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1 Introduction

TheL(h, k)-labeling problentonsists in assigning non negative integer labels to thesofh graph such
that nodes at distance two have labels which differ by at leaand adjacent nodes have labels which
differ by at least.. Thespanof an L(h, k)-labeling is the difference between the largest and thelsstal
assigned frequency. The aim of théh, k)-labeling problem is to satisfy the distance constrainisgus
the minimum span. This graph theoretical problem arise® fitte problem of assigning frequencies to
the transcievers of a wireless network in order to avoid skimes of interference (i.e. direct and hidden
collision); in this setting, the nature of the environmeamd $he geographical distance are the major factors
determining parameters andk, and it is usually assumed > k. Since its formal definition (18) the
L(h, k)-labeling problem has been widely studied by means of teghas from disparate research areas
and receiving many names (for a survey see (5)). Howevenslall the literature concerns the special
case ofk = 1 andh = 2 or h = 1, and very few papers (8; 14; 15; 16; 20) investigate on theemor
general problem. Nevertheless, the solution of the proliterany h andk is worthy since it allows one
to handle more realistic scenarios. Observe that, when0, for any fixedh, the problem is equivalent
to the classical vertex coloring problem, and wltee: k it becomes the problem of optimally coloring
the nodes of the square of the input graph; finally, whes 2k the problem has been called radio- or
A-coloring problem. All these problems have been intengig&idied.

The decisional version of the(h, k)-labeling problem is NP-complete even for small values ahd
k (2). This motivates seeking optimal solutions on particalasses of graphs.

In this paper, we completely solve tligh, k)-labeling problem on cellular grids, finding exact values
of the span for each value afandk; only in a small interval we provide different upper and loweunds.
For the sake of completeness, we study also hexagonal aacesbgrids.

Exploiting the upper bounds presented in this paper, a tzdrebe assigned to any node in a distributed
fashion in constant time in all considered grids, provideat the relative position of the node in the
graph is locally known. In this paper, the presented uppante will be described by means of formulas
determining the color of a node as function of its own coaatks; nevertheless, figures will help to have
the intuition of the labeling schemes.

2 Preliminaries and Discussion of the Results

For any non negative real valuksandh > k, an L(h, k)-labelingof a graphG = (V, E) is a function
L :V — R suchthat

- |L(u) — L(v)| > hif (u,v) € F and
- |L(u) — L(v)| > k if there existsw € V such thaiu, w) € E and(w,v) € E.

Thespanof an L(h, k)-labeling is the difference between the largest and thelsstalalue ofL, so it
is not restrictive to assume 0 as the smallest value &/e denote by, 1, (G) the smallest integex such
that graph has anL(h, k)-labeling of spam.

In this paper, we consider the infinite cellular hexagondl saquared grids, where the position of each
node is defined by a couple of integer coordinates, as shoWwiginl. Given a certain nodger,y) in a
cellular grid, its neighbors are: + 1, y), (x — 1,y), (z,y — 1), (z,y+ 1), (z — 1,y — 1), (z + 1,y + 1).
The nodes at distance 2 frofm,y) are (z + 2,y), (x — 2,y), (z,y + 2), (z,y — 2), (x + 2,y + 1),
(x—=2,y—1),(x+1,y—1),(x—1,y+1), (x+2,y+2), (t—2,y—2), (x+1,y+2)and(z — 1,y — 2).
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Fig. L. Cellular, hexagonal and squared grids, where the nodestande 1 and 2 from the general nqdey) are
higlighted. Observe that in the hexagonal grid the cootdmaf these nodes change according to the parity of

The reader can easily determine the neighborg:0f) and the nodes at distance 2 frdm y) in a
hexagonal and squared grid (highlighted by grey areas inIE)g

We will use these sets of nodes to prove that the presentetirigb are feasible. For the regularity of
the grids, it is not restrictive to consider only nodes whoserdinates are lexicographically greater than
(x,y) (otherwise it is enough to swap the role of the nodes).

In this paper we study the(h, k)-labeling problem on the cellular grid, proving that:

2h + 4k < A\ 1 (C) < min(6h, 8k) if k < h < 2k;
3h + 2k < A\ £ (C) < min(4h, 11k) if 2k < h < 3k;
Mk (C) = 3h + 2k if 3k < h < 4k;

Ak (C) = 2h + 6k if h > 4k.

For the sake of completeness we study also the hexagonaligstiowing that:

2h + k < Ak (H) <min(3h,5k) if k < h < 2k;
)\h,k(H) =2h+ kif 2k < h < 3k;
A (H) = h+4kif h > 3k;

Finally, we improve the results by Georges and Mauro (13)eaell as a special case of the more
generalL(h, k)-labeling problem on product of paths. Here we state onlyréselts achieved in this
paper; see Figure 2 for the complete results.

2h + 2k < A\ i (S) < min(4h, 2k + 3k — 1,6k) if k < h < 2k;
2h + 2k < Ak (S) < min(3h,2h + 3k — 1,8k) if 2k < h < 3k.

The really important parameter is the ratigk. This is the reason why, in the graphical summary of
results depicted in Fig. 2, is a function ofk.

The L(h, k)-labeling problem on regular grids has already been stuidi€®) for h = 2 andk = 1, and
in (6) forh = 0,1,2 andk = 1. Of course, the results obtained in this paper include asiagpease the
previous ones. Also Griggs and Jin (17) have independenttiiedd the same problem using completely
different techniques.
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Fig. 22 Summary of the results: grey areas denote gaps betweenpke amd the lower bounds.Bold lines represent
already known results.

In (20) the distance between two labels € {0,1,...,n — 1} is defined asnin{|i — j|,n — |i —
Jl}. Using this definition and restrictingg andk to be integer, the authors study a variantdh, k)-
labeling on triangular and squared grids (for a summaryeif tresults see Fig. 3). We will call®(h, k)-
labeling problem this variant. The authors of (20) appraae(h, k)-labeling problem from a purely
combinatorial point of view, with completely different tediques, for each integérandk. Furthermore,
observe that — despite the similaritybfh, k)- andLc(h, k)-labeling problems — it does not seem possible
to shift from results in (20) to ours (compare Fig. 2 and Fig. 3

Before proving one by one all bounds listed above, we stateesgeneral results that will be useful in
the following.

Theorem 2.1 (13) Given any regular grid of the plan@ with degreeA (A = 3,4 or 6), the following
conditions forA, 1 (G) hold:

a M i(G) >2h+ (A —2)kforanyk < h < Ak;
b. A x(G) > h+2(A — 1)k foranyh > Ak.
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Fig. 3: Summary of the upper bounds faf, , presented in (20), whefeandk are integer values.

Thanks to the generality of its statement, Theorem 2.1 velkekploited in the following in order to
obtain immediate lower bounds oy, . Before concluding this section, we depict in Fig. 4 optimal
L(1,1)-, L(2,1)- andL(3, 1)-labelings of the regular grids that will be used in the fofiog.

3 Cellular Graphs

Given a cellular grid with an optimdl(k, k)-labeling, for any node we calla;, as, . . . ag its neighbors
arranged around (see Fig. 5). It is not restrictive to assume thathas the smallest label, and that
L(ag) < L(aG).

In this section, we derive exact values\af; (C') by proving coinciding upper and lower bounds, except
forintervalk < h < 3k, where bounds are slightly different.

31 k<h<2k
Theorem 3.1 If k < h < 2k, then2h + k < A, 1 (C) < min (6h, 8k).
Proof: Lower bound. It directly descends from Theorem 2.1 part a.
Upper bound. Given any nodéz, y) of the cellular grid, consider the following labeling fuiwst (see
Fig. 6.a):
L((z,y)) = ((z + 4y)mod7)h.

This labeling is feasible, indedd ((x + 1,y)) — L((x,y))| > h, |[L((x,y + 1)) — L((z,y))| > 3h
and|L((x + 1,y + 1)) — L((x,y))| > 2h, so the distance 1 constraint is always respected. Anagbgou
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Fig. 4: L(1,1)-, L(2,1)- and L(3, 1)-labelings of regular grids.

the distance 2 constraint is respected, too; indéedx + 2,vy)) — L((z,y))| > 2h, |L((z,y + 2)) —
L((x,9))| > h, [L((z+2,y+ 1) = L((z,9))| = h, [L((z+ 1,5~ 1)) = L((z, )| > 3h, [L((z+2, +
2)) — L((z,y))| > 3hand|L((z + 1,y + 2)) — L((z,y))| > 2h, i.e. the minimum distance between
L((z,y)) and the label of any node at distance 2 fromy) is at leasth > k.

The span of the presented labelingis Observe that the resulting labeling is essentially idehtio
an optimalL(1, 1)-labeling of the cellular grid, where all values are multipt by .

Consider now the following labeling function (see Fig. 6.b)
L((z,y)) = ((3z + 4y)mod9) k.

Also this labeling is feasibleiL((z + 1,y)) — L((z, y))| > 3k, |L((z,y + 1)) — L((x,y))| > 4k and
|L((x + 1,y + 1)) — L((z,y))| > 2k > h. Analogously, the distance betweé&(yx, y)) and the label of
any node at distance 2 fro(w, y) is always> k. The span of the presented labelingis

Observe that this labeling is exactly the same as an opfif®all )-labeling, where each value has been
multiplied by k. It follows that, wherk < h < 2k, A, (C) < min (6h,8k). Combining the results for
the two labelings, it follows that, whein < h < 2k then\, x(C) < 6h, and whensk < h < 2k then
)\h,k(c) < 8k. O
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Fig. 6: Feasible labelings of a cellular graph wherkas h < %k and when b.%k < h < 2k.

3.2 2k< h <4k

Theorem 3.2 If 3k < h < 4k, then), ,(C) = 3h + 2k; if 2k < h < 3k then3h + 2k < A\, x(C) <
min(4h, 11k).

Proof: Upper bound. If 2k < h < 3k, consider the two following labeling functions (see Figsa &nd
7.b):
L((z,y)) = [((3z + 4y)mod9) /2] h + ((3z + 4y)mod9)mod2)k

and
L((z,y)) = ((Tz + 9y)mod 12)k

Analogously to the previous proofs, it is easy to check tl@hbabelings are feasible, comparing
L((z,y)) with the label of all nodes at distance 1 and 2 frmy). Furthermore, the span of the pre-
sented labelings aréh and 11k, respectively. It follows that\, ,(C) < min(4h,11k). Combining
the results for the two labelings, it follows that wheh < h < %k then A, (C) < 4h and when
%k < k < 3k then)\, 1 (C) < 11k. Observe that also the labeling in Fig. 7.a can be obtaired &in
optimal L(2, 1)-labeling by the following substitutiong0, 0), (1, k), (2, h), (3, h + k), (4,2h), (5,2h +
k), (6,3h), (7,3h+k) and(8, 4h), while the labeling in Fig. 7.b can be obtained from an optim@, 1)-
labeling multiplying each value bj.

If 3k < h < 4k consider the labeling function defined by the following falm(see Fig. 8.a):
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Fig. 7. Two feasible labelings of a cellular graph wh&in < h < 3k. Their span is adh and b.11k.

L((z,y)) = ((y mod4 + z mod3)mod4)h + (x mod3)k.
The produced coloring is a feasiblgh, k)-labeling and its span &h + 2k.

h+k = 2h+ ks
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Fig. 8: Two optimally labeled portions of cellular graph wherBa. < h < 4k and b.h > 4k.

Lower bound. Let be given a cellular graph with any optima(h, k)-labeling,2k < h < 4k. We
consider a node and all possible relative orders of the 7 distinct labels ahd its neighbors.

The proof is based on a systematic way of describing all tfferdint cases in which a labeling of
smaller span could be achieved. Then, the proof examines tteses and establishes that none of them
could result in a feasibl& (A, k)-labeling.

We prove — by contradiction—thaf, ,(C) > 3h+2kif 2k < h < 4k. So, assumay, ,(C) < 3h+2k.

For the nomenclature, we refer to Fig. 9. Let us focus on amgnmf C.
Seven cases can occur:
Caseb—a—1:
Suppose first that has 5 neighbors whose labels are smaller thém and only one with label bigger
thanL(a) (see Fig. 9.a). Hencé,(a) is in positionF while L(a4) is in positionA.

First of all, observe that two adjacent nodesanda,, ; cannot have their labels in consecutive positions
(e.9. L(a;) in C'andL(a;+1) in D), otherwise the span would become too large, against thethgpis
Ank(C) < 3h + 2k. In the same way, two adjacent nodgsinda;4+1 cannot have their labels separated
by only one label (e.gL(a;) in C andL(a;+1) in E) otherwise the span would be 3k + 2k. Therefore,
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Fig. 9: Some possible relative positions bfa) and of labels ofs’ neighbors.

L(az) can be neither in positio®, nor in C. SinceL(az) cannot be inG because.(az) < L(ag), it
follows thatL(a2) lies either inD orin E.

If L(az) isin D, thenL(ag) must be inG and hencd.(ag) must be inE. In this way,L(a4) andL(as)
would be inB andC, in some order, achieving in any case a too large span.

Lastly, if L(az) is in E, thenL(ag) > L(az) must necessarily be i& and L(a3), L(a4) and L(as)
occupy positions3, C' and D in some order, leading again to a too large span.

Then — under the hypothesis ;. (C) < 3h + 2k — this configuration never occurs.

Cases4—a—2,2—a—4and1—a—5:
If a has 4 neighbors whose labels are smaller thar) and 2 with label bigger thah(a) (see Fig. 9.b),
thenL(a) isin E andL(a; isin A. With considerations similar to the previous ongé;.) can be either
in D orin F orinG. L(a2) in D leads to a contradiction, d5(as) > L(az) and L(as) are inF and
G in some order and, hencé(a4) and L(as) must lie inB andC. If L(az) is larger thanL(a), then
the only possibility is thaf.(a2) lies in F andL(ag) in G. In this caseL(a3), L(as) andL(as) must be
in B, C andD in sopme order, leading to a too large span. Therefore, duscase never occurs when
Ak (C) < 3h + 2k.

The cases in which has either two neighbors or one neighbor whose labels arkesrtreanZ(a) are
symmetrical to the previous two cases and then omitted tos#ke of brevity.

Cases0—a—6and 6 —a —O:
If the labels of alla’s neighbors are larger (smaller) théia), thenL(a) lies in A (G). These cases are
both feasible in the hypothesig ,(C) < 3h + 2k.

Case3 —a—3:
Finally, suppose that has 3 neighbors whose labels are smaller thém) and 3 with label bigger than
L(a) (see Fig. 9.c). In this casé&(a,) is in positionA and L(a) is in positionD.

Since this case does not lead to any contradiction, it canrageen);, ;. (C') < 3h + 2k.

We have proven that only three cases can occur, i.e. thels@slafa’s neighbors are: i. all smaller
thanL(a), ii. all bigger thanL(a), iii. three smaller and three bigger théfia). Now we want to study
which values(a) can assume and prove that no value is feasible, i.e. ourhgpish,, ,(C') < 3h + 2k
is false. To this aim, we movE(a) along interval0, 3k + 2k) and see what happens.

e 0 < L(a) <2h—3k
In this intervalL(a) has all six labels ofi's neighbors to its right. I(z) was> 2h — 3k then the
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space to its right would be not sufficient to keep the spanthktrsmaller thar8h + 2k and, at the
same time, to fit six labels at mutual distaricand at distance: h from L(a).

e 2h — 3k < L(a) < h+ 2k
L(a) never lies inside this interval because there is not enoogimito fit six labels to the right of
L(a) and not enough room to fit three labels to the lefLé&). From the previous part of the proof,
we know that other configurations are not possible.

o h+2k < L(a) <2h
If L(a) lies in this interval, three labels are smaller tha) and three labels are bigger than it.

e 2h < L(a) < h+ 5k
L(a) never lies here, for analogous reasons with respect to tomdeénterval.

o h+ 5k < L(a) < 3h + 2k
In this intervalL(a) has all six labels of’s neighbors to its left.

So, only three intervals are feasible fofa): [0, 2h — 3k), [h 4+ 2k, 2h] and[h + 5k, 3h + 2k). In view
of the generality ofi, it follows that all seven considered labels must lie in éhésee intervals.

The second interval is — 2k wide; sinceh — 2k < 2k whenh < 4k, we deduce that inside this interval
we can fit at most two labels at mutual distaricdt follows that the other two intervals must contain at
least four labels and hence they must be at 18asvide each. 12k < h < 3k this is a contradiction
and the proof is concluded. 3 < h < 4k let us consider the gener&la) in the first (third) feasible
interval. All six a's neighbors must have label bigger (smaller) thHgm), and only two can be in the
second feasible interval while four are in the third (firsteo Let us focus on the labelga;) and L(a,)
lying inside the second feasible interval, implying thag third (first) interval is at least + k& wide. If
a; anda; are neighbors, then the second interval must be at leastle, and this is a contradiction. If
a; anda; have distance two in the cycle induceddy neighbors, then consider the three nodes different
from a;, a; and their common neighbor; they must all lie in the third {iiaterval. If a; anda; have
distance three in the cycle induced &g neighbors, then there exist two pairs of neighbors whabkels
all lie in the third (first) interval. Again, this configurati implies that the third (first) interval is at least
h + k wide, possible if and only if. > 4k, i.e. a contradiction. O

In the intervalk < h < 3k, the achieved upper and lower boundsXqr. (C') are not coinciding. The
following result ensures us that the lower bound is not tighteast in a subinterval:

Theorem 3.3 If 2k < h < 2k, then), ,(C) > 3h + 2k.

Proof: Let be given a cellular grapfi with any optimalL(h, k)-labeling. We consider any nodeof C'
and study all possible values thifa) can assume, taking into account the positions of the labielso
neighbors with respect tb(a). We assume, by contradiction, that ;(C) < 3h + 2k.

Case0 —a — 6:

Let us suppose first that all the labelsa¥ neighbors lie to the right of(a). It must hold thatl(a,) >
L(a)+ h and that the biggest one among the labels ofith@eighbors is> L(a)+ h+ 5k; the same label
must also be< 3k + 2k for our hypotesis. It follows that (a) +h+5k < 3h+2k, thatisL(a) < 2h—3k.
Observe that the width of intervéll, 2h — 3k] is strictly less than 2k whek < h < 2k.



Optimal L(h, k)-Labeling of Regular Grids 11

Casel —a — 5:

If the label of one neighbor is to the right 6{a), then it must bd.(a) > h. On the other hand, the biggest
one among the labels of tl#s neighbors must be: L(a) + h + 4k and, at the same time; 3h + 2k. It
follows L(a) € [h, 2h — 2k]. The width of this interval is strictly smaller th@nsinceh < 2k.

Cases2—-a—4,3—a—-3,4—a—-2and5 —a —1:

With reasonings identical to the previous ones, we deduakitln has two neighbors whose label is
smaller thanl.(a) thenL(a) € [h + k, 2h — k]. If the neighbors whose labels are smaller tlign) are
three, thenL(a) € [h + 2k, 2h]. When four labels are smaller thdifa) and two are bigger, theh(a)
must belong to intervdh + 3k, 2h + k]. Lastly, when only one neighbor has its label bigger tthém)
thenL(a) € [h + 4k, 2h + 2k]. The width of all these intervals is strictly less thasinceh < 3.

Case6 —a — 0:
This case is symmetrical to the first one, and we obfaim) € [h + 5k,3h + 2k]. The width of this
interval is< 2k whenh < 2k.

We found seven feasible intervals for the gendral) (see Fig. 10) and we must assume that all the
used labels must fall in someone of these intervals. Fromarowe will call big intervalsthe first one
and the last one argall intervalsall the other ones. These names derive from their widths.

Of course, for each general labB(a) there are at least six labels at distaficBom L(a) itself, and
mutually at distancé. Because of the widths of the considered intervals, we dafitrmore than two
labels at mutual distance k inside the big intervals and no more than one label insidesihall ones.
So, the cardinality of the séf of used labels is no more than 9. It can also be seen that itiésast 9
because if we consider any lab®{v) in a small interval and any other labB(w) in a neighbor small
interval (e.g.L(v) in the second interval anfi(w) in the third one), thenL(v) — L(w)| < h — k < h.

So L(v) eliminates two labels, that are too close, and must have 6tlabels for allv’s neighbors. We
can conclude that small intervals must contain one labéi aad that big interval must contain two labels
each.

We will prove that there exists a position féra) such thatL(a) cannot have other six labels at
distance at leastk and at mutual distanck inside the feasible intervals, proving that the hypothesis
Ank(C) < 3h + 2k is a contradiction, and hendg, 1 (C) > 3h + 2k. Let us focus orL(a) belonging to
the forth interval, i.e. tdh + 2k, 2h).

If L(a) lies on the left extreme of the interval, i.B(a) = h + 2k, the labelL (b) of eacha’s neighbour
b must be eithexk 2k or > 2h 4 2k. We can fit at most two labels in the first interval. The secahidd
and fifth intervals are forbidden since too closda@); we can fit at most one label in the sixth one and at
most two labels in the seventh one. So, globally, we have roomat most five labels, that is not enough
(see Fig. 10).

The same reasonings apply whefu) coincides with the right extreme of the interval, ilea) = 2h.

So, assumé(a) in the open intervalh + 2k, 2h). Again, eachL(b) mustbe< L(a)—h < 2h—h =h
and> L(a) + h > h+ 2k + h = 2h + 2k. It follows that we can fit at most four labels, two for each big
interval (see Fig. 10). This concludes the proof. O

On the base of the previous theorem and of the continuity otfan A, »(C') we conjecture that
Ak (C) = 4hif 2k < h < Sk and), x(C) = 2k + 5k if 2k < h < 3k.
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Fig. 10: The feasible intervals in the proof of Theorem 3.3.

3.3 h >4k
Theorem 3.4 If h > 4k, then)y, . (C) = 2h + 6k.

Proof: Upper bound. Consider the labeled portion of cellular graph limited byddnes in Fig. 8.b and
replicate it in all directions. The definition of the labaifunction is left to the interested reader.

The produced coloring is a feasihlgh, k)-labeling and its span &h + 6k.

Lower bound. Let be given a cellular graph with an optim@a(h, k)-labeling. Leta be any node iC'.
By contradiction, let us assume, ;. (C) < 2h + 6k.

Casesl—a—5and2—a—4

There exist either one or two neighborsioithose labels are smaller thafa). With considerations very
similar to those presented in the proof of Theorem 3.2 caricgradjacent nodes having their labels to
the right of L(a), we deduce that we always get a spay.(C) > 2h + 6k; hence these cases cannot
occur under the hypothesis 1 (C) < 2h + 6k.

Case3—a—3
There exist exactly three neighborswofvhose labels are smaller thdr{a) and three neighbors whose
labels are bigger thah(a).

Since L(a;) is the minimum label, ifL(a2) < L(a) we achieve a too large span. It follows that
L(a2) > L(a). With similar reasonings, we deduce tHd, ), L(a3) andL(as) lie to the left of L(a) in
some order, and.(a2), L(as) and L(ag) lie to right side.

Cases4 —a—2and5—a—1
These cases are symmetrical to casesa — 4 and1 — a — 5, and hence they never occur.
CasesO—a—6and6—a—0
These cases are both feasible in the hypothesigC) < 2h + 6k.
Up to now, we have proved that either all labelsatsf neighbors lie to the same side with respect to

L(a) or they are three to the left and three to the righL6f). Now, let us examine which valudga)
can assume.

e 0< L(a) <h+k
If L(a) lies in this interval, we have labels of alk neighbors to the right of (a).
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e h+k<L(a)<h+2k
Itis not possible to puL(a) in this interval because neither case a — 6 (not enough space to the
right of L(a)) nor case3 — a — 3 (not enough space to the left 6fa)) can apply.

e h+2k < L(a)<h+4k
WhenL(a) is in this interval, we have three labels to the leftidf;) and three labels to the right of
L(a).

e h+4k < L(a) < h+ 5k This interval cannot be used for the same reasones as thedsieterval.

e h+ 5k < L(a) < 2h + 6k If L(a) is in this interval, then all neighbors afhave labels smaller
thanL(a), and it is feasible.

Very similarly to the proof of Theorem 3.2, itis possible twss that the assumptioX, . (C') < 2h+6k
leads to a contradiction. O

4 Hexagonal Grids

In this section we deal with thé(h, k)-labeling problem on hexagonal grids and we prove coingidin
upper and lower bounds oky, (H) for all possible values ok andh > k, except wherh is in the
interval (k, 2k), in which case we provide sligthly different upper and lolweunds.

41 k< h<2k
Theorem 4.1 If k < h < 2k, then2h + k < A\, 1 (H) < min(3h, 5k).

Proof: Lower bound. The claim directly descends from Theorem 2.1 part a.

Upper bound. Consider the portion of labeled grid limited by bold lined-ig. 11.a. We get a feasible
L(h, k)-labeling by replicating the shown pattern of labels, arelghan i3h. this labeling is defined by
the following function:

x

L((,9) = (T3

1+ gy)modzl)h

if y is even and
x

L(r.)) = (1] + 3740

1)mod4)h

if yis odd.

The produced labeling is substantially identical tolan, 1)-labeling, where all values are multiplied
by h.

We can also label the hexagonal grid by an optifg, 1)-labeling, substituting each valdavith ik.
Itis easy to see that such a coloring is feasible and its sg@n it follows that\, ;. (H) < min (3h, 5k).
Combining the results for the two labelings, it follows thdtenk < i < %k An.k(H) < 3h and when
%kzﬁhﬁ?k)\h,k(H)Swf. O
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4.2 2k < h<3k

In order to make easier the reading of the proofs, in the redteopaper we will not express anymore
each label as explicit function of the coordinates of nodethé grid, but we will refer to figures. The
interested reader can easily deduce these functions freaepicted labelings.

Theorem 4.2 If 2k < h < 3k, then\,, (H) = 2h + k.
Proof: Lower bound. The claim directly descends from Theorem 2.1 part a.

Upper bound. Consider the upper labeled portion of hexagonal grid lichlig bold lines in Fig. 11.b
and constituted by three hexagons.

P N N e

AR TR
= N A N

= GRAY W
L Y= T TN
- CUNDTTN TN

Fig. 11. Three optimally labeled portions of hexagonal grid, whek & h < gk when b.2k < h < 3k and when
c.h > 3k.

TheL(h, k)-labeling is performed by replicating either this portidiabeled grid or its specular image
(lower labeled portion in Fig. 11.b). It is straighforwail $ee that the producel(, k)-labeling is
feasible and its span 5 + k. O

4.3 h >3k
Theorem 4.3 If h > 3k, then)y, (H) = h + 4k.
Lower bound. The claim directly descends from Theorem 2.1 part b.

Proof: Upper bound. Observe that any labeling assigning to a node a label arbdn@jk (respectively
amongh + 2k, h + 3k, h 4+ 4k) and to all its neighbors labels+ 2k h + 3k h + 4k (respectively, k,
2k) is feasible and optimal. One of these labelings is showrgn FL.c. O

5 Squared Grids

In this section we study thB(h, k)-labeling problem on squared grids. Some partial resutisesfound
in (13), where the_(h, k)-labeling problem on the product of paths is studied. As @igppease of this
more general problem, the authors prove the following:
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Theorem 5.1 (13) If b > 4h, then, 1 (S) = h + 6k; if 3k < h < 4k, thenAp, 1 (S) = 2h + 2k; if
k < h < 4k, then2h + 2k < A\, 1 (S) < 2h + 3k — 1.

Here we improve the upper bound ap . (S) in the interval where it is not tight.

51 k< h<2k
Theorem 5.2 If k < h < 2k, then2h + 2k < A 1 (S) < min (4h, 2h + 3k — 1, 6k).

Proof: In view of Theorem 5.1, we only have to prove the upper bourtdsnd6k.

We can replicate pattefhh 2 3h 4k horizontally. When we move to the next row, we shift it by two
positions (see Fig. 12.a), obtaining in this way a vertictgrn0 35 2h 4h h. This labeling is the same
as an optimaL(1, 1)-labeling.

Consider now the horizontal pattebr2k 4k 6k k 3k 5k. Each time we replicate it on successive rows,
we shift it by two positions obtaining vertical pattedr8k 6k 2k 5k k 4k (see Fig. 12.b). Observe that
this labeling can be obtained by replacing calar an optimalL(2, 1)-labeling with colorik.

It is easy to see that these tulidh, k)-labelings are feasible and their span &ieand6k, respectively.
So, in view of these reasonings and of Theorem 5.1, we hayg(S) < min (4h,2h + 3k — 1,6k). The
first value is the best one whén< (3k — 1)/2, the second one is the best one wiigh— 1)/2 < h <

(3k +1)/2, and the third value is the best one wher (3k + 1)/2. O
P S T S SR Y SN S SR Y S S
|
— 3h——4h 0 h —— 2h 3h 4h — —3k — 5k 0 —— 2k—— 4k—— 6k k —
—h —— 2h s3h——h —— 0 h 2h — — 6k —— k ——3k ——5k—— 0—— 2k K —
| |
—4h——0 h 2h ———3h ——4h 0— —2k ——4k —— 6k——— k —— 3k—— 5k 00—
| |
— 2h—— 3h 4h 0——nh 2h 3h — sk—— 0 2k ———a4k —— 6k— k 3k —
—0——nh 2h 3h ——a4h 0 h— — k —— 3k—— sk—— 0 —— 2k——4k 6k —
- | L
— 3h—— 4|h (T h — 2|h Th_ zih— —ak —— (|Sk— |k—3k —_— S‘k— |O 2|k—
| | a | | )

Fig. 12: Two optimally labeled portions of squared grid, wherkas h < 3k and when b3k < h < 2k.

52 2k< h<d4k
Theorem 5.3 If 2k < h < 3k then2h + 2k < A, 1 (S) < min(3h, 2h + 3k — 1, 8k).
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Proof: As in the previous proof, we only have to prove the upper bewidand8k. Two L(h,k)-
labelings can be obtained either by replicating verticalgpa 0 h + k 3h h 2h + k k 2h, as shown in
Fig. 13.a, or by replicating vertical pattekn6k 2k 7k 3k 8k 4k 0 5k, as shown in Fig. 13.b. Both
patterns must be shifted down by three positions when charggilumn. Such labelings are both feasible
and their spans ar&h and&k, respectively. So, combining these results with those ieofeém 5.1, we
have that the boun8h is better thar8k when2k < h < %k while the second one is better than the
first one Whengk < h < 3k. Finally the boun@®h + 3k — 1 is better than the other two in the interval
3k —1 < h < (5k+ 1)/2, butit has positive length only when< 3.

Observe that the labeling in Fig. 13.b can be obtained frooptimal (2, 1)-labeling by the following

)
substitutions{(0, 0), (1, k), (2, h), (3, h + k), (4,2h), (5, 2h + k) and (6, 3h). 0
| | \ \
R A R S S
L T e e ‘ ‘ | ‘
— Zk——2h k h+2k 0 h+k— —6k —— 0 —— 3k ———6k —
‘ —h+k— k 3h —— 2h— ‘ ‘
—2H+2k— h 2h+k 2k 2h kK — ’ ’ — 2k—— sk—— gk—— 2k—
‘ ‘ —3h —2h—— h—— 00— ‘
— hhk2k—0 he+k 2h+2k-  h 2h+k— ’ ‘ T — Tk—— | —— dk—— Tk—
| S - |
— dk——2h Kk h+2k——0 h+k— T — 3k ——g —— 0 —— 3k —
‘ -2h+k — h+tk——— k ——3h—
—20+2k— h 2h+k 2% 2h k— — 8k —— ok—— sk—— 8k —
—k — 3h——2h—— h—
—hf2k— 0 h+k 2h+2k— 2h+k— ’ ’ ‘ — dk—— —— | —— 4k—
’ — 2h h—0 2h+k — ‘ ‘
— % 2h k h+2k 0 h-+k— ’ ’ ’ — 0 —3k—e —— 0 —
| ‘ | | 2h+k htk—— k — ‘ ‘ ‘

—a
=~
@
-=
N
T‘
o
=~

a. b. c.

Fig. 13: a. and b. two feasiblé(h, k)-labelings when whedk < h < £k and whenSk < h < 3k.

As for cellular graphs, also for squared grids, in the irsédk < h < 3k we do not achieve tight
upper and lower bounds fov, ;. (S). Nevertheless, we conjecture thef(S) = 3hif 2k < h < 2k
and,,x(C) = h + 5k if 2k < h < 3k. Observe that these values guarantee the continuity ofiamc
Ank(S).

6 Conclusions and Open Problems

In this paper we have studied tli¢h, k)-labeling problem on cellular, hexagonal and squared grids
Concerning cellular and hexagonal grids, for each valdeaidh > k we have obtained exact values
of the span, except in a small interval, where we providehtlijgdifferent upper and lower bounds for



Optimal L(h, k)-Labeling of Regular Grids 17

Ank(C) and A, i (H). Concerning the squared grid, we have improved some prslyidanown upper
bounds, reducing the gap with the lower bound.

It is easy to see that the replication schemes presentetddamper bounds lead to simple distributed
algorithms to label the whole grid in constant time, proddeat each node knows its coordinates in the
grid.

Three open problems arise from this work.

1. The first one is to prove (or disprove) our conjectures doskecthe gap between upper and lower
bound wherk < h < 3k andA = 4 andA = 6, and wherk < h < 2k andA = 3.

2. The second one is to understand if there exists somerghiftethod to go from the results collected
in the present paper and those presented in (20) (see Fignd?yiee-versa. Indeed, it is not
surprising that the values of, ,, under the ‘cyclicity’ assumption are bigger than ours, big not
clear the reason why ouwy, ; function is fragmented in a bigger number of segments.

3. Lastly, it would be interesting to study tli€h, k)-labeling problem for other (not regular) tilings,
built with different shaped tiles (i.e. the edge-cliquemiraf the cellular graph, having degree 4,
constituted by triangular and hexagonal tiles).
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