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Abstract

We consider asynchronous deterministic broadcasting in radio networks. An execution of a
broadcasting protocol is a series of events, each of which consists of simultaneous transmitting
or delivering of messages. The aim is to transmit the source message to all nodes of the network.
If two messages are delivered simultaneously to a node, a collision occurs and this node does
not hear anything. An asynchronous adversary may delay message deliveries, so as to create
unwanted collisions and interfere with message dissemination. The total number of message
transmissions executed by a protocol in the worst case is called the work of the protocol, and
is used as the measure of its complexity. The aim of this paper is to study how various types
of information available to nodes influence the optimal work of an asynchronous broadcasting
protocol. This information may concern past events possibly affecting the behavior of nodes
(adaptive vs. oblivious protocols), or may concern the topology of the network or some of its
parameters. We show that decreasing the knowledge available to nodes may cause exponential
increase of work of an asynchronous broadcasting protocol, and in some cases may even make
broadcasting impossible.

keywords: algorithm, asynchronous adversary, deterministic broadcasting, unit disc graph,
radio network.

1 Introduction

Radio networks and asynchronous adversaries. A radio network consists of stations with
transmitting and receiving capabililities. The network is modeled as a directed graph with a
distinguished node called the source. Each node has a distinct identity (label) which is a positive
integer. If there is a directed edge from u to v, node v is called an out-neighbor of u and u is called
an in-neighbor of v. At some time t a node may send a message to all of its out-neighbors. It is
assumed that this message is delivered to all the out-neighbors simultaneously at some time t′ > t
decided by an adversary that models unpredictable asynchronous behavior of the network. The
only constraint (cf. [8, 20]) is that the adversary cannot collapse messages coming from the same
node, i.e., two distinct messages sent by the same node have to be delivered at different times. We
consider two types of asynchronous adversaries. The strong adversary, called the node adversary
in [8], may choose an arbitrary delay t′ − t between sending and delivery, possibly different for
every message. The weak adversary chooses an arbitrary delay for a given node (possibly different
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delays for different nodes), but must use this delay for all messages sent by this node during the
protocol execution. The motivation for both adversaries is similar and follows the one given in [8].
Nodes of a radio network execute a communication protocol while concurrently performing other
computation tasks. When a message arrives at a node, it is stored (prepared for transmission)
and subsequently transmitted by it, the (unknown) delay between these actions being decided by
the adversary; storing for transmission corresponds to sending and actual transmission corresponds
to simultaneous delivery to all out-neighbors (at short distances between nodes the travel time
of the message is negligible). The delay between storing and transmitting (in our terminology,
between sending and delivery) depends on how busy the node is with other concurrently performed
tasks. The strong adversary models the situation when the task load of nodes may vary during the
execution of a broadcast protocol, and thus delay may vary from message to message even for the
same node. The weak adversary models the assumption of a constant occupation load of each node
during the communication process: some nodes may be more busy than others but the delay for a
given node is constant.

At time t′, a message is heard, i.e., received successfully by a node, if and only if, a message
from exactly one of its in-neighbors is delivered at this time. If messages from two in-neighbors v
and v′ of u are delivered simultaneously at time t′, we say that a collision occurs at u. Similarly as
in most of the literature concerning algorithmic aspects of radio communication, we assume that
in this case u does not hear anything at time t′, i.e., we assume that a node cannot distinguish
collision from silence.

While in general the network is modeled as an arbitrary directed graph, we also consider
two natural smaller classes of networks. The first is modeled by symmetric directed graphs, or
equivalently by undirected graphs. The second, still smaller class of networks is modeled by unit
disk graphs (UDG) whose nodes are the stations. These nodes are represented as points in the
plane. In the case of UDG networks, each node knows its Euclidean coordinates in the plane.
These coordinates also play the role of the label (similarly as, e.g., in [14], nodes in UDG networks
are not equipped with integer identities). Two nodes are joined by an (undirected) edge if their
Euclidean distance is at most 1. Such nodes are called neighbors. It is assumed that transmitters
of all stations have equal power which enables them to transmit at Euclidean distance 1, and
that communication proceeds in a flat terrain without large obstacles. Hence the existence of
an edge between two nodes indicates that transmissions of one of them can reach the other, i.e.,
these nodes can communicate directly. By contrast, arbitrary directed graphs are an appropriate
model for radio networks deployed in a terrain with large obstacles and possibly varying power of
transmitting devices.
Centralized vs. ad hoc broadcasting. We consider broadcasting, which is one of the basic
communication primitives. In the beginning, one distinguished node, called the source, has a
message which has to be transmitted to all other nodes. Remote nodes get the source message
via intermediate nodes, along paths in the network. We assume that only stations that have
already received the source message can send messages, hence broadcasting is equivalent to a
process of waking up the network, when at the beginning only the source is awake. In order for the
broadcasting to be feasible, we assume that there is a directed path from the source to any other
node. For symmetric networks this is equivalent to connectivity. In this paper we consider only
deterministic broadcasting algorithms.

Two alternative assumptions are made in the literature concerning broadcasting algorithms.
It is either assumed that the topology of the underlying graph is known to all nodes, in which
case nodes can simulate the behavior of a central monitor scheduling transmissions (centralized
broadcasting), or it is assumed that the network topology is unknown to nodes (ad hoc broadcasting).
Moreover, in the latter case, some crucial parameters of the network, such as the number n of nodes,
may be known or unknown to nodes. In the case of UDG radio networks, an important parameter
is the density d of the network, i.e., the smallest Euclidean distance between any two stations.
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We will see how information about the topology of the network and knowledge of its parameters
influence the efficiency of broadcasting protocols. In particular, for UDG networks, optimal work
of broadcasting protocols may depend on the granularity g of the network defined as the inverse of
its density.
Adaptive vs. oblivious protocols. We consider two kinds of broadcasting protocols: oblivious
and adaptive. In an oblivious protocol every node has to send all its messages as soon as it is
woken up by the source message. More precisely, a node has to commit to a non-negative integer
representing the number of messages it will send during the broadcasting process, prior to the
execution of the protocol. This number may depend only on the label of the node or on its position
in the case of UDG networks. (In [8] only oblivious protocols were considered.) By contrast, an
adaptive protocol is more powerful, as a node can decide on the number and content of messages
it sends, depending on its history, i.e., depending on the sequence of messages received so far.
Hence, while the total number of messages sent by an oblivious protocol is the same for each of
its executions, for an adaptive protocol this number may differ depending on the behavior of the
adversary.

We define the work of a broadcasting protocol as the worst-case total number of messages sent
until all nodes are informed. The worst case is taken over all possible behaviors of an asynchronous
adversary under consideration. Work is a natural measure of complexity of an asynchronous radio
broadcast protocol. It was introduced in [8] for oblivious protocols. We will see that in some cases
the rigidity of oblivious protocols may cause exponential increase of their work as compared to
adaptive ones.
Our results. In the first part of the paper (Sections 3-5) we present our results on optimal work
of asynchronous broadcasting against the strong adversary (i.e., the node adversary from [8]), see
Table 1.

For UDG networks with known topology we get a tight result: the optimal work is Θ(τ), where
τ is the number of blocks containing at least one node. (Blocks form a partition of the plane into

disjoint squares of side 1/
√

2 – see Section 3 for a precise definition.) The result holds both for
adaptive and for oblivious algorithms. Our upper bound is constructive: we show an oblivious
broadcasting algorithm with work O(τ). For UDG networks with unknown topology the results
significantly change and they depend on whether (a lower bound on) the density d of the network
is known or not. If it is known, then optimal work depends on the number τ of occupied blocks and

on the granularity g = 1/d. We show an oblivious broadcasting algorithm with work O(ταg2

), for
some constant α > 1. On the other hand, we show that any broadcasting algorithm, even adaptive,

must use work Ω(τβg2

), for some constant β > 1. If d is unknown, we show that broadcasting
against the strong adversary is impossible in UDG networks.

We now summarize our results for networks modeled by graphs that need not come from
configurations of points in the plane. (For such networks we assume that all nodes have distinct
positive integer labels and each node knows its label.) Symmetric radio networks with known
topology are those in which optimal work of asynchronous broadcasting significantly depends on
the adaptivity of the algorithm. Indeed, we prove that for adaptive algorithms the optimal work
is Θ(n), where n is the number of nodes in the network. The upper bound is again constructive:
we show an adaptive broadcasting algorithm with work O(n) working for any n-node symmetric
network of known topology. By contrast, using techniques from [8], it can be proved that any
oblivious algorithm uses work Ω(cn), for some constant c > 1, on some symmetric n-node network,
and that there exists an oblivious algorithm working for any symmetric n-node network of known
topology, using work O(2n). Hence we prove an exponential gap between optimal work required
by adaptive and by oblivious broadcasting in symmetric networks of known topology. It should
be noted that for arbitrary (not necessarily symmetric) networks, broadcasting with linear or even
polynomial work is not always possible, even for adaptive algorithms. Indeed, it follows from [8]
that exponential work (in the number n of nodes) is needed for some networks, even when the
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UDG networks Symmetric Networks Arbitrary Networks

adaptive: Θ(n) adaptive or oblivious [8]:
known adaptive or oblivious: oblivious [8]: O(2n)

topology Θ(τ) O(2n) Ω(cn), for some c > 1
Ω(cn), for some c > 1

known density d

adaptive or oblivious:

unknown O(ταg2), for some α > 1 adaptive or oblivious:

topology Ω(τβg2

), for some β > 1 known or unknown N :
unknown density d Θ(2N )

adaptive or oblivious:
impossible

Table 1: Optimal work of broadcasting against the strong asynchronous adversary. τ is the number
of non-empty tiles, n is the number of nodes, N is the maximal label and g is the granularity of
the UDG network (g = 1/d); c, α and β are constants.

topology is known and the algorithm is adaptive. It is also shown in [8] that, for radio networks of
known topology, work O(2n) is always enough.

For networks of unknown topology we have a tight result on optimal work of asynchronous
broadcasting. This work is Θ(2N ), where N is the maximal label of a node, and this result does not
depend on whether the networks are symmetric or not, whether the algorithm is adaptive or not,
and whether the maximal label N is known to nodes or not. More precisely, we show a lower bound
Ω(2N ) on the required work, even for symmetric networks with known parameter N , and even for
adaptive algorithms. On the other hand, we observe that an (oblivious) algorithm described in [8]
and working for arbitrary networks without using the knowledge of N has work O(2N ).

In Section 6 we present our results on optimal work of asynchronous broadcasting against the
weak adversary. Introducing this adversary was motivated by the following remark in [8]: “It would
be interesting to define a weaker, but still natural, model of asynchrony in radio networks, for which
polynomial-work protocols always exist.” We show that if nodes are equipped with clocks, then
oblivious broadcasting algorithms using work O(n) for n-node networks can always be provided in
the presence of the weak asynchronous adversary. This is optimal, as witnessed by the example
of the line network. Local clocks at nodes need not be synchronized, we only assume that they
tick at the same rate. In fact, even this assumption can be removed in most cases: our algorithm
works even when the ratio of ticking rates between the fastest and the slowest clock has an upper
bound known to all nodes. The exception is the case of UDG networks of unknown density (for
which broadcasting against the strong adversary was proved impossible). In this special case, our
algorithm against the weak adversary assumes the same ticking rate of all clocks and relies on
the availability of an object obtained non-constructively: if this object is given to nodes, they can
perform oblivious broadcasting with work O(n).

Due to lack of space, the proofs of several results were moved to the appendix.
Related work. Algorithmic aspects of radio communication were mostly studied under the as-
sumption that communication is synchronous and using time as a complexity measure of the al-
gorithms. These results can be partitioned into two subareas. The first deals with centralized
communication, in which nodes have complete knowledge of the network topology and hence can
simulate a central monitor (cf. [1, 4, 5, 17]). The second subarea assumes only limited (often local)
knowledge of the topology, available to nodes of the network, and studies distributed communication
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in such networks with incomplete information.
The first paper to study deterministic centralized broadcasting in radio networks, assuming

complete knowledge of the topology, was [4]. The authors also defined the graph model of radio net-
work subsequently used in many other papers. In [5], an O(D log2 n)-time broadcasting algorithm
was proposed for all n-node networks of diameter D. This time complexity was then gradually
improved in several papers until the optimal time O(D+log2 n) was obtained in [17]. On the other
hand, in [1] the authors proved the existence of a family of n-node networks of constant diameter,
for which any broadcast requires time Ω(log2 n).

Investigation of deterministic distributed broadcasting in radio networks whose nodes have
only local knowledge of the topology was initiated in [2]. The authors assumed that each node
knows only its own label and labels of its neighbors. Several authors [3, 6, 7, 9, 10, 11, 15] studied
deterministic distributed broadcasting in radio networks under an even weaker assumption that
nodes know only their own label (but not labels of their neighbors).

In [6, 7, 9, 11] the model of directed graphs was used. The aim of these papers was to
construct broadcasting algorithms working as fast as possible in arbitrary (directed) radio networks
without knowing their topology. The currently fastest deterministic broadcasting algorithms for
such networks have running times O(n log2 D) [11] and O(n log n log log n) [12]. On the other hand,
in [10] an Ω(n log D) lower bound on broadcasting time was proved for directed n-node networks
of radius D.

Randomized broadcasting algorithms in radio networks were studied, e.g., in [2, 11, 19, 16].
The authors do not assume that nodes know the topology of the network or that they have distinct
labels.

Another model of radio networks is based on geometry. Stations are represented as points
in the plane and the graph modeling the network is no more arbitrary. It may be a unit disk
graph, or one of its generalizations, where radii of disks representing areas that can be reached
by the transmitter of a node may differ from node to node [13], or reachability areas may be of
shapes different than a disk [18]. Broadcasting in such geometric radio networks and some of
their variations was considered, e.g., in [13, 14, 18, 21]. The first paper to study deterministic
broadcasting in arbitrary geometric radio networks with restricted knowledge of topology was [13].
In [14] the authors considered broadcasting in radio networks modeled by unit disk graphs.

Asynchronous radio broadcasting was considered, e.g., in [8, 20]. In [8] the authors studied
three asynchronous adversaries (one of which is the same as our strong adversary), and investi-
gated centralized oblivious broadcasting protocols working in their presence. They concentrated
on finding broadcast protocols and verifying correctness of such protocols, as well as on providing
lower bounds on their work. In [20] attention was focused on anonymous radio networks. In such
networks not all nodes can be reached by a source message. It was proved that no asynchronous
algorithm unaware of network topology can broadcast to all reachable nodes in all networks.

2 Terminology and preliminaries

A set S of positive integers is dominated if, for any finite subset T of S, there exists t ∈ T such
that t is larger than the sum of all t′ 6= t in T .

Lemma 2.1 Let S be a finite dominated set and let k be its size. Then there exists x ∈ S such
that x ≥ 2k−1.

Any oblivious broadcasting algorithm is fully determined by the number of messages sent by
each node of the network. This non-negative integer is called the send number of the node. For
any execution of a broadcasting algorithm, a transmitter is a node that sends at least one message
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in this execution. Hence, for an oblivious algorithm, a transmitter is a node with positive send
number. The following lemma is a consequence of Lemma 1 from [8].

Lemma 2.2 Consider any oblivious broadcasting algorithm A. Let u be a node in the network. Let
T be the set of transmitters in the in-neighborhood of u. If at least one element in T is informed
by A and the set of send numbers of T is dominated, then u is eventually informed by A.

3 UDG radio networks

We recall the tilings of the plane defined in [14] by means of three different grids. Each of the three
grids is composed of atomic squares with generic name boxes. The first grid is composed of boxes
called tiles, of side length d/

√
2, the second of boxes called blocks, of side length 1/

√
2, and the

third one of boxes called 5-blocks, of side length 5/
√

2. All grids are aligned with the coordinate
axes, each box includes its left side without the top endpoint and its bottom side without the right
endpoint. Each grid has a box with the bottom left point with coordinates (0, 0). Let τ be the
number of non-empty blocks (i.e., blocks which contain at least one node).

Tiles are small enough to ensure that only one node can belong to a tile. Blocks are squares
with diameter 1, i.e., the largest possible squares such that each pair of nodes in a square are able
to communicate. 5-blocks are used to avoid collisions during communication: messages originating
from central blocks of disjoint 5-blocks cannot cause collisions.

Every 5-block contains 25 blocks, while every block contains Θ
(

g2
)

tiles. Blocks inside a 5-
block and tiles inside a block are numbered with consecutive integers (starting from 0) left to right,
top to bottom. Hence every tile is assigned a pair of integers (i, j) where i is the block number in
the 5-block and j is the tile number in the block. (Tiles lying in more than one block are assigned

more than one such pair. This is the case when
√

2/n 6= d for all n.)
We say that two (distinct) blocks are potentially reachable from each other if they contain

points at distance ≤ 1. Two blocks are reachable from each other if they contain nodes at distance
≤ 1. There are exactly 20 blocks that are potentially reachable from any given block.

3.1 Known topology

The following algorithm is oblivious, as it consists in an assignment of send numbers to nodes.
Algorithm UDG1.
For any pair of blocks (B,B′) that are reachable from each other, Algorithm UDG1 elects a pair of
transmitters (b, b′) s.t. b ∈ B, b′ ∈ B′, and b is at distance at most 1 from b′. Any fixed strategy
(e.g., taking the smallest such pair in lexicographic order of positions) is suitable to perform the
election. Notice that at most 20 transmitters can be elected in every block.

Each elected transmitter in a 5-block is assigned a distinct label from the set L = {0, 1, . . . , 499}.
This is done by partitioning the set L into 25 sets Li of 20 labels each (in an arbitrary but fixed
manner). Transmitters in the i-th block of any 5-block are assigned labels from set Li. Labels in
each block are assigned to transmitters in increasing order according to lexicographic order of their
positions.

Assignment of send numbers is done as follows: each elected transmitter with label i is assigned
send number 2i. If the source has not been elected, it is assigned send number 1. All other nodes
are assigned send number 0. �

Lemma 3.1 Algorithm UDG1 successfully performs broadcast in any UDG radio network of known
topology, with work in O(τ).

Proof: We first prove the correctness of the algorithm. As the network is connected, either τ = 1
or, for any non-empty block B, there must exist a sequence of block pairs 〈(S,X1), (X1,X2), . . . ,
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(Xk−1,Xk), (Xk, B)〉 such that S is the block containing the source and blocks in each pair are
reachable from each other. If τ = 1, all nodes in the unique non-empty block will be informed
as soon as the message transmitted by the source is delivered, and algorithm UDG1 successfully
completes broadcasting with work 1. If τ > 1, any non-empty block has at least one transmitter,
and thus any node has a transmitter in its neighborhood. Moreover, every transmitter is connected
to a transmitter located in S by a path containing only transmitters.

Consider an arbitrary node v and its block B, and consider the 5-block that has B in its
center (this 5-block is not necessarily part of the 5-block grid). All neighbors of v are inside this
5-block. Blocks in this 5-block are assigned distinct numbers, and thus the set of send numbers
assigned to transmitters in the neighborhood of v is dominated. It follows from Lemma 2.2 that
node v will eventually receive the source message provided that at least one of the transmitters in
its neighborhood will receive it. Hence it is enough to show that all transmitters receive the source
message. This follows by induction on the length of a shortest path, in the subgraph induced by
transmitters, between a transmitter in the block S and a transmitter in the neighborhood of v.

In order to estimate the work of the algorithm, notice that only a constant number of nodes
in each block have a positive send number, and each send number is bounded by a constant. It
follows that the total work is linear in the number τ of non-empty blocks. �

Lemma 3.2 The work required to complete broadcast in any UDG radio network is in Ω(τ).

Lemma 3.1 and Lemma 3.2 imply the following theorem.

Theorem 3.1 The optimal work required to complete broadcast in any UDG radio network of
known topology is Θ (τ).

3.2 Unknown topology

When the topology of the network is unknown, elections of transmitters cannot be performed
without message exchanges. Here the scenario is different depending on whether (a lower bound
on) the density d of the network is known or not.

The following algorithm assumes that each node is provided with the value of d. Similarly as
Algorithm UDG1 it is oblivious.
Algorithm UDG2.
The algorithm is based on the tilings from [14] defined in the beginning of Section 3, and works in a
similar manner as Algorithm UDG1. The set L of labels is now composed of integers from the interval
[

0, . . . , 25 ·
(⌈√

2/d
⌉

+ 1
)2 − 1

]

, and it is partitioned in 25 sets Li, each of size
(⌈√

2/d
⌉

+ 1
)2

. All

nodes in the network are transmitters, and each node in a 5-block gets a distinct label according
to the numbering of the tile and the block it belongs to. More precisely, a node in the tile that is
assigned the pair of integers (i, j) gets the label that is the jth element of Li. Recall that there can
be tiles which are partially contained in more than one block. In any case, the only node which
can be contained in the tile belongs to only one block and thus its label is uniquely determined.

The send number of each node with label i is set to 2i. �

Proposition 3.1 Algorithm UDG2 successfully performs broadcast in any UDG radio network of

unknown topology and known density d with work in O
(

ταg2

)

, for some constant α > 1.

We now turn attention to the lower bound on the work of a broadcasting algorithm.

Theorem 3.2 The work required to complete broadcast in any UDG radio network of unknown

topology and known density d is in Ω
(

τβg2

)

, for some constant β > 1.
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distance 1

sourceradius 1/2

distance 1

target

Figure 1: A network of the class N used in the proof of Theorem 3.2 .

Proof: Consider the class N of networks depicted in Figure 1. The source occupies position (0, 1.2)
and the target occupies position (0, 0). Nodes in the central part of the network are situated in
an arbitrary subset of vertices of the largest regular square grid of side length d, contained in the
intersection of the circles of radius 1 centered in the source and in the target, and of the circle of
radius 1/2 centered in (0, 0.6). Notice that there are Θ

(

g2
)

vertices in the grid.
The set Q of nodes situated in the grid forms a clique, and each node in Q is within distance

1 from the source and from the target. It follows that a network in N is connected if and only if
Q is nonempty.

All nodes in Q become informed as soon as the first message sent by the source is delivered.
When the first message from an informed node in Q is delivered without colliding with any delivery
from other nodes in Q, broadcasting is completed successfully.

It follows that, until the completion of broadcasting, the only events that are perceived by
nodes in Q are determined by deliveries of messages sent by the source. The source and the target
will not receive any message until the completion of broadcasting.

Consider an arbitrary adaptive algorithm A. A is forced to provide a send number for the
source, and it is not able to modify this number until the end of the execution (no event is perceived
by the source). The adversary delays all deliveries of nodes in Q until all messages from the source
have been delivered, thus guaranteeing that no node in Q can perceive an event between the first
delivery of one of its messages and the end of broadcasting.

This allows us to treat A as an oblivious algorithm, which is obliged to provide send numbers
to all nodes in the network once and forever. In fact we can assume that the algorithm assigns send
numbers to vertices in the grid (a node occupying vertex p is assigned the respective send number).

Now consider a vertex p of the grid. If algorithm A assigns send number 0 to p, then A is
unsuccessful in the network N ∈ N where the set Q contains only the node in vertex p. It follows
that all vertices in the grid have to be assigned positive send numbers.

If the set of send numbers, assigned by A to vertices of the grid, is not dominated, then there
exists a set T of vertices for which the largest send number x, corresponding to vertex p0, is at
most equal to the sum of all others. The adversary can make A unsuccessful on the network
N ∈ N in which nodes in Q occupy exactly vertices from T , by letting all deliveries collide. This
can be done as follows. The deliveries of messages from the node in vertex p0 are done at times
t1 < t2 < . . . < tx. Every other message can be delivered at one of those time points, so that at
each time point ti at least two messages are delivered.

This contradiction shows that the set of send numbers, assigned by A to vertices of the grid

8



must be dominated. As the set of vertices in the grid is of size Θ
(

g2
)

and, by Lemma 2.1, any

dominated set on k elements contains a number ≥ 2k−1, it follows that any algorithm working

correctly on all networks in N requires work in Ω
(

βg2

)

, for some constant β > 1. By arranging

networks of class N in a chain of length τ , we get a lower bound on work in Ω
(

τβg2

)

�

All results of this subsection remain valid if, instead of density d of the network, only a lower
bound d′ on d is known to nodes. In this case, in the formulae for the upper and lower bounds on
the work, the parameter g = 1/d should be replaced by g′ = 1/d′. If nothing is known about d,
however, broadcasting in UDG radio networks turns out to be impossible, as shown in the following
theorem.

Theorem 3.3 Broadcast in UDG radio networks of unknown topology and unknown density is
impossible.

4 Symmetric networks of known topology

In symmetric networks of known topology we prove an exponential gap between the work of adaptive
and oblivious algorithms. Indeed, while an adaptive algorithm can complete broadcasting on n-
node symmetric networks with work in O(n), an oblivious algorithm requires work in Ω (cn), for
some constant c > 1 (cf. [8]).

4.1 Adaptive broadcast

The following algorithm is adaptive. Each node decides if it sends a message, after each perceived
event.
Algorithm SYM.

Knowing the topology of the network, all nodes compute the same spanning tree T , rooted at
the source. Notice that, even assuming that the source is unknown to other nodes in the network,
this information can be appended to the source message and thus it can be made available to each
node when it is woken up by the first received message.

All internal nodes of the spanning tree T are then explored in a depth first search manner,
using token-based communication in order to avoid collisions. A message is sent only after the
previous message has been delivered. Algorithm SYM ends when the token is sent back to the source
by its last internal child. �

Lemma 4.1 Algorithm SYM successfully performs broadcast in any n-node symmetric radio network
of known topology with work in O(n).

As the optimal work to perform broadcasting on the n-node line is n−1, we have the following
theorem.

Theorem 4.1 The optimal work required to complete broadcasting in all n-node symmetric radio
networks of known topology is Θ(n).

4.2 Oblivious broadcast

An oblivious algorithm, performing broadcasting in any n-node connected radio network of known
topology (not necessarily symmetric) can be obtained by arranging nodes in increasing order of
labels, and assigning send number 2i−1 to the ith node. Such an algorithm can be proved to be
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correct by induction on the length of a shortest path connecting the source to an arbitrary node v,
using Lemma 2.2. The work required to complete broadcasting by this algorithm is in O(2n).

In [8], the following network class has been introduced in order to prove that oblivious broad-
casting algorithms against a more powerful adversary require work in Ω (cn), for some constant
c > 1.

Networks in the above mentioned class contain
(k
3

)

+k +1 nodes, for integers k > 0. Nodes are
partitioned in three layers: the first layer contains the source, the central layer contains k nodes,
while the third layer contains the remaining

(k
3

)

nodes. Edges in these networks connect the source
to all nodes in the second layer, while each node in the third layer is connected to a distinct subset
of 3 nodes choosen among those in the second layer. Even though edges were oriented away from
the source in [8], the same proof remains valid for oblivious algorithms even if the network is made
symmetric, and even against our strong adversary (which was called the node adversary in [8]).

Since the upper bound O (2n) holds for arbitrary networks and the lower bound Ω (cn) holds
even for symmetric networks, we have the following theorem.

Theorem 4.2 The optimal work of an oblivious algorithm, which completes broadcasting in radio
networks of known topology, is in O (2n) and in Ω (cn), for some constant c > 1, both for symmetric
and for arbitrary networks.

5 Networks of unknown topology

For networks of unknown topology we prove matching upper and lower bounds on the optimal
work of broadcasting algorithms. The upper bound we show is based on the oblivious algorithm
described below, which works correctly on any network (not necessarily symmetric) containing a
directed path from the source to every node. The lower bound, on the other hand, holds even on
symmetric networks and for all algorithms, including the adaptive ones.

An oblivious algorithm performing broadcasting in any connected radio network of unknown
topology, is obtained by assigning to node with label i send number 2i−1. The algorithm works in
the same manner as the one for known topology networks introduced in the previous section, but
its work, instead of depending on the number of nodes of the network, depends on the largest label
N appearing in the network. (N need not be known to nodes.) Thus the work of this algorithm is
in O

(

2N
)

. This work is proved to be optimal by the following lemma.

Lemma 5.1 The work required to complete broadcasting in any symmetric radio network of un-
known topology is in Ω(2N ), where N is the largest label that appears in the network.

6 Broadcasting against the weak adversary

In this section we present our results on the work of asynchronous broadcasting against the weak
adversary. Recall that this adversary may delay delivery of messages sent by various nodes by
arbitrary and unknown time intervals that may vary between nodes, but are equal for all messages
sent by a given node. In this section we assume that nodes are equipped with local clocks. These
clocks need not be synchronized. In one algorithm, working for UDG networks with unknown
density, we assume that they tick at the same rate, and in the other, working for UDG networks
with known (lower bound on) the density and also working for arbitrary networks with distinct
positive integer labels, we weaken even this assumption and require only that all nodes know an
upper bound on the ratio of ticking rates between the fastest and the slowest clock.

The idea of broadcasting algorithms working against the weak adversary comes from the ob-
servation that since delivery delay must be the same for all messages sent by a given node, if a node
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sends two messages at some time interval t, this interval may only be shifted by the adversary when
delivering messages, but its length must be kept intact. Thus, using exponential intervals between
just two messages sent by every node (where the exponent depends on the node label), blocking
of messages can be prevented similarly as sending an exponential number of messages permitted
preventing blocking by the strong adversary. (This is a similar work-for-time trade-off as, e.g., that
in the Time-Slicing algorithm for leader election on the ring.) Due to the above possibility we can
restrict the number of messages sent by every node to just 2, and thus use linear work.

We first describe an oblivious broadcasting algorithm working for networks of unknown topol-
ogy whose nodes are labeled with distinct positive integers. In this algorithm we make a very weak
assumption: not only clocks of nodes need not be synchronized, but they need not tick at the same
rate, as long as the upper bound α on the ratio of ticking rates between the fastest and the slowest
clock is known to all nodes. Without loss of generality we may assume that α ≥ 2.
Algorithm Time-Intervals

The source sends the message once. Upon receiving the source message, any node with label i,
different from the source, sends two messages at time interval 4iα on its local clock. �

Theorem 6.1 Algorithm Time-Intervals successfully performs broadcast in an arbitrary n-node
network, with work in O(n).

We now turn attention to broadcasting against the weak adversary in UDG networks. First
notice that if the topology of the network is known, then Algorithm UDG1 clearly works correctly
against the weak adversary as well, and it uses the same work O(τ), which is at most O(n) for n-node
networks. Thus we may restrict attention to networks with unknown topology. If a lower bound on
the network density is known to all nodes, then we may use the same tiling as in Algorithm UDG2 to
obtain integer labels of all nodes of the network. Subsequently we use Algorithm Time-Intervals

and the same argument as before proves its correctness and work complexity.
The only remaining case is that of UDG radio networks in which nothing is known about

the density. Recall that in this case we proved that broadcasting against the strong adversary is
impossible. Somewhat surprisingly, we will show that if the adversary is weak, then broadcasting in
n-node UDG networks with unknown density can be performed with work in O(n). Our algorithm,
however, is only of theoretical interest: its main goal is to show a situation when broadcasting
is impossible against the strong adversary, but can be done using linear work against the weak
adversary. The impracticality of the algorithm has two reasons. First, since it works on networks
of arbitrarily small density, it requires infinite precision of the perception of Euclidean coordinates
by nodes. Second, the algorithm is non-constructive: it relies on the availability of a function whose
existence we prove, but which is not constructed. Once this function is given to nodes, they can
perform easy broadcasting with linear work. More precisely, our algorithm relies on the following
set-theoretic lemma.

Lemma 6.1 There exists a function f : R× R −→ R+ such that any distinct elements v1, . . . , vk

and w1, . . . , wr from R× R satisfy the inequality ±f(v1) ± · · · ± f(vk) 6= ±f(w1) ± · · · ± f(wr).

The broadcasting algorithm for UDG networks with unknown density assumes that all nodes
have clocks ticking at the same rate. Given the function f whose existence follows from Lemma
6.1, the algorithm can be formulated as follows.
Algorithm Non-Constructive

The source sends the message once. Upon receiving the source message, any node with Euclidean
coordinates (x, y), different from the source, sends two messages at time interval f(x, y). �

Theorem 6.2 Algorithm Non-Constructive performs correct broadcasting in an arbitrary n-node
UDG network, using work O(n).
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APPENDIX

Proof of Lemma 2.1
The proof is by induction on the size k of S. If k = 1 then 20 = 1 and the basis of induction

holds.
If a set is dominated, all its subsets are dominated. By the inductive hypothesis every subset

of S of size i < k contains an element x ≥ 2i−1. It follows that arranging elements in S in increasing

order we have xi ≥ 2i−1, for 1 ≤ i ≤ k − 1. Then
∑k−1

i=1 xi ≥ ∑k−1
i=1 2i−1 = 2k−1 − 1. As xk is

the largest element in S and S is dominated, we have xk ≥ ∑k−1
i=1 xi > 2k−1 − 1, which proves the

lemma.

Proof of Lemma 3.2
The proof follows from the fact that at least one node in every non empty 5-block has to

transmit at least once.

Proof of Proposition 3.1
The correctness of the algorithm follows from Lemma 2.2 by induction on the length of a

shortest path from the source to an arbitrary node v.

The work of the algorithm in every block is upper bounded by 2(⌈
√

2/d⌉+1)
2

. As
⌈√

2/d
⌉

∈ Θ (g),
the lemma follows.

Proof of Theorem 3.3
Consider the class C of networks depicted in Figure 2. Networks in C are similar to networks in

class N , defined in the proof of Theorem 3.2. In particular, the source and the target are located
in the same positions, while the set Q of nodes is an arbitrary finite set of points in the plane,
contained in the square S of side 1/2, centered at (0, 0.6). A network C ∈ C is connected if and
only if Q is non empty. By following the reasoning of the proof of Lemma 3.2, we can show that
any adaptive algorithm A can be treated as an oblivious one when working on a network in C.
Algorithm A can then be identified with a function f : S 7→ N which assigns send numbers to
points in the square.

First assume that the range of f is infinite and suppose that broadcasting ends with work T .
This leads to a contradiction, as we can always choose a network C ∈ C with 2 nodes in Q located
in two points of S that are mapped to values larger than T . By scheduling the first T deliveries
of messages sent by these two nodes in the same time points, the adversary can delay completion
of broadcasting until the overall work of nodes in C is at least 2T + 1, while we assumed the total
work to be exactly T .

Hence the range of f must be finite. If f(z) = 0, for some point z ∈ S, then broadcasting is
unsuccessful on the network C in which Q contains only one node located in z. It follows that all
points of S have to be mapped by f into positive integers. Then there must exist two points, x and
y, such that f(x) = f(y). If this is the case, the adversary can make the algorithm unsuccessful
on the network C where Q contains two nodes, one in the point x and the other in the point y, by
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distance 1

sourceradius 1/2

distance 1

target

S

Figure 2: A network of the class C used in the proof of Theorem 3.3.

delivering messages sent by these two nodes at the same time points.

Proof of Lemma 4.1
We first prove correctness of Algorithm SYM. Since any message is sent only after the previous

message has been delivered, it follows that no collision can occur during the execution of broad-
casting. As all internal nodes in T transmit at least once, and T is a spanning tree of the network,
all nodes will eventually receive the source message.

Since the token traverses every edge of T either 0 or 2 times, the total work of the algorithm
is smaller than 2n ∈ O(n).

Proof of Lemma 5.1
To prove the lemma, consider the following class Z of networks. Networks in the class Z

contain a source, a target and a set R of nodes. Each node in R is connected to the source s and
to the target t. The source has label 1. Nodes in R ∪ {t} are labeled with distinct integers larger
than 1, and N is the largest label appearing in R ∪ {t}. R has to be non-empty, as otherwise the
network would be disconnected.

The rest of the proof is based on the same idea as the proof of Lemma 3.2. Labels larger than
1 play the role of vertices in the grid.

As soon as a node in R delivers a message to the target without collisions, broadcasting in any
network Z ∈ Z is completed. Hence, we can treat any adaptive algorithm A as an oblivious one,
when working on networks in Z. It follows that algorithm A has to assign a send number to any
integer larger than 1 (which is a potential label of a node in R).

If there exists a label ℓ > 1 such that A assigns send number 0 to ℓ, then A is unsuccessful on
the network Z ∈ Z where the only node in R is labeled ℓ. It follows that A has to assign positive
send numbers to all integers larger than 1. (Even if the maximum label N is known to A, there
is no guarantee that any particular label is assigned to a node in R, as N can be assigned to the
target.) If the set of send numbers is not dominated, the adversary can make the algorithm A
unsuccessful on the network Z ∈ Z where the (finite) set of send numbers assigned to nodes in R
does not contain an element which is larger than the sum of all others (cf. the proof of Lemma 3.2).
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As R ∪ {t} can contain up to N − 1 nodes, the lemma follows from Lemma 2.1.

Proof of Theorem 6.1
Since any node sends at most two messages, the work used is in O(n). It remains to prove the

correctness of the algorithm.
Fix the slowest ticking rate among all local clocks and call it universal. In the rest of the proof

we will use only the universal ticking rate. Since α is the ratio of ticking rates between the fastest

and the slowest clock, the (universal) time interval used by node with label i is Ti = 4iα

β , where

1 ≤ β ≤ α. Fix a node u and its in-neighbors v1, . . . , vk that got the source message. Without
loss of generality, assume that nodes vi are ordered in increasing order of interval lengths Ti. The
delivery times of messages sent by nodes vi are xi, xi +Ti, for i = 1, . . . , k. In order to prove that at
least one of these messages will be heard by node u, it is enough to show that Tk > T1 + · · ·+Tk−1.
Hence it is enough to show that

4kα

α
> 4α + 42α + · · · + 4(k−1)α. (1)

We have α1/α < 3, hence
4k

α1/α
>

4

3
· 4k−1 > 41 + · · · + 4k−1,

hence
4kα

α
> (41 + · · · + 4k−1)α > 4α + 42α + · · · + 4(k−1)α,

which proves inequality (1) and concludes the proof by induction on the length of the shortest path
from the source to a given node.

Proof of Lemma 6.1
Let κ be the cardinal of the continuum. Hence the cardinality of sets R × R and R+ is κ.

Using the axiom of choice (this is the non-constructive ingredient in the definition of the function
f), order the set R × R in ordinal type κ. Let xγ : γ < κ be this ordering. We now define the
function f by transfinite induction. Suppose that f(xγ) is already defined, for all γ < δ. Consider
the set Z of all reals ±f(xγ1

)± · · · ± f(xγd
), for any finite set {xγ1

, . . . , xγd
} of elements of R×R,

such that γ1, . . . , γd < δ. The set Z has cardinality equal to the maximum of the cardinality of δ
and of ℵ0 (the latter is the cardinality of the set of natural numbers). Hence the cardinality of Z
is strictly less than κ, and consequently there exists a number z ∈ R+ \ Z. We put f(xδ) = z.

Thus the function f is defined by transfinite induction. It remains to verify that it has the
desired property. Suppose by contradiction that some elements v1, . . . , vk and w1, . . . , wr from
R×R satisfy the equality ±f(v1)± · · · ± f(vk) = ±f(w1)± · · · ± f(wr). Let ξ be the largest index
of all these elements in the ordering xγ : γ < κ. It follows that f(xξ) = ±f(xγ1

)± · · · ± f(xγd
), for

some γ1, . . . , γd < ξ, which contradicts the definition of f(xξ).

Proof of Theorem 6.2
As before, the complexity of the algorithm is straightforward. It remains to prove its correct-

ness. Suppose that there exists a network with a node u that has in-neighbors v1, . . . , vk that got the
source message. Suppose that there exist delays such that the adversary can shift time segments
of lengths f(v1), . . . , f(vk) between messages sent by these nodes, so that all message deliveries

15



are blocked by collisions. This implies that, for some nodes w1, . . . , wr, u1, . . . um ∈ {v1, . . . , vk} we
must have f(w1)+ · · ·+f(wr) = f(u1)+ · · ·+f(um), which contradicts the property of the function
f established in Lemma 6.1. This contradiction shows that all nodes in every UDG network will
eventually get the source message.
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