
Information and Computation 204 (2006) 1264–1294

www.elsevier.com/locate/ic

Variations on U-shaped learning

Lorenzo Carlucci a,b,1, Sanjay Jain c,* ,2 Efim Kinber d Frank Stephan e,3

aDepartment of Computer and Information Sciences, University of Delaware, Newark, DE 19716-2586, USA
bDipartimento di Matematica, Università di Siena, Pian dei Mantellini 44, 00153, Siena, Italy

cSchool of Computing, National University of Singapore, Singapore 117543, Republic of Singapore
dDepartment of Computer Science, Sacred Heart University, Fairfield, CT 06432-1000, USA

eSchool of Computing and Department of Mathematics, National University of Singapore,
3 Science Drive 2, Singapore 117543, Republic of Singapore

Received 24 September 2005; revised 2 April 2006
Available online 18 May 2006

Abstract

The paper deals with the following problem: is returning to wrong conjectures necessary to achieve full
power of algorithmic learning? Returning to wrong conjectures complements the paradigm of U-shaped
learning when a learner returns to old correct conjectures. We explore our problem for classical models of
learning in the limit from positive data: explanatory learning (when a learner stabilizes in the limit on a correct
grammar) and behaviourally correct learning (when a learner stabilizes in the limit on a sequence of correct
grammars representing the target concept). In both cases we show that returning to wrong conjectures is
necessary to achieve full learning power. In contrast, one can modify learners (without losing learning power)
such that they never show inverted U-shaped learning behaviour, that is, never return to old wrong conjecture
with a correct conjecture in-between. Furthermore, one can also modify a learner (without losing learning
power) such that it does not return to old “overinclusive” conjectures containing non-elements of the target
language. We also consider our problem in the context of vacillatory learning (when a learner stabilizes on a
finite number of correct grammars) and show that each of the following four constraints is restrictive (that

∗ Corresponding author. Fax: +65 6779 4580.
E-mail addresses: carlucci5@unisi.it (L. Carlucci), sanjay@comp.nus.edu.sg (S. Jain), kinbere@sacredheart.edu

(E. Kinber), fstephan@comp.nus.edu.sg (F. Stephan).
1 Supported in part by NSF Grant No. NSF CCR-0208616.
2 Supported in part by NUS Grant No. R252–000–127–112.
3 Supported in part by NUS Grant No. R252–000–212–112.

0890-5401/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2006.04.001

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1265

is, reduces learning power): the learner does not return to old wrong conjectures; the learner is not inverted
U-shaped; the learner does not return to old overinclusive conjectures; the learner does not return to old
overgeneralizing conjectures. We also show that learners that are consistent with the input seen so far can be
made decisive: on any text, they do not return to any old conjectures—wrong or right.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

U-shaped learning is a well-known pattern of learning behaviour in which the learner first learns
the correct target behaviour, later abandons it, and finally returns to the correct target behaviour
once again. The phenomenon of U-shaped learning has been observed by cognitive and devel-
opmental psychologists in many different cases of child development, such as language learning
[7,24,29], understanding of temperature [29,30] and face recognition [8]. The ability of models of
human learning to accommodate U-shaped learning has progressively become one of the important
criteria of their adequacy; see [24,26] and the recent [31]. Renewed interest in U-shaped learning is
also witnessed by the fact that the Journal of Cognition and Development dedicated its first issue
in the year 2004 to this phenomenon.

Cognitive and developmental psychology deals primarily with the problem of designing models
of learning that adequately accommodate U-shaped behaviour. Baliga et al. [3] who initiated the
study of U-shaped learning in the context of Gold-style algorithmic learning, asked a different ques-
tion: is U-shaped behaviour really necessary for full learning power? In particular, they showed that
U-shaped behaviour is avoidable for so-called TxtEx-learning (explanatory learning)—when the
learner stabilizes in the limit on a single correct conjecture. This result contrasts with the result by
Fulk et al. [17] who demonstrated that U-shaped learning is necessary for the full power of so-called
TxtBc -learners (behaviourally correct learners) that stabilize on a (possibly infinite) sequence of
different grammars representing the target language. In a sequel paper [9], Carlucci, Case, Jain,
and Stephan investigated U-shaped behaviour with respect to the model of vacillatory (or TxtFex)
learning, where the learner is required to stabilize on a finite number of correct conjectures. Vacil-
latory learning, introduced by Case [11], features a hierarchy of more and more powerful learning
criteria between TxtEx and TxtBc identification. It was shown in [9] that disallowing U-shaped
behaviour for vacillatory learners makes the whole hierarchy collapse to simple TxtEx-learning,
i.e. nullifies the extra power of allowing vacillation between a finite number of conjectures.

The U-shaped pattern of learning that we have discussed so far (i.e., a correct–incorrect–correct
pattern) is only a species of a more general learning behaviour, that also goes under the name of
U-shaped learning. This more general meaning of U-shaped learning is explicitly introduced, for
example, at the beginning of [29], the main reference in the psychological literature for the study
of U-shaped behaviour. In this more general sense, U-shaped learning refers to any learning be-
haviour in which the learner first adopts some (not necessarily correct) behaviour, then abandons
it, and, later, returns to it once again. The original interest in this phenomena, for developmental
psychologists, is their “non-monotonic” character. Some particular cases of this general kind of
U-shaped learning have been recently experimentally documented by developmental psychologists
in the context of infants’ face recognition. For example, it has been shown that children exhibit an

1266 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

“inverted-U-shaped” learning curve (a wrong-correct-wrong pattern) for recognition of inverted
faces and an “N-shaped” learning curve (a wrong–correct–wrong–correct pattern) for recognition
of upright faces [14,15].

Both these examples of U-shaped behaviour feature return to a wrong previously abandoned
behaviour. This kind of learning behaviour is, prima facie, definitely less reasonable than returning
to previous correct conjectures. If a learner returns to a correct conjecture that the learner has
previously abandoned, it is, of course, dictated by the goal of correctly learning the target concept.
On the other hand, when a learner returns to a previously abandoned wrong conjecture, this is not
desirable if a learner wants to be efficient.

Partially motivated by the experimental findings mentioned above, in the present paper we study
the following general question: if and when returning to wrong conjectures is necessary for the full
power of computational learnability?

In particular, we answer the latter question in the context of the following main models.

(a) a model in which a learner cannot return to any previously abandoned wrong conjecture;
(b) a model in which a learner cannot return to a previously abandoned conjecture that is “over-

inclusive” in the sense of containing elements not belonging to the target concept.
We also study the following less restrictive natural variant of model (a).
(a′) a model in which a learner cannot return to a previously abandoned wrong conjecture if

a correct conjecture has been made in-between.
Model (a′) is directly inspired by the above-mentioned concrete cases of inverted-U-shaped
and N-shaped behaviour documented in the psychological literature [14,15]. It also repre-
sents the exact inverse of the original non-U-shaped model studied in [3,9].
Finally, we study the following natural variant of (b).

(b′) a model in which a learner cannot return to a previously abandoned conjecture that “over-
generalizes” in the sense of being a proper superset of the target language.

The latter model is motivated by the fact that overgeneralization is one of the major concerns
in the study of learning behaviour [24] (note also that Karl Popper, see [27], considered refutation
of overgeneralizing conjectures as an important part of learning and scientific discovery processes).
It is also interesting to observe how overgeneralization plays a role at the technical level as well:
one can note in fact that the necessary overgeneralization of learning machines is an essential in-
gredient in the proof showing that U-shaped behaviour is unavoidable for the full learning power
of TxtBc -learning (see [17,3]), as well as in our proof of Theorem 36.

We compare the new models with regular types of learning in the limit and provide a full answer
to the following question: when and how is returning to wrong conjectures necessary? The results that
we obtained lead us to the following general conclusions. If we take TxtEx or TxtBc identification
as a model of learning behaviour, then, returning to previously abandoned wrong conjectures is
necessary to achieve full power of learnability; however, inverted U-shapes are redundant and it
is not necessary to return to old overinclusive conjectures or to old overgeneralizing conjectures.
On the other hand, for vacillatory identification, returning to wrong conjectures, inverted U-shapes
and returning to overinclusive conjectures are all necessary in a very strong sense: disallowing this
kind of U-shapes collapses the whole TxtFex-hierarchy to simple TxtEx-learning. In contrast, if
returning to previously conjectured proper supersets is disallowed, no such collapse occurs, but,

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1267

still, returning to such overgeneralizing conjectures is necessary for full learning power at each level
of the vacillatory hierarchy. We compare more thoroughly these conclusions with results from [9]
on returning to correct conjectures.

While being admittedly less central than TxtEx and TxtBc , we believe that vacillatory learning
(introduced in [11]) is both an interesting candidate for a model of human learning, and a mathe-
matically natural formal criterion. It has often been observed that syntactic convergence as featured
in TxtEx might be a too restrictive condition for human learning, while allowing convergence to
infinitely many correct conjectures as in TxtBc -learning might be a too liberal condition. The hi-
erarchy of vacillatory learning criteria sits strictly between those two extremes. Also, in the study
of U-shaped learning, the vacillatory hierarchy has shown to exhibit non-trivial properties that
distinguish it from both Ex and TxtBc . For example, the study of non-U-shaped learning in [9]
gave rise to an interesting and quite rare phenomenon in algorithmic learning theory: that one
parameter-free criterion covers the second but not the third level of some hierarchy. This example
is that all classes in TxtFex2 can be TxtBc -learned without U-shapes, but this is no longer true for
some classes in TxtFex3. We will show that this difference does not hold when returning to wrong
conjectures is considered (see Theorem 34).

The present paper has the following structure. Section 2 contains necessary notations and basic
definitions. Section 3 contains definitions of all variants of previously known models of non-U-
shaped learning, as well as the models introduced in the present paper. In Section 4 we explore our
variants of non U-shaped learning in the context of TxtEx-learning—when learners stabilize on
one correct grammar for the target language. First, we show that returning to wrong conjectures is
necessary for the full power of TxtEx-learning. To prove this result, we establish that learners not
returning to wrong conjectures are as powerful as so-called decisive learners—the ones that never
return to any previously abandoned conjecture, wrong or right (Theorem 21). Decisive learners are
known [3] to be generally weaker than general TxtEx-learners. On the other hand, any TxtEx-
learner can be replaced by a learner not returning to overinclusive conjectures (Theorem 22). From
this result we also obtain that any TxtEx-learner can be replaced by a learner not returning to
overgeneralizing conjectures and by a learner not showing an inverted-U-shaped behaviour as well
(Corollaries 23 and 25, respectively).

In Section 5, we consider our four variants of non U-shaped learning in the context of the vacil-
latory learning criteria TxtFexb—when a learner stabilizes on no more than b grammars describing
the target language. The vacillatory criteria form a hierarchy of more and more powerful learning
criteria strictly between TxtEx and TxtBc , increasing in the parameter b. The more vacillation
is allowed, the more learning power is possible [11]. We extend a result of Section 4 to show that
vacillatory learners without returning to wrong conjectures do no better than just decisive TxtEx-
learners. As for vacillatory learners not returning to overinclusive conjectures and for vacillatory
learners that do not show an inverted-U-shaped behaviour, they turn out to be doing no better than
regular TxtEx-learners with the same restrictions. It was shown in [9] that the same collapse of the
vacillatory hierarchy occurs when returning to correct conjectures is disallowed. Thus, disallowing
returning to wrong conjectures, disallowing returning to overinclusive conjectures and disallowing
inverted-U-shapes each nullifies the extra power of finite vacillation with respect to convergence
to a single correct conjecture. In contrast, we show that disallowing returning to overgeneralizing
conjectures restricts the power of vacillatory learners in a less severe sense: for each b > 0 there are
classes of languages that are learnable with vacillation between at most b+ 1 correct conjectures in

1268 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

the limit by a learner not returning to old overgeneralizing conjectures, but not learnable by any
learner who is allowed to vacillate between at most b correct conjectures (Theorem 30). Also, we
show that there are classes of languages that are learnable with vacillation between at most b+ 1
correct conjectures but such that any such learner must return to old overgeneralizing conjectures
(Theorem 31). Hence if one disallows returning to old overgeneralizing conjectures on level 2 or
above of the vacillatory learning hierarchy, then the power of the resulting criterion is weaker than
the original one but still more powerful than explanatory learning.

In Section 6, we explore our four variants of non U-shaped learning in the context of TxtBc -lear-
nability—when learners stabilize on (possibly infinite) sequences of grammars correctly describing
the target language. First, we show that there exist TxtEx-learnable classes of languages that cannot
be learned without returning to wrong conjectures even by TxtBc -learners. From this Theorem and
results from [3], it follows that TxtBc -learners not returning to correct conjectures sometimes do
better than those never returning to wrong conjectures. On the other hand, we show that, interest-
ingly, TxtBc -learners not returning to wrong conjectures can sometimes do better than those never
returning to correct conjectures. Therefore these two forms of non-U-shaped behaviour (not return-
ing to wrong conjectures and not returning to correct conjectures) are of incomparable strength in
the context of TxtBc -learning. In contrast, we show that inverted U’s are unnecessary in the context
of TxtBc -learning (Theorem 44). The main result of this section is that, as in the case of TxtEx-
learnability, returning to old overinclusive conjectures can be circumvented: every TxtBc -learner
can be replaced by one not returning to overinclusive conjectures (Theorem 48). As a corollary, we
obtain that returning to proper supersets of the target language is not necessary for full learning
power in the TxtBc context (Corollary 49).

In Section 7, we discover a relationship between the strongest type of non-U-shaped learners,
that is decisive learners, and consistent learners [4,25], whose conjectures are required to be con-
sistent with the input data seen so far. Consistent learnability is known to be weaker than general
TxtEx-learnability [4,25]; moreover, sacrificing consistency, one can learn pattern languages faster
than any consistent learner, under the assumption of P /= NP (see [22]). We show that consistent
TxtEx-learners can be made consistent and decisive (Theorem 53). The result is surprising, since
not returning to already used conjectures and being consistent with the input seen so far does not
seem to be related—at least on the surface. On the other hand, some decisive learners cannot be
made consistent (even if we sacrifice decisiveness).

In the concluding Section 8 we summarize our results, briefly consider their possible relevance
from a cognitive science perspective, and formulate some open questions.

2. Notation and preliminaries

Any unexplained recursion theoretic notation is from [28]. The symbol N denotes the set of nat-
ural numbers, {0, 1, 2, 3, . . .}. The symbols ∅, ⊆, ⊂, ⊇, and ⊃, denote empty set, subset, proper subset,
superset and proper superset, respectively. The cardinality of a set S is denoted by card(S). card(S) ≤
∗ denotes that S is finite. The maximum and minimum of a set are denoted by max(·), min(·), re-
spectively, where max(∅) = 0 and min(∅) = ∞.

We let 〈·, ·〉 stand for Cantor’s computable, bijective mapping 〈x, y〉 = 1
2 (x + y)(x + y + 1)+ x

from N × N onto N [28]. Note that 〈·, ·〉 is monotonically increasing in both of its arguments. We
define �1(〈x, y〉) = x and �2(〈x, y〉) = y .

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1269

By ϕ we denote a fixed acceptable programming system for the partial-recursive functions map-
ping N to N [23,28]. By ϕi we denote the partial-recursive function computed by the program with
number i in the ϕ-system. The symbol R denotes the set of all recursive functions, that is total
computable functions. By � we denote an arbitrary fixed Blum complexity measure [6,19] for the
ϕ-system. A partial recursive function �(·, ·) is said to be a Blum complexity measure for ϕ, iff the
following two conditions are satisfied:

(a) for all i and x, �(i, x)↓ iff ϕi(x)↓.
(b) the predicate: P(i, x, t) ≡ �(i, x) ≤ t is decidable.

By convention we use �i to denote the partial recursive function x → �(i, x). Intuitively, �i(x)
may be thought as the number of steps it takes to computeϕi(x).ϕi,s denotes the complexity-bounded
version of ϕi, that is, ϕi,s(x) = ϕi(x), if x < s and �i(x) < s; ϕi,s(x) is undefined otherwise.

By Wi we denote domain(ϕi). That is, Wi is the set of all numbers on which the ϕ-program i halts.
Note that all acceptable numberings are isomorphic and thus one could also define Wi to be the set
generated by the i-th grammar. The symbol E will denote the set of all r.e. languages. The symbol
L ranges over E . By L, we denote the complement of L, that is N − L. The symbol L ranges over
subsets of E . By Wi,s we denote the set {x < s | �i(x) < s}.

We now present concepts from language learning theory. The next definition introduces the
concept of a sequence of data.

Definition 1. (a) A sequence � is a mapping from an initial segment of N into (N ∪ {#}). The empty
sequence is denoted by �.

(b) The content of a sequence �, denoted content(�), is the set of natural numbers in the range of �.
(c) The length of �, denoted by |�|, is the number of elements in �. So, |�| = 0.
(d) For n ≤ |�|, the initial sequence of � of length n is denoted by �[n]. So, �[0] is �.

Intuitively, the pause-symbol # represents a pause in the presentation of data. We let �, � and �
range over finite sequences. We denote the sequence formed by the concatenation of � at the end of
� by ��. Sometimes we abuse the notation and use �x to denote the concatenation of sequence � and
the sequence of length 1 which contains the element x. SEQ denotes the set of all finite sequences.
We let �0, �1, . . . denote a standard recursive 1–1 listing of all the finite sequences. We assume that
max(content(�i)) ≤ i. We let ind(�) denote i such that �i = �.

We let SEG(L) denote the set {� | content(�) ⊆ L}. � � � (� ≺ �) denotes that � is an initial
portion of (strict initial portion of) sequence �.

Definition 2. [18] (a) A text T for a language L is a mapping from N into (N ∪ {#}) such that L is
the set of natural numbers in the range of T . T(i) represents the (i + 1)st element in the text.

(b) The content of a text T , denoted by content(T), is the set of natural numbers in the range of T ;
that is, the language which T is a text for.

(c) T [n] denotes the finite initial sequence of T with length n.

Definition 3. [18] A learning machine (or just learner) is an algorithmic device which computes a
mapping from SEQ into N .

1270 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

We let M range over learning machines. We note that, without loss of generality, for all criteria
of learning discussed in this paper, except for criteria involving consistent learning discussed in Sec-
tion 7, a learner M may be assumed to be total. M(T [n]) denotes the hypothesis of the learner M
after it has seen the first nmembers of T . It is expected that these hypotheses reflect more and more
the nature of the set to be learned and this expectation will be made more formal in the following
definitions.

There are several criteria for a learning machine to be successful on a language. Below we define
some of them.

Definition 4. (Explanatory learning, [1,12,18]). (a) M TxtEx-identifies a text T just in case
(∃i | Wi = content(T)) (∀∞n)[M(T [n]) = i].

(b) M TxtEx-identifies an r.e. language L (written: L ∈ TxtEx(M)) just in case M TxtEx-identifies
each text for L.

(c) M TxtEx-identifies a class L of r.e. languages (written: L ⊆ TxtEx(M)) just in case M TxtEx-
identifies each language from L.

(d) TxtEx = {L ⊆ E | (∃M)[L ⊆ TxtEx(M)]}.

Definition 5 (Behaviourally correct learning, [12]). (a) M TxtBc -identifies a text T just in case
(∀∞n)[WM(T [n]) = content(T)].

(b) M TxtBc -identifies an r.e. language L (written: L ∈ TxtBc (M)) just in case M TxtBc -identifies
each text for L.

(c) M TxtBc -identifies a class L of r.e. languages (written: L ⊆ TxtBc (M)) just in case M TxtBc -
identifies each language from L.

(d) TxtBc = {L ⊆ E | (∃M)[L ⊆ TxtBc (M)]}.

Definition 6 (Vacillatory learning [11]). Suppose a ∈ N ∪ {∗}. (a) M TxtFexa-identifies a text T
just in case there exists a set D, card(D) ≤ a and (∀i ∈ D)[Wi = content(T)], such that (∀∞n)
[WM(T [n]) ∈ D].

(b) M TxtFexa-identifies an r.e. language L (written: L ∈ TxtFexa(M)) just in case M TxtFexa-
identifies each text for L.

(c) M TxtFexa-identifies a class L ⊆ E (written: L ⊆ TxtFexa(M)) just in case M TxtFexa-iden-
tifies each language from L.

(d) TxtFexa = {L ⊆ E | (∃M)[L ⊆ TxtFexa(M)]}.
It is known that TxtEx ⊂ TxtFex2 ⊂ TxtFex3 ⊂ . . . ⊂ TxtFex∗ ⊂ TxtBc (see [11–13]).
Some of our proofs use the notion of stabilizing and locking sequences, as defined below.

Definition 7 (a) [16]. � is said to be a stabilizing sequence for M on L iff content(�) ⊆ L, and for all
� ⊇ � such that content(�) ⊆ L, M(�) = M(�).

(b) [5] � is said to be a TxtEx-locking sequence for M on L iff � is a stabilizing sequence for M on
L, and WM(�)

= L.

(c) (Based on [5]) � is said to be a TxtBc -locking sequence for M on L iff content(�) ⊆ L, and for
all � ⊇ � such that content(�) ⊆ L, WM(�)

= L.

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1271

(d) (Based on [5]) Let b ∈ N ∪ {∗}. � is said to be a TxtFexb-locking sequence for M on L iff (i)
content(�) ⊆ L and (ii) there exists a set D of grammars for L, with card(D) ≤ b, such that
(∀� ⊇ � | content(�) ⊆ L)[M(�) ∈ D].

Lemma 8 [5]. If M TxtEx-identifies L, then there exists a TxtEx-locking sequence for M on L.

A similar result as the above can be proved for TxtBc - and for TxtFexa-learning.
Let INITk denote the set {x | x ≤ k}. Let INIT = {INITk | k ∈ N }.

3. Decisive, non-U-shaped and related criteria of learning

First, we define the strongest type of non-U-shaped behaviour—when a learner is not allowed
to return to any old conjectures.

Definition 9 (Decisive learner [25]). (a) We say that M is decisive on text T , if there do not exist any
m, n, t such that m < n < t, WM(T [m]) = WM(T [t]) and WM(T [m]) /= WM(T [n]).

(b) We say that M is decisive on L if M is decisive on each text for L.
(c) We say that M is decisive on L if M is decisive on each L ∈ L.

Now we define non-U-shaped learning.

Definition 10 (Non-U-shaped learner [2]). (a) We say that M is non-U-shaped on textT , if there do not
exist any m, n, t such that m < n < t, WM(T [m]) = WM(T [t]) = content(T) and WM(T [m]) /= WM(T [n]).

(b) We say that M is non-U-shaped on L if M is non-U-shaped on each text for L.
(c) We say that M is non-U-shaped on L if M is non-U-shaped on each L ∈ L.

Now we define our four models of non-U-shaped learning when a learner is not allowed to return
to previously used wrong conjectures (“Wr” in the next definition stands for “wrong”).

Definition 11 (Wr-Decisive learner). (a) We say that M is decisive on wrong conjectures (abbreviated
Wr-decisive) on text T , if there do not exist any m, n, t such that m < n < t, WM(T [m]) = WM(T [t]) /=
content(T) and WM(T [m]) /= WM(T [n]).

(b) We say that M is Wr-decisive on L if M is Wr-decisive on each text for L.
(c) We say that M is Wr-decisive on L if M is Wr-decisive on each L ∈ L.

Now we define our model of non-inverted-U-shaped learning.

Definition 12 (Non-inverted-U-shaped learner). (a) We say that M is non-inverted-U-shaped on text T ,
if there do not exist any m, n, t such that m < n < t, WM(T [m]) = WM(T [t]) /= WM(T [n]) = content(T).

(b) We say that M is non-inverted-U-shaped onL if M is non-inverted-U-shaped on each text forL.
(c) We say that M is non-inverted-U-shaped on L if M is non-inverted-U-shaped on each

L ∈ L.

1272 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

We now define our model of learning disallowing returning to conjectures containing elements
outside the target language (“OI” in “OI-decisive” below stands for “overinclusive”).

Definition 13 (OI-Decisive learner). (a) We say that M is decisive on overinclusive conjectures (abbre-
viated OI-decisive) on text T , if there do not existm, n, t such thatm < n < t,WM(T [m]) = WM(T [t]) �⊆
content(T) and WM(T [m]) /= WM(T [n]).

(b) We say that M is OI-decisive on L if M is OI-decisive on each text for L.
(c) We say that M is OI-decisive on L if M is OI-decisive on each L ∈ L.

We now introduce our model in which returning to proper supersets is disallowed (“OG” in
“OG-decisive” below stands for “overgeneralizing”).

Definition 14 (OG-Decisive learner). (a) We say that M is decisive on overgeneralizing conjectures
(abbreviated OG-decisive) on text T , if there do not exist m, n, t such that m < n < t, WM(T [m]) =
WM(T [t]) ⊃ content(T) and WM(T [m]) /= WM(T [n]).

(b) We say that M is OG-decisive on L if M is OG-decisive on each text for L.
(c) We say that M is OG-decisive on L if M is OG-decisive on each L ∈ L.

We now define the learning criteria formed by placing the various constraints described above
on the learner. Note that the definition used for decisive learning is the class version of decisive, that
is, decisiveness is required to hold only for texts for the languages in the class. We do this to make it
consistent with the definitions of non U -shaped, Wr-decisive, non-inverted-U -shaped, OI-decisive
and OG-decisive criteria, where only the class version seems sensible.

Definition 15. (a) [25] We say that M DecEx-identifies L (written: L ∈ DecEx(M)), iff M TxtEx-
identifies L, and M is decisive on L.

We say that M DecEx-identifies L, iff M DecEx-identifies each L ∈ L.
DecEx = {L | (∃M)[L ⊆ DecEx(M)]}.

(b) [2] We say that M NUShEx-identifies L (written: L ∈ NUShEx(M)), iff M TxtEx-identifies
L, and M is non-U-shaped on L.
We say that M NUShEx-identifies L, iff M NUShEx-identifies each L ∈ L.
NUShEx = {L | (∃M)[L ⊆ NUShEx(M)]}.

(c) We say that M WrDEx-identifies L (written: L ∈ WrDEx(M)), iff M TxtEx-identifies L, and
M is Wr-decisive on L.
We say that M WrDEx-identifies L, iff M WrDEx-identifies each L ∈ L.
WrDEx = {L | (∃M)[L ⊆ WrDEx(M)]}.

(d) We say that M NInvUEx-identifies L (written: L ∈ NInvUEx (M)), iff M TxtEx-identifies L,
and M is non-inverted-U-shaped on L.
We say that M NInvUEx-identifies L, iff M NInvUEx -identifies each L ∈ L.
NInvUEx = {L | (∃M)[L ⊆ NInvUEx (M)]}.

(e) We say that M OIDEx-identifies L (written: L ∈ OIDEx(M)), iff M TxtEx-identifies L, and
M is OI-decisive on L.
We say that M OIDEx-identifies L, iff M OIDEx-identifies each L ∈ L.

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1273

OIDEx = {L | (∃M)[L ⊆ OIDEx(M)]}.
(f) We say that M OGDEx-identifies L (written: L ∈ OGDEx(M)), iff M TxtEx-identifies L, and

M is OG-decisive on L.
We say that M OGDEx-identifies L, iff M OGDEx-identifies each L ∈ L.
OGDEx = {L | (∃M)[L ⊆ OGDEx(M)]}.

One can similarly define Dec J, WrDJ, NInvUJ, OIDJ, OGDJ and NUShJ, for J ∈ {Fexa, Bc }.
The following result is easy to verify.

Proposition 16. Suppose a ∈ N ∪ {∗} and J ∈ {Ex, Fexa, Bc}.

(a) Dec J ⊆ WrDJ ⊆ OIDJ ⊆ OGDJ ⊆ J.
(b) Dec J ⊆ WrDJ ⊆ NInvUJ ⊆ J.
(c) Dec J ⊆ NUShJ ⊆ NInvUJ ⊆ J.

For our proofs, we will be using the following results from [3].

Lemma 17 [3]. Suppose M TxtEx-identifies L, and g is a recursive function such that

(i)Wg(i) /= Wg(j), for i /= j,
(ii) for all finite sets S , there exist infinitely many i such that S ⊆ Wg(i),
(iii)WM(�)

�∈ {Wg(i) | i ∈ N }, for all �.

Then, L ∈ Dec Ex.

Proposition 18 [3]. Suppose L ∈ TxtEx and N ∈ L. Then, L ∈ DecEx.

4. Explanatory learning

Our first goal is to show that, in the context of TxtEx-learnability, learners not returning to
wrong conjectures do no better than decisive learners. To prove this, we first establish two lemmas.

Lemma 19. Suppose there exists a finite set A such that L does not contain any extension of A. Then
L ∈ TxtEx ⇒ L ∈ DecEx.

Proof. Suppose L ⊆ TxtEx(M). Without loss of generality suppose M never outputs an extension
of A: This can be achieved by converting any grammar i to f(i) where

Wf(i) =
⋃

s∈N
Xs and Xs =

{
Wi,s, if A �⊆ Wi,s;
∅, otherwise.

Clearly, Wf(i) does not contain A. Furthermore, Wi = Wf(i), if A �⊆ Wi .
Let m = max(A), and let Wg(i) = {0, 1, . . . ,m+ i} ∪ {m+ i + 2}, so that Wg(i) is an extension of A

and is not an initial segment of N . Wg(i) are pairwise distinct and every finite set is extended by
infinitely many Wg(i)’s. Furthermore, {Wg(i) | i ∈ N } is disjoint from {WM(�)

| � ∈ SEQ}. Therefore

by Lemma 17, L ∈ DecEx. �

1274 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

Lemma 20. Suppose every finite set has at least two extensions in L. Suppose a ∈ N ∪ {∗} and J ∈
{Ex, Fexa, Bc}. Then, L ⊆ Dec J(M) iff L ⊆ WrDJ(M).

Proof. Suppose by way of contradiction that L ⊆ WrDJ(M), L �⊆ Dec J(M). Thus, M is not deci-
sive. Let �1 ≺ �2 ≺ �3 be such that WM(�1)

= WM(�3)
/= WM(�2)

. Let L be an extension of content(�3)
such that WM(�1)

/= L and L ∈ L. Such an L exists by the assumptions on L. Let T be a text for L

extending �3. Then T witnesses that M does not WrDJ-identify L since M returns to the wrong
conjecture WM(�1)

on text T . A contradiction. The Lemma is thus proved. �
Now we can establish one of our main results.

Theorem 21. DecEx = WrDEx.

Proof. Suppose L ∈ WrDEx. We consider the following cases.
Case 1: L contains at least two extensions of every finite set. Then by Lemma 20, L is in DecEx.
Case 2: Not Case 1, and N ∈ L. Then by Proposition 18, we have that L ∈ DecEx.
Case 3: Neither Case 1 nor Case 2.
Since Case 1 does not hold, there is a finite set A such that L contains at most one extension of

A. If such an extension L of A exists, then L /= N and thus there is an element w /∈ L. If such an
extension L of A does not exist then let w = 0. Now L does not contain any superset of A ∪ {w} and
L ∈ DecEx by Lemma 19. �

As DecEx ⊂ TxtEx [3], we conclude that some families of languages in TxtEx cannot be learned
without returning to wrong conjectures.

However, if we allow returning to subsets of the target language (that is, wrong conjectures that
are not overinclusive), then all classes of languages in TxtEx become learnable, as the following
result shows.

Theorem 22. TxtEx ⊆ OIDEx.

Proof. Suppose L ∈ TxtEx.
If N ∈ L, then by Proposition 18, L ∈ DecEx. Thus, by Proposition 16, L ∈ OIDEx. So assume

N �∈ L. Let M be a machine such that, (i) M TxtEx-identifies L ∪ INIT, and (ii) all texts for
L ∈ L ∪ INIT, start with a TxtEx-locking sequence for M on L, and (iii) for all k , if � is a stabilizing
sequence for M on INITk , then content(�) = INITk .

Note that Fulk [16] shows that this can be assumed without loss of generality when N �∈ L, (where
property (iii) above can be obtained by slight modification of his proof—by assuming that special
indices for INIT are used when the content of input segment is for a member of INIT).

Below we will define M ′ which OIDEx-identifies L. Intuitively, the idea of the proof is to ba-
sically follow conjectures of M , if the relevant initial segment T [n] of input text T (on which the
conjecture is based) seems to be a locking sequence for the conjecture; otherwise we choose an
appropriate member of INIT to be the conjecture of M ′, which allows us to preserve non-repetition
of over-inclusive conjectures. We now proceed formally.

For a segment �, let f(�) = min(N − content(�)). We say that T [m] is valid if m = 0 or
M(T [m− 1]) /= M(T [m]). Let consseq = {T [m] | content(T [m]) ⊆ WM(T [m])}. Let gram be a recur-
sive function such that

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1275

Wgram(T [m]) =





∅, if content(T [m]) �⊆ WM(T [m]);
WM(T [m]), if T [m] is a stabilizing sequence for WM(T [m]);
INIT〈ind(T [m]),w〉, otherwise, for some w ≥ f(T [m]).

It is easy to verify that for T [m] ∈ consseq, content(T [m]) ⊆ Wgram(T [m]) (in the second clause,
this follows by definition of stabilizing sequence; in the third clause, this follows as ind(T [m]) ≥
max(content(T [m])), by the definition of indexing of finite sequences considered in Section 2, and
the monotonicity of pairing function).

Define M ′ as follows. M ′(T [n]) = gram(T [m]), for the largest m ≤ n, such that T [m] is valid and
WM(T [m]),n ⊇ content(T [m]) (there exists such an m, as m = 0 satisfies the constraints). Note that

the mapping from n to that m for which M ′(T [n]) = gram(T [m]), is monotonically non-decreasing
in n on its domain.

It is easy to verify that M ′ TxtEx-identifies L using the assumptions (i), (ii) and (iii) about M .
Thus, it remains to show that M ′ is OI-decisive.

Suppose T is a text for L ∈ L. We now show that if WM ′(T [m′]) = WM ′(T [n′]) /= WM ′(T [s′]), for
m′ < s′ < n′, then WM ′(T [m′]) ⊆ L.

So supposem′, s′, n′ asabovearegiven. Suppose M ′(T [m′]) = gram(T [m]), M ′(T [s′]) = gram(T [s]),
and M ′(T [n′]) = gram(T [n]). By monotonicity property of M ′ mentioned above, m′ < s′ < n′ im-
plies m ≤ s ≤ n. If m = n, then it yields a contradiction, as M ′(T [s′]) would also be equal to
gram(T [m]). Thus, m < n. As T [n] is valid and content(T [n]) ⊆ Wgram(T [n]) (by remark just after
the definition of gram), we immediately have that T [m] is not a stabilizing sequence for M on
WM(T [m]) = WM(T [n]) ⊇ content(T [n]). Thus, gram(T [m]) follows the third clause in the definition
of gram. Since, 〈ind(T [m]), ·〉 /= 〈ind(T [n]), ·〉, for m /= n, it follows that gram(T [n])must follow the
second clause, and thus T [n] is a stabilizing sequence for WM(T [n]). As Wgram(T [m]) (= Wgram(T [n])) is

in INIT, it follows that content(T [n]) = Wgram(T [n]) (since � being stabilizing sequence for M on
INITk implies that content(�) = INITk). Thus, Wgram(T [m]) = Wgram(T [n]) = content(T [n]) ⊆ L.

It follows that M ′ OIDEx-identifies L. �
By definition of OGDEx we have the following Corollary.

Corollary 23. TxtEx ⊆ OGDEx.

Recall the following result about non-U-shaped learners from [3].

Theorem 24 [3].

(a) TxtEx �⊆ DecBc .
(b) TxtEx = NUShEx.

Clearly, NUShEx ⊆ NInvUEx ⊆ TxtEx. Thus from Theorem 24 we have the following.

Corollary 25. NInvUEx = TxtEx.

Theorems 24 and 21 imply that disallowing returning to abandoned wrong conjectures is more
restrictive than disallowing returning to abandoned correct conjectures in the context of TxtEx-
learning. From Theorem 22, Corollaries 23 and 25, the latter requirement of disallowing returning to

1276 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

abandoned correct conjectures is equivalent to disallowing inverted U’s and to disallowing returning
to abandoned overinclusive or to overgeneralizing conjectures. We summarize these observations
in the following immediate corollary.

Corollary 26.

(a) WrDEx ⊂ NUShEx.
(b) NUShEx = OIDEx = OGDEx = NInvUEx.

5. Vacillatory learning

In this section we show that when returning to wrong conjectures is not allowed in vacilla-
tory learning, then the vacillatory hierarchy TxtFex1 ⊂ TxtFex2 ⊂ . . . ⊂ TxtFex∗ collapses to
TxtFex1 = TxtEx, so that the extra learning power given by vacillation is lost. That the same
collapse occurs when returning to correct abandoned conjectures is disallowed was shown in [9].

Theorem 27.

(a) WrDFex∗ ⊆ WrDEx.
(b) NInvUFex∗ ⊆ TxtEx.
(c) OIDFex∗ ⊆ TxtEx.

Proof. (a) Suppose M WrDFex∗-identifies L, L ∈ L and T is a text for the language L.
Let us define a symmetric relation Ea as follows: Ea(i, j) holds iff there exist n1, n2, n3, n4 such that

n1 < n2 < n3 < n4 ≤ a,M(T [n1]) = M(T [n3]), M(T [n2]) = M(T [n4])and {M(T [n1]), M(T [n2])} =
{i, j} where a ∈ {0, 1, 2, . . . , ∗}. That is, Ea(i, j) holds if the learner alternates at least three times be-
tween these two hypotheses with possibly other hypotheses conjectured in between and this alter-
nation occurs on an initial segment of length up to a; this last restriction on the length of the initial
segment is void for a = ∗.

Note that Ea(i, j) implies Wi = Wj: assuming by way of contradiction that Wi /= Wj , the learner
would return to the abandoned hypotheses Wi and Wj; by definition of WrDFex∗, each of these
hypothesis could not be wrong; thus both would have to be correct, and hence equal, contrary to
the assumption.

By taking reflexive and transitive closure of Ea, we get an equivalence relation Ẽa. Note that still
Wi = Wj whenever Ẽa(i, j).

Now a new learner M ′ is built by defining M ′(T [n]) to be a canonical index for the union of
those We for which e satisfies Ẽn(e, M(T [n])).

First, note that M ′ is well-defined since there are only finitely many such e with Ẽn(e, M(T [n])).
Each such e has to be of the form M(T [m]) for some m ≤ n.

Second,WM ′(T [n]) = WM(T [n]) for all n. To see this note that e = M(T [n]) satisfies Ẽn(e, M(T [n]))
and thus the union is over a nonempty class of sets. Furthermore, all the sets in this class are equal
since Ẽn(e, M(T [n])) implies We = WM(T [n]). So the union of the sets We with Ẽn(e, M(T [n])) is the
set WM(T [n]).

Third, as M WrDBc-identifies L from T so does M ′.

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1277

Fourth, it is easy to verify that all grammars i, which are output infinitely often by M on text
T , belong to the same Ẽ∗-equivalence class D. Since, M WrDFex∗-identifies L, this set D is finite.
Also, there is an m such that for all n ≥ m, for all i, j ∈ D, Ẽn(i, j). Thus M ′(T [n]) is the same index
for the union of the We, with e ∈ D, whenever n ≥ m and M(T [n]) ∈ D. As M TxtFex∗-identifies L,
M(T [n]) ∈ D for almost all n. Thus, M ′ even WrDEx-identifies L from T .

In particular, M ′ is a WrDEx-identifier for L.
(b) The proof is analogue to (a) with the following differences: The relation Ẽa(i, j) does not

imply that Wi = Wj but just that Wi = L ⇔ Wj = L. So D contains only correct indices and M ′ is a
TxtEx-identifier for L, but it is not guaranteed that the NInvU-property is preserved. In particular
the second item of the verification breaks down, but the third and fourth items can make use of the
fact that all members of D are correct indices and thus the union of the sets with indices in D is the
set L to be learned.

(c) This part is similar to part (b), except that in this case, we have that Ea(i, j) implies Wi ⊆ L ⇔
Wj ⊆ L. This follows from the definition of OIDFex-identification as either Wi = Wj or both are
subsets of the input language. Finally all indices which are output infinitely often are correct, so
D contains at least one correct index and perhaps some additional indices of subsets of L. So the
union of the sets with indices in D gives the set L. �

Since every explanatory learner is by definition also a vacillatory learner, the inclusion (a) of the
previous Theorem is not proper. Furthermore, using Theorem 21 from the previous section, we ac-
tually get decisiveness on the right side of the equality. Furthermore, the second and third inclusion
of the previous Theorem can be improved by using the equalities OIDEx = NInvUEx = TxtEx
(see Theorems 22 and 24).

Corollary 28.

(a) WrDFex∗ = DecEx.
(b) OIDFex∗ = OIDEx.
(c) NInvUFex∗ = NInvUEx.

From the above Corollary we can conclude that, as was the case for TxtEx-learning, WrD is
more restrictive than NUSh while NInvUand OID are equivalent to NUSh .

A subtler difference between returning to wrong conjectures and returning to correct conjectures
in the context of vacillatory learning can be observed. Recall the following result from [9].

Theorem 29 [9]. TxtFex2 ⊆ NUShBc ; TxtFex3 �⊆ NUShBc .

Thus, returning to correct conjectures is avoidable for the TxtFex2 level of the vacillatory hier-
archy by shifting to the more liberal criterion of TxtBc identification, while this is not the case for
TxtFexbwithb ≥ 3. In the next section we prove (Theorem 34) that there are TxtEx-learnable classes
that cannot be TxtBc -learned by any WrD-learner.4 Thus, the necessity of returning to wrong aban-
doned conjectures is not avoidable by allowing infinitely many correct grammars in the limit, not

4 Observe that this result is not a trivial consequence of TxtEx �⊂ DecBc from [3], since we show in the next section
(Corollary 39) that DecBc ⊂ WrDBc.

1278 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

even for the TxtFex2 level of the vacillatory hierarchy. In this sense, we can say that the necessity of
returning to wrong conjectures is even deeper than the necessity of returning to correct conjectures.

We now show that disallowing returning to old overgeneralizing conjectures still restricts the
full learning power of vacillatory learning, but in a different and less severe way. First, we show
that, for each n > 0, there are classes that are OGD-learnable with vacillation between at most n+ 1
correct conjectures but not learnable at all with vacillation between at most n conjectures. Thus the
vacillatory hierarchy does not collapse when returning to overgeneralizing hypotheses is disallowed.

Theorem 30. For n > 0, OGDFexn+1 �⊆ TxtFexn.

Proof. D0,D1, . . . , denotes a canonical recursive indexing of all the finite sets [28, Page 70], such that
the elements and the size of Dj can be effectively determined from j. For each j let Xj = {〈j, x〉 | x ∈
N }. Let L = {L | (∃j)[∅ ⊂ L ⊆ Xj and card(Dj) ≤ n+ 1 and (∃p ∈ Dj)[L = Wp] and (∀k ∈ Dj)[L �⊂
Wk]]}.

Clearly, L ∈ OGDFexn+1, as, on input � with non-empty content, a learner can first obtain a j
such that L ⊆ Xj , and then output the p ∈ Dj which maximizes |�p |, where �p is the maximal prefix
of � such that content(�p) ⊆ Wp ,|�|. If content(�) = ∅, then the learner outputs a hypothesis for ∅.
This learner clearly OGDFexn+1-identifies L.

The diagonalization proof is essentially based on the proof of TxtFexn+1 �⊆ TxtFexn from [11].
Suppose by way of contradiction that M TxtFexn-identifies L. Then, by (n+ 1)-ary recursion the-
orem [28] there exist distinct e1, . . . , en+1 such that We1 , . . . ,Wen+1 may be defined as follows. Let j be
such thatDj = {e1, . . . , en+1}. Initially let �0 be such that content(�0) = {〈j, 0〉}, and enumerate 〈j, 0〉
in each of Wei , 1 ≤ i ≤ n+ 1. For any sequence �, let Lastn(�) denote the set of the last n grammars
output by M on input �. That is Lastn(�) = {M(�) | � � � ∧ card({M(�′) | � � �′ � �}) ≤ n}. Go
to stage 0.

Stage s

1. Dovetail steps 2 and 3 until, if ever, step 2 succeeds. If and when step 2 succeeds, stop step 3 and
go to step 4.

2. Search for an extension � of �s such that content(�) ⊆ Xj and Lastn(�) /= Lastn(�s).
3. For r = 1 to ∞ Do

Begin For k = 1 to n+ 1, enumerate 〈j, 〈k , r〉〉 into Wek End.
4. Let S be the set of all the elements enumerated into We1 ∪ We2 ∪ . . . Wek up to now.

Let �s+1 be an extension of � such that content(�s+1) = content(�) ∪ S .
For k = 1 to n+ 1, enumerate content(�s+1) into Wek .
Go to stage s+ 1.

End stage s.

We now consider the following cases.
Case 1: There exist infinitely many stages.
In this case, clearly, We1 = We2 = . . . = Wen+1 , and M does not converge to a set of n grammars

on
⋃
s∈N �s, a text for L = We1 , which is a member of L.

Case 2: Stage s starts but never ends.

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1279

In this case consider Lk = Wek , for 1 ≤ k ≤ n+ 1. Note that Lk ⊆ Xj and for 1 ≤ k , k ′ ≤ n+ 1,
k /= k ′: Lk �⊆ Lk ′ . Thus, each Lk belongs to L. Furthermore for 1 ≤ k ≤ n+ 1, for any text T for
Lk which extends �s, all grammars which are output by M on T beyond �s, are from Lastn(�s)
(otherwise step 2 would succeed as Lk ⊆ Xj). Thus, M fails to TxtFexn-identify at least one of Lk ,
1 ≤ k ≤ n+ 1 (since Lastn(�s) can contain grammars for at most n of L1, . . . ,Ln+1).

It follows from above cases that M cannot TxtFexn-identify L. �
Next we show that the learning power of each level of the vacillatory hierarchy is restricted

when returning to overgeneralizing conjectures is disallowed. More precisely, there are classes that
are learnable with vacillation between two correct indices in the limit but such that no vacillatory
learner can learn those classes without returning to overgeneralizing conjectures, no matter what
amount of vacillation is allowed.

Theorem 31. TxtFex2 �⊆ OGDFex∗.

Proof. LetLi = {〈i, x〉 | x ∈ N }. Let Si = {〈i, x〉 | x ≤ card(Wi)} (thus, if card(Wi) = ∞, then Si = Li).
Let L = {Li | i ∈ N } ∪ {Si | i ∈ N }. It is easy to verify that L ∈ TxtFex2.
Now suppose by way of contradiction that M OGDFex∗-identifies L. Then we show that Inf =

{i | card(Wi) = ∞} is	2, a contradiction to
2 completeness of Inf (see [28] for definition of	2,
2
and
2 completeness of Inf).

Since M OGDFex∗ identifies Li, there exists a � and a finite set D such that (i) � ∈ SEG(Li),
(ii) (∀j, j′ ∈ D)(∃�1, �2, �3)[�1 � �2 � �3 � � and [M(�1) = j, M(�2) = j′, M(�3) = j] and (iii) (∀� ∈
SEG(Li))[M(��) ∈ D].

Such � can be obtained by just choosing a locking sequence � for M on Li, where each of the
final grammars have alternated with each other. D can be taken to be the set of final grammars.
Here note that D contains a grammar for Li .

Let us denote by Propi(�,D), the combination of three properties (i), (ii), (iii).
Now if there exists a �,D satisfying Propi(�,D) and card(Wi) ≥ max({x | 〈i, x〉 ∈ content(�)}),

then Wi is infinite (otherwise on �, which is a member of SEG(Si), M returns to a conjecture for Li
with grammar for Si in between; to see this note that D contains a grammar for both Si and Li and
by clause (ii) above, M alternates between grammars for Li and Si on prefixes of �).

On the other hand, if there do not exist � and D satisfying Propi(�,D) and card(Wi) ≥ max({x |
〈i, x〉 ∈ content(�)}), then clearly, card(Wi) is finite (since �,D satisfying Propi(�,D)would then show
the finiteness of Wi).

The check whether
(∃�,D)[Propi(�) and card(Wi) ≥ max({x | 〈i, x〉 ∈ content(�)})]

is a 	2 property. This gives us the desired contradiction. �
Corollary 32. For all a ≥ 2, OGDFexa ⊂ TxtFexa.

Corollary 33. For all n > 0, n ∈ N , OGDFexn+1 and TxtFexn are incomparable.

6. Behaviourally correct learning

Our first result shows that, in the context of TxtBc -learnability, similarly to TxtEx-learnabil-
ity, disallowing returning to wrong conjectures significantly limits the power of a learner: even

1280 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

TxtEx-learners can sometimes learn more than any TxtBc -learner that is not allowed returning to
wrong conjectures. The reason is that the class L in TxtEx − DecBc from [3] contains two distinct
extensions of every finite set and thus the next theorem follows from Lemma 20.

Theorem 34. TxtEx �⊆ WrDBc .

Now we compare non-U-shaped learning (when a learner cannot abandon a correct conjecture)
with learning by disallowing returning to wrong conjectures. From the previous Theorem and from
the fact that TxtEx = NUShEx ⊆ NUShBc , we have the following.

Corollary 35. NUShBc �⊆ WrDBc .

We now show that, interestingly, the converse is true: WrD learners can sometimes do better
than NUSh learners in the TxtBc setting. So WrDand NUSh are incomparable restrictions in the
context of TxtBc -identification.

Theorem 36. WrDBc �⊆ NUShBc .

Proof. The proof uses the same class as in the proof of TxtBc /= DecBc from [17]. The proof that
this class witnesses the theorem is a minor modification of the proof of Fulk et al. [17]. We give the
details for completeness.

Let M0, M1, . . . denote a recursive enumeration of total learning machines, where for all L ∈
NUShBc , there exists a j such that L ⊆ NUShBc (Mj). One can construct such an enumeration of
total learning machines as done for the TxtEx case (for example, see [25]).

Let Lj = {〈j, x〉 | x ∈ N }. Let �j,k = (〈j, 0〉, . . . , 〈j, k〉), L1
j,k = {〈j, i〉 | i ≤ k}, and L2

j,k = WMj(�j,k)
.

Let P(j, k) be the property that L1
j,k ⊂ L2

j,k ⊆ Lj .
If (∃k)[P(j, k)], then let kj be the least k such that P(j, k) holds, and then let Sj = {L1

j,kj
,L2
j,kj

};
otherwise, let Sj = {Lj}. Let L = ⋃

j∈N Sj .
We will show that L ∈ WrDBc − NUShBc .
The proof of L ∈ WrDBc is based on utilization of the fact that, if (∃k)[L1

j,k ⊂ L2
j,k ⊆ Lj], then

the least such k can be found in the limit.

Claim 37. L ∈ WrDBc.

Proof. Note that L ∈ Sj ⇒ L ⊆ Lj .
Let Candnj = {k ≤ n | L1

j,k ⊂ WMj(�j,k),n
⊆ Lj}.

Consider M which behaves as follows:

M on input T [n]
If content(T [n]) = ∅
Then output a grammar for ∅.
Else let j be such that content(T [n]) ⊆ Lj .
(* If there is no such j, then the input language is not in the class L.*)

If Candnj = ∅
Then let M(T [n]) be a grammar for Lj .
Else

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1281

Let knj = min(Candnj);
If content(T [n]) ⊆ L1

j,knj
Then let M(T [n]) = f(j, knj , n), where f is as defined below.
Else let M(T [n]) = g(j, knj , n), where g is as defined below.
Endif

Endif
Endif

End

In the above, f and g are such that:

Wf(j,k ,n) =
{
L1
j,k , if (∀m > n)[min(Candmj) = min(Candnj)];
Lj , otherwise.

Wg(j,k ,n) =
{
L2
j,k ∩ Lj , if (∀m > n)[min(Candmj) = min(Candnj)];
Lj , otherwise.

We claim that M WrDBc-identifies L. Let T be a text for L ∈ Sj . Now consider the following
cases.

Case 1: (∀k)[¬P(j, k)].
In this case L = Lj . Furthermore, for all n, either Candnj = ∅ or there exists an m > n such that
min(Candnj) /= min(Candmj). Thus, if M outputs f(j, k , n)or g(j, k , n), then [Wf(j,k ,n) = Wg(j,k ,n) = Lj].
Thus M on T [n] always outputs a grammar forLj , except for the case when content(T [n]) = ∅. Thus,
M WrDBc-identifies L.

Case 2: P(j, k) holds for some k .
Let kj be minimal such that P(j, k) holds. Letm be minimal such that for all n > m, min(Candnj) =

min(Candmj) = kj .
Now, for n < m, either Candnj = ∅ or for some n′ > n, min(Candnj) /= min(Candn

′
j). Thus, if

content(T [n]) /= ∅, then by definition of M and f(j, k , n) and g(j, k , n), the grammar output by
M(T [n]) is for Lj .

Forn ≥ m, such that content(T [n]) /= ∅,M(T [n]), outputsf(j, kj , n)org(j, kj , n), basedonwhether
content(T [n]) ⊆ L1

j,kj
or not.

Thus, if L = L1
j,kj

, then the sequence of grammars output by M on T are initially for ∅ (while
content(T [n]) = ∅), followed by grammars for Lj (while n < m and content(T [n]) /= ∅), and even-
tually for L1

j,kj
(when n ≥ m and content(T [n]) /= ∅). Thus, M WrDBc -identifies L1

j,kj
.

On the other hand, if L = L2
j,kj

, then the sequence of grammars output by M on T are initially
for ∅ (while content(T [n]) = ∅), followed by grammars for Lj (while n < m and content(T [n]) /= ∅),
followed by grammars for L1

j,kj
(while n ≥ m and ∅ ⊂ content(T [n]) ⊆ L1

j,kj
), and then eventually

grammars for L2
j,kj

(when n ≥ m and content(T [n]) �⊆ L1
j,kj

). Thus, again M WrDBc -identifies L.

Note that L2
j,kj

might be equal to Lj , and thus decisiveness does not hold.

1282 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

Claim 38. L �∈ NUShBc .

Proof. Suppose by way of contradiction that machine Mj NUShBc -identifies L.
Now consider Sj .
If (∀k)[¬P(j, k)], then Lj ∈ L which is not TxtBc -identified by Mj .
If (∃k)[P(j, k)], then let kj be the least such k . Now L1

j,kj
,L2
j,kj

∈ L. Since on �j,kjMj outputs a gram-

mar forL2
j,kj

/= L1
j,kj

, there must be extension� of�j,kj such that content(�) = L1
j,kj

andWMj(�)
= L1

j,kj
.

Also there must be an extension �′ of �, such that content(�′) ⊆ L2
j,kj

and WMj(�′) = L2
j,kj

(since Mj

identifies both L1
j,kj

,L2
j,kj

). But then Mj is U -shaped on L2
j,kj

. This proves the claim.
The theorem follows from above claims. �
Observe that, in contrast to the case of TxtEx and TxtFex-learning, Theorem 36 implies that

WrDBc does not coincide with DecBc . We have in fact the following corollary of Theorem 36.

Corollary 39. DecBc ⊂ WrDBc .

We next show that, as was the case for Ex, inverted-U-shapes are redundant for full Bc -learning
power. In fact we have NInvUBc = TxtBc . For this, we first establish Corollary 43 below based on
work of [21].

Definition 40 [16]. M is said to be rearrangement independent iff for all �, � such that content(�) =
content(�) and |�| = |�|, M(�) = M(�).

Definition 41 [21]. A sequence � is normalized if x ∈ content(�) ⇒ x ≤ |�|.
A text T is normalized if T [n] is normalized for all n.

Theorem 42 [21]. Suppose M is given. Then we can effectively define M ′ such that:

(a) If L ∈ TxtBc (M), then for all normalized texts T for L, for all but finitely many n, M ′(T [n]) is
a grammar for L.

(b) M ′ is rearrangement independent.

Corollary 43. Suppose L ∈ TxtBc . Then there exists a machine M ′ such that M ′ TxtBc -identifies L,
and every text T for L ∈ L starts with a TxtBc -locking sequence for M ′ on L.

Proof. Suppose M TxtBc -identifies L on normalized texts and M is rearrangement independent
(by Theorem 42 such M exists). Let M ′ be defined as follows. M ′(�) = M(�), where |�| = 2 ∗ |�| +
max(content(�)) and content(�) = content(�), and � is normalized. Clearly, M ′ is rearrangement
independent.

Now consider any text T for L ∈ L. Furthermore, let � be a TxtBc -locking sequence (on normal-
ized texts) for M on L. Let n be such that content(�) ⊆ content(T [n]), and |�| ≤ n. Consider any �
such that content(�) ⊆ L. Thus, we have that

M ′(T [n]�) = M(�#rT [n]�),

where r = |�| + n− |�| + max(content(T [n]�)). Thus, M ′(T [n]�) is a grammar for L. Hence, T [n]
is a TxtBc -locking sequence for M ′ on L and M ′ TxtBc -identifies L on T . �

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1283

Theorem 44. TxtBc ⊆ NInvUBc .

Proof. Suppose M TxtBc -identifies L. Without loss of generality (by Corollary 43) assume that
every text for L ∈ L starts with a TxtBc -locking sequence for M on L. By the s-m-n Theorem [28],
there exists a recursive function f such that Wf(�) = ⋃

s∈N A
s
� , where As� is defined as follows.

A0
� = content(�).
As+1
� = As� ∪ ⋃

�∈{�′:�⊆�′,|�′|≤s and content(�′)⊆As�}WM(�),s.
Intuitively, Wf(�) is the smallest set S such that S contains content(�) and WM(�)

for every �
satisfying � � � and content(�) ⊆ S .

Let M ′(�) = f(�).
Now, it is easy to verify that if � is a TxtBc -locking sequence for M on L, then Wf(��) = L,

for any � such that content(�) ⊆ L. Thus, using the property that every text T for L starts with a
TxtBc -locking sequence for M on L, we have that M ′ TxtBc -identifies L.

The following claim follows from the closure property of Wf(�).

Claim 45. If � � � and content(�) ⊆ Wf(�), then Wf(�) ⊆ Wf(�).

Now suppose T is a text for L ∈ L, and � � � � � � T , are such thatWf(�) = Wf(�) /= Wf(�). Then,
we have

(i) content(�) ⊆ content(�) ⊆ Wf(�) = Wf(�) and thus, by Claim 45 Wf(�) ⊆ Wf(�).
(ii) If content(�) ⊆ Wf(�) then by Claim 45,Wf(�) ⊆ Wf(�), and thus using (i) we would haveWf(�) =

Wf(�). A contradiction. Thus, content(�) �⊆ Wf(�).

It immediately follows from (ii) that Wf(�) is not a grammar for L.
It follows from above analysis that M ′ NInvUBc -identifies L. �
Our next goal is to show that any TxtBc -learner can be transformed into one that does not return

to overinclusive conjectures. For this, we first establish Lemmas 46 and 47.

Lemma 46. Suppose M is given. Then, for any � ∈ SEQ, there exists an r.e. set P(�) such that

• A grammar for P(�) can be effectively obtained from �;
• If � is a TxtBc -locking sequence for M on WM(�)

, then P(�) contains only grammars for WM(�)
;

• If� is not a TxtBc -locking sequence for M onWM(�)
, thenP(�) is either empty, or contains grammars

for at least two distinct languages.

Proof. Define P(�) as follows.
If content(�) �⊆ WM(�)

, then let P(�) = ∅.

Otherwise let P(�) = {M(�) | � � �, content(�) ⊆ WM(�)
}.

Now if � is a TxtBc -locking sequence for M on WM(�)
, then P(�) consists only of grammars for

WM(�)
. On the other hand if � is not a TxtBc -locking sequence for M on WM(�)

, then either P(�) is
empty or it contains grammars for at least two distinct languages. �
Lemma 47. Suppose M is given. Then, there exists a recursive function g such that:

1284 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

(a)If � is a TxtBc -locking sequence for M on WM(�)
, then Wg(�) = WM(�)

.

(b)If � is not a TxtBc -locking sequence for M on WM(�)
, then Wg(�) is finite.

Proof. For a finite set X and number s, let

• CommonTime(X , s) = max({t ≤ s | (∀p , p ′ ∈ X)[Wp ,t ⊆ Wp ′,s]});
• CommonElem(X , s) = ⋂

p∈X Wp ,CommonTime(X ,s).

Let f be a recursive function such that, Wf(X) = ⋃
s∈N CommonElem(X , s). Here we assume that

Wf(∅) = ∅.
Intuitively, CommonTime(X , s) finds the largest time t such that all elements enumerated up to

time t by some grammars in X are included in all languages enumerated by grammars in X up to
time s. CommonElem(X , s) then gives the set of the elements enumerated by all grammars in X up
to time CommonTime(X , s). Note that

(i) lims→∞ CommonTime(X , s) is infinite iff all grammars in X are for the same language;
(ii) If X ⊆ X ′, then CommonTime(X , s) ≥ CommonTime(X ′, s);
(iii) If Wp /= Wp ′ then for all s, CommonTime({p , p ′}, s) is bounded by the least t such that Wp ,t ∪

Wp ′,t �⊆ Wp ∩ Wp ′ .

Suppose X0 ⊆ X1 ⊆ . . . is given. Let Y be the set of all y such that there is an s ≥ y , such that
y ∈ Wf(Xs). Note that (ii) and (iii) above imply that if {p , p ′} ⊆ ⋃

i∈N Xi and Wp /= Wp ′ , then Y is
finite. On the other hand, if all p , p ′ ∈ ⋃

i∈N Xi are grammars for the same language, then Y = Wp
for any p ∈ ⋃

i∈N Xi .
Let P be as in Lemma 46 and let Ps(�) denote P(�) enumerated in s steps.
Now let g(�) be such that Wg(�) = ⋃

s∈N [{y | y ≤ s ∧ y ∈ Wf(Ps(�))}]. It is now easy to verify that
Lemma holds. �

Now we can prove one of our main results: any TxtBc -learner can be replaced by one not
returning to overinclusive conjectures.

Theorem 48. TxtBc ⊆ OIDBc .

Proof. Suppose M TxtBc -identifies L. Without loss of generality (Corollary 43) assume that for
any text T for L ∈ L, there exists a � � T , such that � is a TxtBc -locking sequence for M on L.
Intuitively, the proof employs two tricks. The first trick (as given by g in Lemma 47) is to make sure
that the learner outputs a conjecture for an infinite language only on �’s which are TxtBc -locking
sequences for the conjectured language. This automatically ensures that no semantic mind changes
occur between different grammars output for the same infinite language by the learner. The second
trick makes sure that all finite languages that are conjectured by the learner and that go beyond
what is seen in the input at the time of conjecture, are pairwise distinct.

We now proceed formally.
Let g be as in Lemma 47.
Let q0, q1, . . . denote an increasing sequence of primes.

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1285

Now define M ′′ as follows. M ′′(�) = h(�), where Wh(�) is defined as follows. We assume without
loss of generality that for all i and s, Wi,s+1 − Wi,s contains at most one element. This ensures that
when Wg(�) is infinite, then card(Wg(�),s) would be of form (qind(�))

k , for infinitely many s.

Wh(�)
1. Enumerate content(�)
2. Loop

Search for s such that Wh(�) enumerated up to now is a proper subset of Wg(�),s, and card(Wg(�),s)
is (qind(�))

k for some k .
If and when such s is found, enumerate Wg(�),s.
Forever

End

Thus, Wh(�) is Wg(�) if Wg(�) is infinite. Furthermore, if Wh(�) is finite, then it is either content(�)
or has cardinality a power of qind(�).

It follows that if Wh(�) = Wh(�), for � ≺ �, then either Wh(�) is infinite and � is a TxtBc -locking
sequence for M on Wg(�) = Wg(�) = Wh(�), and thus, there is no semantic mind change by M ′′ in
between � and �, or Wh(�) is finite, and thus, it must be the case that Wh(�) = Wh(�) = content(�)
(otherwise, qind(�) /= qind(�) would imply that Wh(�) /= Wh(�)).

It follows from above cases that M ′′ does not return to overinclusive hypotheses. To see TxtBc -
identification of L ∈ L, let T be a text for L. Let T [n] be a TxtBc -locking sequence for M on L
(such an n exists by assumption on M). Thus, g(T [n]) is a grammar for L. If L is finite, then without
loss of generality we also assume that n is large enough such that L ⊆ content(T [n]). Now con-
sider any m ≥ n. It is easy to verify that if L is infinite then Wh(T [m]) = Wg(T [m]) = L. On the other
hand, if L is finite, then again Wh(T [m]) does not enumerate anything beyond first step, and thus
equals L. �
Corollary 49. TxtBc ⊆ OGDBc .

7. Consistency

Consistency is a natural and important requirement in the context of TxtEx- and of TxtBc -
learning. While, for the latter, consistency can be easily achieved, it is known to be restrictive for
TxtEx-learnability [4,25]. In this section, we establish a new interesting boundary on consistent
TxtEx-learnability—in Theorem 53 we show that consistent TxtEx-learners can be made consis-
tent and decisive—contrast this result with Theorem 24.

Definition 50. [4,25] M is said to be consistent on T iff, for all n, M(T [n])↓ and content(T [n])
⊆ WM(T [n]).

M is said to be consistent on L iff, M is consistent on each text for L.

Definition 51. (a) [4,25] M ConsTxtEx-identifiesL iff M is consistent onL, and M TxtEx-identifiesL.

(b.1) [4] M ConsTxtEx-identifies L iff M ConsTxtEx-identifies each L ∈ L.
(b.2) ConsTxtEx = {L | (∃M)[MConsTxtEx-identifies L]}.

1286 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

Note that for M to ConsTxtEx-identify a text T , it must be defined on each initial segment of T .
One can similarly define a combination of consistency with decisiveness (called ConsDecEx) and
other related criteria such as Cons NUShEx, ConsOIDEx, Cons WrDEx, etc.

Two other versions of consistency have been considered in the literature, namely RCons [20],
where the learner must be total but might be inconsistent on data not belonging to the class to be
learned, and T Cons [32], where the learner must be total and consistent on every text, whether it is
for some language to be learned or not.

Our simulations results below (Theorem 53 to Corollary 58) hold for T Cons replacing Cons . We
do not yet know whether Theorem 53 holds for RCons , and correspondingly whether Corollary 58
also holds for RCons . Theorem 57 does hold for RCons also. Theorems 54, 55, and 56 hold for
T Cons , and thus for RCons too.

Our diagonalization results Theorem 60 and Theorem 61(a) also hold for T Cons . Theorem 61(b)
holds for RCons , but is known not to hold for T Cons replacing Cons . We omit the details, and
will not consider RCons and T Cons from now on.

Definition 52. We say that � is self-stabilizing for M if � is a TxtEx-locking sequence for M on
WM(�)

.

Theorem 53. ConsTxtEx ⊆ ConsDecEx.

Proof. Suppose M ConsTxtEx-identifies L. An easy modification of the proof of Lemma 19 of the
current paper (along with corresponding modification of Lemma 17) can be used to show that, if
there exists a finite set A such that no extension of A is in L then L ∈ ConsDecEx.

On the other hand, if L contains an extension of every finite set A, then M is total, and consistent
on all inputs. Now, for each �, we define:

F�(x) =
{

1, if M(�x) = M(�);
0, otherwise.

Clearly, F� is total for each �. Furthermore, if � is self-stabilizing for M , then F −1
� (1) = WM(�)

. Thus,
L ⊆ {F −1

� (1) | � ∈ SEQ}.
Let G(2x) = 0 and G(2〈i, x〉 + 1) = 1 − F�i (2〈i, x〉 + 1). Thus, for all �, G is not a finite variant of

F� (that is, G differs from F� on infinitely many inputs), and G is 0 on all even inputs.
Let s� = min({t | (∃�)[content(�) ⊆ WM(�),t ∧ |�| ≤ t ∧ M(�) /= M(��)]}). Thus, s� = ∞ iff � is

self-stabilizing for M . Moreover, one can effectively determine if s� ≤ t, for any given t. Now define
h(�), g(�) as follows.

ϕh(�)(x) =






F�(x), if x ≤ s� ;
G(x), if x > s� and x is odd;
1, if x > s� and x = 2 ∗ 〈2 ∗ ind(�), 1 + s�〉;
0, otherwise;

ϕg(�)(x) =






1, if x ∈ content(�);
G(x), if x �∈ content(�) and x is odd;
1, if x = 2 ∗ 〈2 ∗ ind(�)+ 1, max(content(�))〉;
0, otherwise.

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1287

Intuitively, the aim of ϕh(�) is to follow F� , if � is self-stabilizing. Otherwise, it computes a finite
variant of G. The third clause in the definition of ϕh(�) above is used to ensure that the ϕh(�)’s which
compute a finite variant of G are pairwise distinct. g(�) is used below only for maintaining consis-
tency, in case one cannot find an appropriate program h(�). Again, the third clause in the definition
of ϕg(�) is to ensure that different ϕg(�)’s and ϕh(�)’s which compute a finite variant ofG are pairwise
distinct.

It can be easily verified, using the definition of g and h above, that

(1) If � is self-stabilizing for M , then ϕh(�) = F� .
(2) If � is not self-stabilizing for M , then ϕh(�) is a finite variant of G (that is, ϕh(�) and G differ

only on finitely many inputs), and max({x | ϕh(�)(2x) = 1}) is of form 〈2 ∗ ind(�), ·〉. Note that
2 ∗ ind(�) in the pair makes function ϕh(�) different from ϕg(�) and ϕh(�′)/ϕg(�′), for � /= �′.

(3) ϕg(�) is a finite variant of G, and max({x | ϕg(�)(2x) = 1}) is of form 〈2 ∗ ind(�)+ 1, ·〉. Note
that 2 ∗ ind(�)+ 1 in the pair makes function ϕg(�) different from ϕh(�) and ϕh(�′)/ϕg(�′), for
� /= �′.

Now define M ′ on T as follows. Let

�〈i,j〉 =
{
�i, if content(�i) ⊆ content(T [〈i, j〉]);
�, otherwise.

Above gives a special enumeration of all finite segments whose content are contained in content(T).
Let gram be a recursive function such that Wgram(i) = ϕ−1

i (1).

M ′(T [n]) =






gram(h(�mn)), for the least mn ≤ n such that
s�mn ≥ n, and
content(T [n]) ⊆ F −1

�mn
(1), and

content(T [n]) ⊆ ϕ−1
h(�mn)

(1);
gram(g(T [n])), otherwise, if there is no such mn ≤ n.

It is easy to verify that M ′ is consistent. Moreover, M ′ TxtEx-identifies L, since for any text T
for L ∈ L, for the least m such that �m is a TxtEx-locking sequence for M on L, M ′ stabilizes to
gram(h(�m)). We now show that M ′ is decisive. Note that mn (when defined) is increasing in n. Sup-
pose, by way of contradiction,WM ′(T [n1]) = WM ′(T [n3]) /= WM ′(T [n2]), where n1 < n2 < n3. Note that if

M ′(T [n1]) = gram(g(T [n1])) or M ′(T [n3]) = gram(g(T [n3])), then WM ′(T [n1]) /= WM ′(T [n3]) (by defi-
nition of g(·), and properties (2) and (3) above). Thus, WM ′(T [n1]) = Wgram(h(mn1)) and WM ′(T [n3]) =
Wgram(h(mn3)). Ifmn1 = mn3 , then by monotonicity we will also havemn2 = mn1 , and thusWM ′(T [n2]) =
WM ′(T [n1]). On the other hand, if mn1 /= mn3 , then �mn1 and �mn3 must both be self-stabilizing for

M , since, otherwise, Wgram(h(�mn1)) /= Wgram(h(�mn3))
(by (1), (2) above and the fact that G is not a

finite variant of F� for any �). But, then content(T [n3]) �⊆ F −1
�mn1

(1) = Wh(�mn1)
(by definition of h,

and the fact that �mn1 is not a stabilizing sequence for M on content(�mn3)), a contradiction to
Wgram(h(�mn1))

= Wgram(h(�mn3))
⊇ content(T [n3]). It follows that M ′ must be decisive. �

1288 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

Theorem 54. NUShBc = ConsNUShBc .

Proof. Suppose M NUShBc -identifies L. Let E(�) = {� � � | content(�) = content(�)} and define
M ′ as follows.

WM ′(�) =
{
WM(�)

, if (∀� ∈ E(�))[content(�) ⊆ WM(�)
];

content(�), otherwise.

Clearly, M ′ is consistent.
We now show that M ′ NUShBc -identifies L. To see this, consider any text T for L ∈ L. Let n be

the least number such thatWM(T [n]) = L. It follows from M being non-U-shaped that, for allm ≥ n,
L = WM(T [m]). We now consider two cases.
Case 1: L = content(T [n]).

In this case, for all m ≥ n, WM ′(T [m]) = L, (based on either clause of the definition of M ′). Thus,

M ′ TxtBc -identifies T . Now suppose there exists an m′ < n such that WM ′(T [m′]) = L. Then, since
WM(T [m′]) /= L, we have thatWM ′(T [m′])(= L) = content(T [m′]) = content(T [n]), and content(T [m′])
�⊆ WM(T [r]), for some r ≤ m′, T [r] ∈ E(T [m′]). It follows by definition of M ′ that for allm′′ such that

m′ ≤ m′′ ≤ n, WM ′(T [m′′]) = content(T [m′′]) = L. It follows that M ′ is non-U-shaped on T .
Case 2: Not Case 1 (that is content(T [n]) ⊂ L).

In this case, let n′ ≥ nbe minimal such that content(T [n]) /= content(T [n′]). Clearly, for allm ≥ n′,
M ′(T [m]) is a grammar forL. Thus, M ′ TxtBc -identifiesT . Furthermore, for allm ≤ n− 1, M ′(T [m])
is not a grammar for L (using either clause of the definition of M ′). Furthermore, for allm such that
n ≤ m < n′, M ′(T [m]) will be a grammar for L iff for all T [s] ∈ E(T [n]), content(T [n]) ⊆ WM(T [s])
(by definition of M ′, and using the fact that content(T [n]) ⊆ L = WM(T [m′]), for n ≤ m′ < n′). It

follows that M ′ is non-U-shaped on T . �
We note that the proof of Theorem 44 also shows the following inclusion.

Theorem 55. TxtBc ⊆ ConsNInvUBc .

The proof of Theorem 48 also shows the following inclusion.

Theorem 56. TxtBc ⊆ ConsOIDBc .

The proof of Theorem 27 also works for the case when we are considering consistent identifica-
tion.

Theorem 57.

(a) ConsWrDFex∗ ⊆ ConsTxtEx.
(b) ConsOIDFex∗ ⊆ ConsTxtEx.

Corollary 58.

(a) ConsWrDFex∗ ⊆ ConsDecEx.
(b) ConsOIDFex∗ ⊆ ConsDecEx.

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1289

Next we show that decisive learning is stronger than consistent learning.

Theorem 59. DecEx �⊆ ConsTxtEx.

Proof. Without loss of generality assume ϕ0(0)↑ (and thus ϕ0(0) /= 0).
Let C = {f | (∀∞x)[f(x) = 0]} ∪ {f | f is monotonically increasing, ϕf(0) = f , and for all x,

�f(0)(x) < f(x + 1)}. For a function f , let Lf = {〈x, f(x)〉 | x ∈ N }. Let L = {Lf | f ∈ C}. It is well
known that C �∈ ConsEx (for function version of consistency, see for example [4]), and hence
L �∈ Cons TxtEx.

On the other hand, L ∈ DecEx can be shown as follows. Let p be a recursive function such that

ϕp(i)(x) =






i, if x = 0 and ϕi(0) = i;
ϕi(x), if x > 0, ϕi(y) is defined for all y ≤ x, and

(∀y < x)[max({�i(y),ϕi(y)}) < ϕi(y + 1)];
↑, otherwise.

Now, M on input � behaves as follows:

M(�)

If 〈0, e〉 �∈ content(�) for any e
Then output a grammar for ∅.
Else If 〈x, y0〉, 〈x, y1〉 ∈ content(�), for some x, and y0 /= y1, then output a grammar for N .
Else

Let 〈0, e〉 ∈ content(�) (here such e is unique).
If ϕe,|�|(0) /= e or [content(�)− content(�[�e(0)]) ⊆ {〈z, 0〉 | z ∈ N }],
Then output a grammar for

L = content(�) ∪ {〈x, 0〉 | (∀y > 0)[〈x, y〉 �∈ content(�)]}.

Else let m = max({x | (∃y)[〈x, y〉 ∈ content(�)]}).
Let m′ be such that 〈m,m′〉 ∈ content(�).

If (∀x | 0 < x < m)[�e(x) < m′ and
max({�e(x − 1),ϕe(x − 1)}) < ϕe(x)] and
(∀〈x, y〉 | x < m, 〈x, y〉 ∈ content(�))[ϕe(x) = y],

Then output a grammar for Lϕp(e) .
Else Output a grammar for

L = content(�) ∪ {〈x, 0〉 | (∀y > 0)[〈x, y〉 �∈ content(�)]}.
Endif

Endif
Endif

End

1290 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

It is easy to verify that M TxtEx-identifies L. To see decisiveness, note that a grammar for ∅ is
output only until some 〈0, x〉 appears in the input. Furthermore, if a grammar for N is output on
some �, then, for all � ⊇ �, M outputs a grammar for N . Once 〈0, e〉 appears in the input for some
e, with ϕe(0) = e (and it is known that the previous conjecture of M is wrong, see step 5), Lϕp(e)
is output as long as it is consistent with the input, and it seems that ϕe ∈ {f | f is monotonically
increasing, ϕf(0) = f , and for all x,�f(0)(x) < f(x + 1)}. Thus, once Lϕp(e) , is abandoned, it is never
conjectured again. Furthermore, trivially, outputs in step 5 and 8 are monotonic in the input. Thus,
M is decisive. �

We note that the proof of Theorem 36 also shows the following.

Theorem 60. ConsWrDBc �⊆ NUShBc .

The proof of Theorem 31 gives us part (a) of the following theorem. The proof of Theorem 30
can be easily modified to give part (b) of the following theorem (we just need to make the learner
given there consistent, assuming that the input language is from the class).

Theorem 61.

(a) ConsTxtFex2 �⊆ OGDFex∗.
(b) ConsOGDFexn+1 �⊆ TxtFexn.

8. Summary and open problems

We summarize our results on the impact of the WrD, NInvU, OID, and OGDvariants of non-
U-shaped behaviour and how they compare to previous results about the original notion NUSh
from [3] and [9]. We also tentatively consider their possible significance from a cognitive science
perspective.

Returning to abandoned wrong conjectures turned out to be necessary for full learning power
in all three of the models TxtEx, TxtFex, and TxtBc . Admittedly, disallowing return to any kind
of wrong conjecture is, a priori, quite a strong requirement on a learning machine. Thus, math-
ematically, these separation results might not be too surprising. However, from the viewpoint of
developmental psychology, they seem to suggest a very deep necessity of an apparently inefficient
learning behaviour. This might also suggest that principles of “economy” are at work in the hy-
pothesis formulation process. The learner might tend to keep a hold on a few different hypotheses,
going back and forth between them before converging to a correct one.

It is certainly premature to draw from our results any hypothesis on why returning to wrong
conjectures might be necessary for human learning power. We can however note that the necessity
of overgeneralization for learning machines, as well as the interplay between learning finite tables
and learning possibly infinite sets are, interestingly, a key ingredient in the proof of our separation
result for TxtBc , Theorem 36, showing the necessity of returning to wrong conjecture to main-
tain full learning power. The same is the case for the proof of the necessity of returning to correct
conjectures for TxtBc -learners (see [3,17]). The key role of overgeneralization—and, in particular,
of incorrect overgeneralization—in U-shaped learning phenomena, is also illustrated by our Theo-
rem 53, showing that TxtEx-learners that are consistent with the current data can be made decisive.

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1291

Fig. 1. Summary of the results. We have dropped the word Txt from the criteria TxtEx, TxtFexa, TxtBc for ease
of notation. An arrow indicates proper inclusion, a bidirectional arrow indicates equality. It is still open whether
OGDFexa ⊆ NUShBc , for a ≥ 3.

Analogously, Theorem 54 shows that non-U-shaped TxtBc -learners can be made non-U-shaped
and consistent.

On the other hand, we have shown that inverted-U-shaped learning, returning to abandoned over-
inclusive conjectures and returning to abandoned overgeneralizing conjectures are necessary only
for the vacillatory case and avoidable otherwise. Note that these results, when coupled with the
previous separations results, imply that, for example, any TxtEx- or TxtBc -learner that avoids
overinclusive conjectures will necessarily return (on some text for some language in some class) to
a conjecture for a proper subset of the target language. It might be interesting to further investigate
which non-U-shaped features can be simultaneously satisfied by a single TxtEx or TxtBc -learner.
In particular, whether inverted U-shapes and return to overinclusive conjectures can be simulta-
neously avoided for all classes in TxtEx or TxtBc . This analysis could give us more information
on what the reason for the necessity of returning to wrong conjectures might be.

The above summarized results can be compared to results in [3] and [9] showing that returning to
abandoned correct conjectures is avoidable in the TxtEx case while being necessary for vacillatory
and behaviourally correct identification. The results of [9] and of the present paper have proved that
the vacillatory learning hierarchy is extremely sensitive to non-U-shaped restrictions. Instead, ex-

1292 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

planatory and behaviourally correct learning are sensitive only to the strongest forms of U-shaped
learning considered, i.e., to the decisive and the wrong-decisive restrictions. This might be seen as
an argument in favour of vacillatory learning as a possible candidate model of human learning.
As already observed, the capacity of a candidate learning model to account for U-shaped learning
is widely recognized in the cognitive science literature as an argument in favour of the proposed
model.

Also, we can conclude that disallowing returning to abandoned wrong conjectures is more re-
strictive than disallowing returning to correct conjectures in the TxtEx and in the TxtFex models,
while the two restrictions are incomparable in the TxtBc case. On the other hand, disallowing
inverted U’s, disallowing returning to wrong overgeneralizing conjectures, and disallowing return-
ing to overinclusive conjectures are equivalent to disallowing returning to correct conjectures for
TxtEx. For TxtFex-identification, instead, disallowing returning to overgeneralizing conjectures is
less restrictive than, equivalently, disallowing returning to correct or overinclusive conjectures, and
disallowing inverted U’s.

Also, while, for the second level, TxtFex2, of the vacillatory hierarchy the necessity of returning
to correct conjectures is avoidable by allowing infinitely many correct conjectures in the limit, the
necessity of returning to wrong conjectures is not avoidable in this way: there are TxtFex2-learnable
classes that cannot be TxtBc -learned by any WrD-learner. This and the above observations may
again suggest that freedom of returning to wrong abandoned conjectures is even more central, for
full learning power, than freedom of returning to correct conjectures.

The above results are illustrated in Fig. 1, where an arrow indicates proper inclusion, a double
arrow indicates equality and the absence of (transitive chains of) arrows indicates incomparability,
except that it is open whether, for a ≥ 3, OGDFexa ⊆ NUShBc .

The following three questions are open:

(a) ConsWrDBc = WrDBc ?
(b) ConsDecBc = DecBc ?
(c) For a ≥ 3 or a = ∗, is OGDFex a ⊆ NUShBc ?

Also, the question of how many non-U-shaped features can be simultaneously satisfied has not
been investigated in full detail, except for the case of coupling consistency with various non-U-
shapedness requirements.

Acknowledgments

We thank Rolf Wiehagen for useful discussions. The referees of COLT 2005 and Information
and Computation provided several helpful and thorough comments. A preliminary version of this
paper appeared as [10].

References

[1] D. Angluin, Inductive inference of formal languages from positive data, Information and Control 45 (1980) 117–135.

L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294 1293

[2] G. Baliga, J. Case, W. Merkle, F. Stephan, Unlearning helps, in: Ugo Montanari, José D.P. Rolim, Emo Welzl (Eds.),
Automata, Languages and Programming, 27th International Colloquium, Lecture Notes in Computer Science, vol.
1853, Springer-Verlag, Berlin, 2000, pp. 844–855.

[3] G. Baliga, J. Case, W. Merkle, F. Stephan, R. Wiehagen, When unlearning helps, Technical Report TRA5/06 (May
2006). School of Computing, National University of Singapore.

[4] J. Bārzdiņš, Inductive inference of automata, functions and programs, in: Int. Math. Congress, Vancouver, 1974, pp.
771–776.

[5] L. Blum, M. Blum, Toward a mathematical theory of inductive inference, Information and Control 28 (1975) 125–155.
[6] M. Blum, A machine-independent theory of the complexity of recursive functions, Journal of the ACM 14 (1967)

322–336.
[7] M. Bowerman, Starting to talk worse: clues to language acquisition from children’s late speech errors, in: S. Strauss,

R. Stavy (Eds.), U-Shaped Behavioral Growth, Developmental Psychology Series, Academic Press, New York, 1982.
[8] S. Carey, Face perception: Anomalies of development, in: S. Strauss, R. Stavy (Eds.), U-Shaped Behavioral Growth,

Developmental Psychology Series, Academic Press, New York, 1982.
[9] L. Carlucci, J. Case, S. Jain, F. Stephan, U-shaped learning may be necessary, in: S. Jain, H.U. Simon, E. Tomita (Eds.),

Algorithmic Learning Theory, 16th International Conference (ALT’ 05), Lecture Notes in Artificial Intelligence, vol.
3734, Springer-Verlag, Berlin, 2005, pp. 241–255 (Longer version is available as Technical Report TRA11/04, School
of Computing, National University of Singapore, Nov 2004).

[10] L. Carlucci, S. Jain, E. Kinber, F. Stephan, Variations on U-shaped learning, in: P. Auer, R. Meir (Eds.), Proceed-
ings, 18th Annual Conference on Learning Theory (COLT’ 05), Lecture Notes in Artificial Intelligence, vol. 3559,
Springer-Verlag, Berlin, 2005, pp. 382–397.

[11] J. Case, The power of vacillation in language learning, SIAM Journal on Computing 28 (6) (1999) 1941–1969.
[12] J. Case, C. Lynes, Machine inductive inference and language identification, in: Proceedings of the 9th International

Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 140, Springer-Ver-
lag, Berlin, 1982, pp. 107–115.

[13] J. Case, C. Smith, Comparison of identification criteria for machine inductive inference, Theoretical Computer Sci-
ence 25 (1983) 193–220.

[14] C.H. Cashon, L.B. Cohen, Beyond U-shaped development in infants’ processing of faces: An information-processing
account, Journal of Cognition and Development 5 (1) (2004) 59–80.

[15] C.H. Cashon, L.B. Cohen, The construction, deconstruction and reconstruction of infant face perception, in: A.
Slater, O. Pascalis (Eds.), The Development of Face Processing in Infancy and Early Childhood, NOVA Science
Publishers, New York, 2003, pp. 55–58.

[16] M. Fulk, Prudence and other conditions on formal language learning, Information and Computation 85 (1990) 1–11.
[17] M. Fulk, S. Jain, D. Osherson, Open problems in systems that learn, Journal of Computer and System Sciences 49

(3) (1994) 589–604.
[18] E.M. Gold, Language identification in the limit, Information and Control 10 (1967) 447–474.
[19] J. Hopcroft, J. Ullman, Introduction to Automata Theory Languages, and Computation, Addison-Wesley, Reading,

MA, 1979.
[20] K.P. Jantke, H.-R. Beick, Combining postulates of naturalness in inductive inference, Journal of Information Pro-

cessing and Cybernetics (EIK) 17 (1981) 465–484.
[21] S. Kurtz, J. Royer, Prudence in language learning, in: D. Haussler, L. Pitt (Eds.), Proceedings of the Workshop on

Computational Learning Theory, Morgan Kaufmann, Los Altos, CA, 1988, pp. 143–156.
[22] S. Lange, R. Wiehagen, Polynomial time inference of arbitrary pattern languages, New Generation Computing 8

(1991) 361–370.
[23] M. Machtey, P. Young, An Introduction to the General Theory of Algorithms, North Holland, New York, 1978.
[24] G. Marcus, S. Pinker, M. Ullman, M. Hollander, T. Rosen, F. Xu, Overregularization in Language Acquisition.

Monographs of the Society for Research in Child Development, vol. 57, no. 4. University of Chicago Press, 1992.
Includes commentary by Harold Clahsen.

[25] D. Osherson, M. Stob, S. Weinstein, Systems that Learn: An Introduction to Learning Theory for Cognitive and
Computer Scientists, MIT Press, Cambridge, MA, 1986.

1294 L. Carlucci et al. / Information and Computation 204 (2006) 1264–1294

[26] K. Plunkett, V. Marchman, U-shaped learning and frequency effects in a multi-layered perceptron: implications for
child language acquisition, Cognition 3 (1) (1991) 43–102.

[27] K. Popper, The Logic of Scientific Discovery, Harper Torch Books, New York, 1968.
[28] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967, Reprinted

by MIT Press in 1987.
[29] S. Strauss, R. Stavy, U-Shaped Behavioral Growth. Developmental Psychology Series, Academic Press, New York,

1982.
[30] S. Strauss, R. Stavy, N. Orpaz, The child’s development of the concept of temperature, Manuscript, Tel-Aviv Uni-

versity, 1977.
[31] N.A. Taatgen, J.R. Anderson, Why do children learn to say broke? A model of learning the past tense without

feedback, Cognition 8 (2) (2002) 123–155.
[32] R. Wiehagen, W. Liepe, Charakteristische Eigenschaften von erkennbaren Klassen rekursiver Funktionen, Journal

of Information Processing and Cybernetics (EIK) 12 (1976) 421–438.

