) − L((x, y))| ≥ h, |L((x, y + 1)) − L((x, y))| ≥ 3h
and|L((x + 1, y + 1)) − L((x, y))| ≥ 2h, so the distance 1 constraint is always respected. Analogously,
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Fig. 4: L(1, 1)-, L(2, 1)- andL(3, 1)-labelings of regular grids.

the distance 2 constraint is respected, too; indeed:|L((x + 2, y)) − L((x, y))| ≥ 2h, |L((x, y + 2)) −
L((x, y))| ≥ h, |L((x+2, y +1))−L((x, y))| ≥ h, |L((x+1, y−1))−L((x, y))| ≥ 3h, |L((x+2, y +
2)) − L((x, y))| ≥ 3h and|L((x + 1, y + 2)) − L((x, y))| ≥ 2h, i.e. the minimum distance between
L((x, y)) and the label of any node at distance 2 from(x, y) is at leasth ≥ k.

The span of the presented labeling is6h. Observe that the resulting labeling is essentially identical to
an optimalL(1, 1)-labeling of the cellular grid, where all values are multiplyied byh.

Consider now the following labeling function (see Fig. 6.b):

L((x, y)) = ((3x + 4y)mod9)k.

Also this labeling is feasible:|L((x + 1, y)) − L((x, y))| ≥ 3k, |L((x, y + 1)) − L((x, y))| ≥ 4k and
|L((x + 1, y + 1)) − L((x, y))| ≥ 2k ≥ h. Analogously, the distance betweenL((x, y)) and the label of
any node at distance 2 from(x, y) is always≥ k. The span of the presented labeling is8k.

Observe that this labeling is exactly the same as an optimalL(2, 1)-labeling, where each value has been
multiplied byk. It follows that, whenk ≤ h ≤ 2k, λh,k(C) ≤ min (6h, 8k). Combining the results for
the two labelings, it follows that, whenk < h ≤ 5

3
k thenλh,k(C) ≤ 6h, and when5

3
k ≤ h ≤ 2k then

λh,k(C) ≤ 8k. 2
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Fig. 5: A general nodex and all its neighbors in a cellular graph.
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Fig. 6: Feasible labelings of a cellular graph when a.k ≤ h ≤ 4
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k and when b.4

3
k ≤ h ≤ 2k.

3.2 2k ≤ h < 4k

Theorem 3.2 If 3k < h < 4k, thenλh,k(C) = 3h + 2k; if 2k ≤ h ≤ 3k then3h + 2k ≤ λh,k(C) ≤
min(4h, 11k).

Proof: Upper bound. If 2k ≤ h ≤ 3k, consider the two following labeling functions (see Figs. 7.a and
7.b):

L((x, y)) = ⌊((3x + 4y)mod9)/2⌋h + ((3x + 4y)mod9)mod2)k

and
L((x, y)) = ((7x + 9y)mod12)k

.
Analogously to the previous proofs, it is easy to check that both labelings are feasible, comparing

L((x, y)) with the label of all nodes at distance 1 and 2 from(x, y). Furthermore, the span of the pre-
sented labelings are4h and 11k, respectively. It follows thatλh,k(C) ≤ min(4h, 11k). Combining
the results for the two labelings, it follows that when2k < h ≤ 11

4
k thenλh,k(C) ≤ 4h and when

11

4
k ≤ k < 3k thenλh,k(C) ≤ 11k. Observe that also the labeling in Fig. 7.a can be obtained from an

optimalL(2, 1)-labeling by the following substitutions:(0, 0), (1, k), (2, h), (3, h + k), (4, 2h), (5, 2h +
k), (6, 3h), (7, 3h+k) and(8, 4h), while the labeling in Fig. 7.b can be obtained from an optimal L(3, 1)-
labeling multiplying each value byk.

If 3k < h < 4k consider the labeling function defined by the following formula (see Fig. 8.a):
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L((x, y)) = ((y mod4 + x mod3)mod4)h + (x mod3)k.

The produced coloring is a feasibleL(h, k)-labeling and its span is3h + 2k.
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Fig. 8: Two optimally labeled portions of cellular graph when a.3k < h < 4k and b.h ≥ 4k.

Lower bound. Let be given a cellular graph with any optimalL(h, k)-labeling,2k ≤ h < 4k. We
consider a nodea and all possible relative orders of the 7 distinct labels ofa and its neighbors.

The proof is based on a systematic way of describing all the different cases in which a labeling of
smaller span could be achieved. Then, the proof examines these cases and establishes that none of them
could result in a feasibleL(h, k)-labeling.

We prove – by contradiction – thatλh,k(C) ≥ 3h+2k if 2k ≤ h < 4k. So, assumeλh,k(C) < 3h+2k.
For the nomenclature, we refer to Fig. 9. Let us focus on any nodea of C.

Seven cases can occur:
Case 5 − a − 1:
Suppose first thata has 5 neighbors whose labels are smaller thanL(a) and only one with label bigger
thanL(a) (see Fig. 9.a). Hence,L(a) is in positionF while L(a1) is in positionA.

First of all, observe that two adjacent nodesai andai+1 cannot have their labels in consecutive positions
(e.g. L(ai) in C andL(ai+1) in D), otherwise the span would become too large, against the hypothesis
λh,k(C) < 3h + 2k. In the same way, two adjacent nodesai andai+1 cannot have their labels separated
by only one label (e.g.L(ai) in C andL(ai+1) in E) otherwise the span would be≥ 3h+2k. Therefore,
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L(a2) can be neither in positionB, nor in C. SinceL(a2) cannot be inG becauseL(a2) < L(a6), it
follows thatL(a2) lies either inD or in E.

If L(a2) is in D, thenL(a3) must be inG and henceL(a6) must be inE. In this way,L(a4) andL(a5)
would be inB andC, in some order, achieving in any case a too large span.

Lastly, if L(a2) is in E, thenL(a6) > L(a2) must necessarily be inG andL(a3), L(a4) andL(a5)
occupy positionsB, C andD in some order, leading again to a too large span.

Then – under the hypothesisλh,k(C) < 3h + 2k – this configuration never occurs.

Cases 4 − a − 2, 2 − a − 4 and 1 − a − 5:
If a has 4 neighbors whose labels are smaller thanL(a) and 2 with label bigger thanL(a) (see Fig. 9.b),
thenL(a) is in E andL(a1 is in A. With considerations similar to the previous ones,L(a2) can be either
in D or in F or in G. L(a2) in D leads to a contradiction, asL(a6) > L(a2) andL(a3) are inF and
G in some order and, hence,L(a4) andL(a5) must lie inB andC. If L(a2) is larger thanL(a), then
the only possibility is thatL(a2) lies inF andL(a6) in G. In this case,L(a3), L(a4) andL(a5) must be
in B, C andD in sopme order, leading to a too large span. Therefore, even this case never occurs when
λh,k(C) < 3h + 2k.

The cases in whicha has either two neighbors or one neighbor whose labels are smaller thanL(a) are
symmetrical to the previous two cases and then omitted for the sake of brevity.

Cases 0 − a − 6 and 6 − a − 0:
If the labels of alla’s neighbors are larger (smaller) thanL(a), thenL(a) lies in A (G). These cases are
both feasible in the hypothesisλh,k(C) < 3h + 2k.

Case 3 − a − 3:
Finally, suppose thata has 3 neighbors whose labels are smaller thanL(a) and 3 with label bigger than
L(a) (see Fig. 9.c). In this case,L(a1) is in positionA andL(a) is in positionD.

Since this case does not lead to any contradiction, it can occur whenλh,k(C) < 3h + 2k.

We have proven that only three cases can occur, i.e. the six labels ofa’s neighbors are: i. all smaller
thanL(a), ii. all bigger thanL(a), iii. three smaller and three bigger thanL(a). Now we want to study
which valuesL(a) can assume and prove that no value is feasible, i.e. our hypothesisλh,k(C) < 3h+ 2k
is false. To this aim, we moveL(a) along interval[0, 3h + 2k) and see what happens.

• 0 ≤ L(a) < 2h − 3k
In this intervalL(a) has all six labels ofa’s neighbors to its right. IfL(x) was≥ 2h − 3k then the
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space to its right would be not sufficient to keep the span strictly smaller than3h + 2k and, at the
same time, to fit six labels at mutual distancek and at distance≥ h from L(a).

• 2h− 3k ≤ L(a) < h + 2k
L(a) never lies inside this interval because there is not enough room to fit six labels to the right of
L(a) and not enough room to fit three labels to the left ofL(a). From the previous part of the proof,
we know that other configurations are not possible.

• h + 2k ≤ L(a) < 2h
If L(a) lies in this interval, three labels are smaller thanL(a) and three labels are bigger than it.

• 2h ≤ L(a) < h + 5k
L(a) never lies here, for analogous reasons with respect to the second interval.

• h + 5k ≤ L(a) < 3h + 2k
In this intervalL(a) has all six labels ofa’s neighbors to its left.

So, only three intervals are feasible forL(a): [0, 2h− 3k), [h + 2k, 2h] and[h + 5k, 3h+ 2k). In view
of the generality ofa, it follows that all seven considered labels must lie in these three intervals.

The second interval ish−2k wide; sinceh−2k < 2k whenh < 4k, we deduce that inside this interval
we can fit at most two labels at mutual distancek. It follows that the other two intervals must contain at
least four labels and hence they must be at least3k wide each. If2k ≤ h < 3k this is a contradiction
and the proof is concluded. If3k ≤ h < 4k let us consider the generalL(a) in the first (third) feasible
interval. All six a’s neighbors must have label bigger (smaller) thanL(a), and only two can be in the
second feasible interval while four are in the third (first) one. Let us focus on the labelsL(ai) andL(aj)
lying inside the second feasible interval, implying that the third (first) interval is at leasth + k wide. If
ai andaj are neighbors, then the second interval must be at leasth wide, and this is a contradiction. If
ai andaj have distance two in the cycle induced bya’s neighbors, then consider the three nodes different
from ai, aj and their common neighbor; they must all lie in the third (first) interval. If ai andaj have
distance three in the cycle induced bya’s neighbors, then there exist two pairs of neighbors whose labels
all lie in the third (first) interval. Again, this configuration implies that the third (first) interval is at least
h + k wide, possible if and only ifh ≥ 4k, i.e. a contradiction. 2

In the interval2k ≤ h ≤ 3k, the achieved upper and lower bounds forλh,k(C) are not coinciding. The
following result ensures us that the lower bound is not tight, at least in a subinterval:

Theorem 3.3 If 2k < h < 5

2
k, thenλh,k(C) > 3h + 2k.

Proof: Let be given a cellular graphC with any optimalL(h, k)-labeling. We consider any nodea of C
and study all possible values thatL(a) can assume, taking into account the positions of the labels of a’s
neighbors with respect toL(a). We assume, by contradiction, thatλh,k(C) ≤ 3h + 2k.

Case 0 − a − 6:
Let us suppose first that all the labels ofa’s neighbors lie to the right ofL(a). It must hold thatL(a1) ≥
L(a)+h and that the biggest one among the labels of thea’s neighbors is≥ L(a)+h+5k; the same label
must also be≤ 3h+2k for our hypotesis. It follows thatL(a)+h+5k ≤ 3h+2k, that isL(a) ≤ 2h−3k.
Observe that the width of interval[0, 2h− 3k] is strictly less than 2k when2k < h < 5

2
k.
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Case 1 − a − 5:
If the label of one neighbor is to the right ofL(a), then it must beL(a) ≥ h. On the other hand, the biggest
one among the labels of thea’s neighbors must be≥ L(a) + h + 4k and, at the same time,≤ 3h + 2k. It
follows L(a) ∈ [h, 2h − 2k]. The width of this interval is strictly smaller thank

2
sinceh < 5

2
k.

Cases 2 − a − 4, 3 − a − 3, 4 − a − 2 and 5 − a − 1:
With reasonings identical to the previous ones, we deduce that if a has two neighbors whose label is
smaller thanL(a) thenL(a) ∈ [h + k, 2h − k]. If the neighbors whose labels are smaller thanL(a) are
three, thenL(a) ∈ [h + 2k, 2h]. When four labels are smaller thanL(a) and two are bigger, thenL(a)
must belong to interval[h + 3k, 2h + k]. Lastly, when only one neighbor has its label bigger thanL(a)
thenL(a) ∈ [h + 4k, 2h + 2k]. The width of all these intervals is strictly less thank

2
sinceh < 5

2
k.

Case 6 − a − 0:
This case is symmetrical to the first one, and we obtainL(a) ∈ [h + 5k, 3h + 2k]. The width of this
interval is< 2k whenh < 5

2
k.

We found seven feasible intervals for the generalL(a) (see Fig. 10) and we must assume that all the
used labels must fall in someone of these intervals. From nowon we will call big intervalsthe first one
and the last one andsmall intervalsall the other ones. These names derive from their widths.

Of course, for each general labelL(a) there are at least six labels at distanceh from L(a) itself, and
mutually at distancek. Because of the widths of the considered intervals, we cannot fit more than two
labels at mutual distance≥ k inside the big intervals and no more than one label inside thesmall ones.
So, the cardinality of the setU of used labels is no more than 9. It can also be seen that it is atleast 9
because if we consider any labelL(v) in a small interval and any other labelL(w) in a neighbor small
interval (e.g.L(v) in the second interval andL(w) in the third one), then|L(v) − L(w)| ≤ h − k < h.
SoL(v) eliminates two labels, that are too close, and must have other 6 labels for allv’s neighbors. We
can conclude that small intervals must contain one label each and that big interval must contain two labels
each.

We will prove that there exists a position forL(a) such thatL(a) cannot have other six labels at
distance at leasth and at mutual distancek inside the feasible intervals, proving that the hypothesis
λh,k(C) ≤ 3h + 2k is a contradiction, and henceλh,k(C) > 3h + 2k. Let us focus onL(a) belonging to
the forth interval, i.e. to[h + 2k, 2h].

If L(a) lies on the left extreme of the interval, i.e.L(a) = h + 2k, the labelL(b) of eacha’s neighbour
b must be either≤ 2k or ≥ 2h + 2k. We can fit at most two labels in the first interval. The second,third
and fifth intervals are forbidden since too close toL(a); we can fit at most one label in the sixth one and at
most two labels in the seventh one. So, globally, we have roomfor at most five labels, that is not enough
(see Fig. 10).

The same reasonings apply whenL(a) coincides with the right extreme of the interval, i.e.L(a) = 2h.
So, assumeL(a) in the open interval(h+2k, 2h). Again, eachL(b) must be≤ L(a)−h < 2h−h = h

and≥ L(a) + h > h + 2k + h = 2h + 2k. It follows that we can fit at most four labels, two for each big
interval (see Fig. 10). This concludes the proof. 2

On the base of the previous theorem and of the continuity of function λh,k(C) we conjecture that
λh,k(C) = 4h if 2k ≤ h ≤ 5

2
k andλh,k(C) = 2h + 5k if 5

2
k ≤ h ≤ 3k.
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Fig. 10: The feasible intervals in the proof of Theorem 3.3.

3.3 h ≥ 4k

Theorem 3.4 If h ≥ 4k, thenλh,k(C) = 2h + 6k.

Proof: Upper bound. Consider the labeled portion of cellular graph limited by bold lines in Fig. 8.b and
replicate it in all directions. The definition of the labeling function is left to the interested reader.

The produced coloring is a feasibleL(h, k)-labeling and its span is2h + 6k.
Lower bound. Let be given a cellular graph with an optimalL(h, k)-labeling. Leta be any node inC.

By contradiction, let us assumeλh,k(C) < 2h + 6k.

Cases 1 − a − 5 and 2 − a − 4
There exist either one or two neighbors ofa whose labels are smaller thanL(a). With considerations very
similar to those presented in the proof of Theorem 3.2 concerning adjacent nodes having their labels to
the right ofL(a), we deduce that we always get a spanλh,k(C) ≥ 2h + 6k; hence these cases cannot
occur under the hypothesisλh,k(C) < 2h + 6k.

Case 3 − a − 3
There exist exactly three neighbors ofa whose labels are smaller thanL(a) and three neighbors whose
labels are bigger thanL(a).

SinceL(a1) is the minimum label, ifL(a2) < L(a) we achieve a too large span. It follows that
L(a2) > L(a). With similar reasonings, we deduce thatL(a1), L(a3) andL(a5) lie to the left ofL(a) in
some order, andL(a2), L(a4) andL(a6) lie to right side.

Cases 4 − a − 2 and 5 − a − 1
These cases are symmetrical to cases2 − a − 4 and1 − a − 5, and hence they never occur.

Cases 0 − a − 6 and 6 − a − 0
These cases are both feasible in the hypothesisλh,k(C) < 2h + 6k.

Up to now, we have proved that either all labels ofa’s neighbors lie to the same side with respect to
L(a) or they are three to the left and three to the right ofL(a). Now, let us examine which valuesL(a)
can assume.

• 0 ≤ L(a) < h + k
If L(a) lies in this interval, we have labels of alla’s neighbors to the right ofL(a).
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• h + k ≤ L(a) < h + 2k
It is not possible to putL(a) in this interval because neither case0− a− 6 (not enough space to the
right of L(a)) nor case3 − a − 3 (not enough space to the left ofL(a)) can apply.

• h + 2k ≤ L(a) ≤ h + 4k
WhenL(a) is in this interval, we have three labels to the left ofL(a) and three labels to the right of
L(a).

• h + 4k ≤ L(a) ≤ h + 5k This interval cannot be used for the same reasones as the second interval.

• h + 5k ≤ L(a) ≤ 2h + 6k If L(a) is in this interval, then all neighbors ofa have labels smaller
thanL(a), and it is feasible.

Very similarly to the proof of Theorem 3.2, it is possible to show that the assumptionλh,k(C) < 2h+6k
leads to a contradiction. 2

4 Hexagonal Grids
In this section we deal with theL(h, k)-labeling problem on hexagonal grids and we prove coinciding
upper and lower bounds onλh,k(H) for all possible values ofk andh ≥ k, except whenh is in the
interval(k, 2k), in which case we provide sligthly different upper and lowerbounds.

4.1 k ≤ h ≤ 2k

Theorem 4.1 If k ≤ h ≤ 2k, then2h + k ≤ λh,k(H) ≤ min (3h, 5k).

Proof: Lower bound. The claim directly descends from Theorem 2.1 part a.
Upper bound. Consider the portion of labeled grid limited by bold lines inFig. 11.a. We get a feasible

L(h, k)-labeling by replicating the shown pattern of labels, and the span is3h. this labeling is defined by
the following function:

L((x, y)) = ((⌈
x

2
⌉ +

3

2
y)mod4)h

if y is even and

L((x, y)) = ((⌊
x

2
⌋ + 3⌈

y + 1

2
⌉)mod4)h

if y is odd.
The produced labeling is substantially identical to anL(1, 1)-labeling, where all values are multiplied

by h.
We can also label the hexagonal grid by an optimalL(2, 1)-labeling, substituting each valuei with ik.

It is easy to see that such a coloring is feasible and its span is5k. It follows thatλh,k(H) ≤ min (3h, 5k).
Combining the results for the two labelings, it follows thatwhenk ≤ h ≤ 5

3
k λh,k(H) ≤ 3h and when

5

3
k ≤ h ≤ 2k λh,k(H) ≤ 5k. 2
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4.2 2k ≤ h < 3k

In order to make easier the reading of the proofs, in the rest of the paper we will not express anymore
each label as explicit function of the coordinates of nodes in the grid, but we will refer to figures. The
interested reader can easily deduce these functions from the depicted labelings.

Theorem 4.2 If 2k ≤ h < 3k, thenλh,k(H) = 2h + k.

Proof: Lower bound. The claim directly descends from Theorem 2.1 part a.
Upper bound. Consider the upper labeled portion of hexagonal grid limited by bold lines in Fig. 11.b

and constituted by three hexagons.
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0 h
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0h+k

2h+k

2h

2hk

2h+k h

0 h+k

2h+k

k

h+k

h2h+k

2h

0

h

a. b.

0

h

2h

0 h+k
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0

0

0
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2k 2k
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h+3k h+3k

c.

Fig. 11: Three optimally labeled portions of hexagonal grid, when a.k ≤ h ≤
5

3
k, when b.2k ≤ h ≤ 3k and when

c. h ≥ 3k.

TheL(h, k)-labeling is performed by replicating either this portion of labeled grid or its specular image
(lower labeled portion in Fig. 11.b). It is straighforward to see that the producedL(h, k)-labeling is
feasible and its span is2h + k. 2

4.3 h ≥ 3k

Theorem 4.3 If h ≥ 3k, thenλh,k(H) = h + 4k.

Lower bound. The claim directly descends from Theorem 2.1 part b.

Proof: Upper bound. Observe that any labeling assigning to a node a label among0 k 2k (respectively
amongh + 2k, h + 3k, h + 4k) and to all its neighbors labelsh + 2k h + 3k h + 4k (respectively0, k,
2k) is feasible and optimal. One of these labelings is shown in Fig. 11.c. 2

5 Squared Grids
In this section we study theL(h, k)-labeling problem on squared grids. Some partial results can be found
in (13), where theL(h, k)-labeling problem on the product of paths is studied. As a special case of this
more general problem, the authors prove the following:
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Theorem 5.1 (13) If h ≥ 4h, thenλh,k(S) = h + 6k; if 3k < h < 4k, thenλh,k(S) = 2h + 2k; if
k ≤ h ≤ 4k, then2h + 2k ≤ λh,k(S) ≤ 2h + 3k − 1.

Here we improve the upper bound onλh,k(S) in the interval where it is not tight.

5.1 k ≤ h ≤ 2k

Theorem 5.2 If k ≤ h ≤ 2k, then2h + 2k ≤ λh,k(S) ≤ min (4h, 2h + 3k − 1, 6k).

Proof: In view of Theorem 5.1, we only have to prove the upper bounds4h and6k.
We can replicate pattern0 h 2h 3h 4h horizontally. When we move to the next row, we shift it by two

positions (see Fig. 12.a), obtaining in this way a vertical pattern0 3h 2h 4h h. This labeling is the same
as an optimalL(1, 1)-labeling.

Consider now the horizontal pattern0 2k 4k 6k k 3k 5k. Each time we replicate it on successive rows,
we shift it by two positions obtaining vertical pattern0 3k 6k 2k 5k k 4k (see Fig. 12.b). Observe that
this labeling can be obtained by replacing colori in an optimalL(2, 1)-labeling with colorik.

It is easy to see that these twoL(h, k)-labelings are feasible and their span are4h and6k, respectively.
So, in view of these reasonings and of Theorem 5.1, we have:λh,k(S) ≤ min (4h, 2h + 3k − 1, 6k). The
first value is the best one whenh ≤ (3k − 1)/2, the second one is the best one when(3k − 1)/2 ≤ h ≤
(3k + 1)/2, and the third value is the best one whenh ≥ (3k + 1)/2. 2

0 2hh 3h 4h 0 2h

0 2hh 3h 4h3h 4h

h 3h 4h 0 2h2h h

0 2hh 3h 4h 04h

0 2hh 3h2h 3h 4h

0 2hh 3h 4h 0 h

0 2hh 3h 4h3h 4h

a.

0 2k 6k4k

0

0

0

b.

k 5k3k

2k 6k4k k5k3k

2k 4k6k k 5k3k

2k 6k4k k 3k 05k

2k 6k4k k 3k

0 2k 6k4kk 5k3k

5k

0 2k6k4k k 5k3k

Fig. 12: Two optimally labeled portions of squared grid, when a.k ≤ h ≤ 3

2
k and when b.3

2
k ≤ h ≤ 2k.

5.2 2k ≤ h < 4k

Theorem 5.3 If 2k ≤ h ≤ 3k then2h + 2k ≤ λh,k(S) ≤ min(3h, 2h + 3k − 1, 8k).
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Proof: As in the previous proof, we only have to prove the upper bounds 3h and8k. Two L(h, k)-
labelings can be obtained either by replicating vertical pattern0 h + k 3h h 2h + k k 2h, as shown in
Fig. 13.a, or by replicating vertical patternk 6k 2k 7k 3k 8k 4k 0 5k, as shown in Fig. 13.b. Both
patterns must be shifted down by three positions when changing column. Such labelings are both feasible
and their spans are3h and8k, respectively. So, combining these results with those in Theorem 5.1, we
have that the bound3h is better than8k when2k ≤ h ≤ 8

3
k, while the second one is better than the

first one when8

3
k ≤ h ≤ 3k. Finally the bound2h + 3k − 1 is better than the other two in the interval

3k − 1 ≤ h ≤ (5k + 1)/2, but it has positive length only whenk ≤ 3.
Observe that the labeling in Fig. 13.b can be obtained from anoptimalL(2, 1)-labeling by the following

substitutions:(0, 0), (1, k), (2, h), (3, h + k), (4, 2h), (5, 2h + k) and(6, 3h). 2
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Fig. 13: a. and b. two feasibleL(h, k)-labelings when when2k ≤ h ≤ 8

3
k and when8

3
k ≤ h ≤ 3k.

As for cellular graphs, also for squared grids, in the interval 2k ≤ h ≤ 3k we do not achieve tight
upper and lower bounds forλh,k(S). Nevertheless, we conjecture thatλh,k(S) = 3h if 2k ≤ h ≤ 5

2
k

andλh,k(C) = h + 5k if 5

2
k ≤ h ≤ 3k. Observe that these values guarantee the continuity of function

λh,k(S).

6 Conclusions and Open Problems
In this paper we have studied theL(h, k)-labeling problem on cellular, hexagonal and squared grids.

Concerning cellular and hexagonal grids, for each value ofk andh ≥ k we have obtained exact values
of the span, except in a small interval, where we provide slightly different upper and lower bounds for
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λh,k(C) andλh,k(H). Concerning the squared grid, we have improved some previously known upper
bounds, reducing the gap with the lower bound.

It is easy to see that the replication schemes presented for the upper bounds lead to simple distributed
algorithms to label the whole grid in constant time, provided that each node knows its coordinates in the
grid.

Three open problems arise from this work.

1. The first one is to prove (or disprove) our conjectures and close the gap between upper and lower
bound whenk ≤ h ≤ 3k and∆ = 4 and∆ = 6, and whenk ≤ h ≤ 2k and∆ = 3.

2. The second one is to understand if there exists some shifting method to go from the results collected
in the present paper and those presented in (20) (see Fig. 2) and vice-versa. Indeed, it is not
surprising that the values ofλh,k under the ‘cyclicity’ assumption are bigger than ours, but it is not
clear the reason why ourλh,k function is fragmented in a bigger number of segments.

3. Lastly, it would be interesting to study theL(h, k)-labeling problem for other (not regular) tilings,
built with different shaped tiles (i.e. the edge-clique graph of the cellular graph, having degree 4,
constituted by triangular and hexagonal tiles).
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