
Configuration Theories

Pietro Cenciarelli

University of Rome, “La Sapienza”
Department of Computer Science - Via Salaria 113, 00198 Roma.

cenciarelli@dsi.uniroma1.it

Abstract. A new framework for describing concurrent systems is
presented. Rules for composing configurations of concurrent programs
are represented by sequents Γ `ρ ∆, where Γ and ∆ are sequences of
partially ordered sets (of events) and ρ is a matrix of monotone maps
from the components of Γ to the components of ∆. Such a sequent
expresses that whenever a configuration has certain specified subposets
of events (Γ), then it extends to a configuration containing one of sev-
eral specified subposets (∆). The structural rules of Gentzen’s sequent
calculus are decorated by suitable operations on matrices, where cut cor-
responds to product. The calculus thus obtained is shown to be sound
with respect to interpretation in configuration structures [GG90]. Com-
pleteness is proven for a restriction of the calculus to finite sequents. As
a case study we axiomatise the Java memory model, and formally derive
a non-trivial property of thread-memory interaction.

Keywords: semantics, concurrency, configuration structures, sequent calculus,
Java.

1 Introduction

The Java language specification [GJS96] is very precise in describing how the
events of a Java computation may depend on each other. For instance, it is
required that, whenever a thread θ (a lightweight process) modifies the content
of its working memory by assigning a value to an instance variable while holding
a lock on some object, that value must be copied to the main memory before θ
is allowed to release the lock [ibid. §17.6]. While it is relatively easy to write a
denotational model of Java (say, as a Petri net or as an event structure [Cen00]),
it is unclear whether such a model, a description of some large and complicated
graph, would serve its purpose, e.g. to provide a usable mathematical framework
for validating program logics or for proving, for example, that a process respects
the above protocol on locks.

While writing an operational semantics of Java [CKRW98], the author
realised that the rules of interaction that processes must obey could be con-
veniently formalised by using the same stuff of which models are made: posets
of events. What a rule gives is a recipe for arranging events into legal configura-
tions. From the work on Java the general idea originated of a context calculus

where posets of events representing fragments of concurrent computation com-
bine into larger fragments according to language-dependent rules given in the
form of axioms.

In the present paper we propose an axiomatic framework for describing con-
current systems. It is a sequent calculus, where sequents are made of posets and
monotone injections specifying how the posets are allowed or required to match.

Sections 2 and 3 describe syntax and semantics of sequents. In Section 4
we give the structural rules of the calculus and prove soundness with respect
to interpretation in configuration structures [GG90]. Completeness is proven in
Section 5 for a restriction of the calculus to finite posets. The Java memory
model is axiomatised by means of finite posets in Section 6 where a non-trivial
property of thread interaction is proven formally. Note that the Java memory
model to which we refer [GJS96, §17] is now under revision by the Java Commu-
nity Process in order to make it support common optimising techniques that are
currently disallowed. But of course the point of Section 6 is not to study specific
features of the Java language, but to see how configuration theories fare in real
life.

Notation. Here are some adopted notational conventions. An m × n matrix
ρ in a set S is a doubly indexed family of elements ρij of S (i = 1 . . .m and
j : 1 . . . n). When either m or n are 0, an n×m matrix is the empty family. The
Greek letters ρ, σ, τ are used as metavariables for two-dimensional matrices. We
write ρi instead of ρi1 when ρ has size m× 1. Similarly when ρ has size 1× n.

If ρ and σ are matrices of size m × n and r × n respectively, we write ρ ;σ
for the (m+ r)× n matrix obtained by “placing ρ above σ”: the ij-component
of ρ ;σ is ρij for i ≤ m, while it is σ(i−m)j when i > m. Similarly, if ρ and σ are
of size m× n and m× r, we write ρ , σ for the m× (n+ r) matrix obtained by
“placing ρ to the left of σ”: the ij-component of ρ, σ is ρij for j ≤ n, while it is
σi(j−n) when j > n.

We write function composition in diagrammatical order.

2 Poset Sequents

If A and B are partially ordered sets (posets), we write p : A � B for a
monomorphism in the category of posets, that is, an injective function preserving
the order of elements. In general, a momomorphism p : A� B in a category C
is called strong when, for any commuting square e v = u p in C, where e : C → D
is an epimorphism, there exists a unique diagonal d : D → A such that v = d p.
Then, any strong mono which is epimorphic is an isomorphism. The strong
monos p in the category of posets are exactly those which reflect the order, that
is: p(a) ≤ p(b) implies a ≤ b. By a simple argument, if A and B are finite, if
p is as above and there exists a mono B � A, then p must reflect the order.
Moreover, p must be surjective (an epimorphism), and therefore it must be an
isomorphism. This result is used in the proof of Proposition 11.

In general, we use Γ , ∆ . . . as metavariables for sequences of posets, A,
B . . . for individual posets, and a, b . . . for elements of posets. However, when

the components of a sequence Γ are not introduced explicitly by an equation
Γ = A1, . . . Am, we write Γi for the i-th element of Γ . Concatenation of sequences
Γ and∆ is written Γ,∆. If Γ = A1, . . . Am and∆ = B1 . . . Bn are finite sequences
of posets, we write ρ : Γ → ∆ to mean that ρ is an m × n matrix of monos
ρij : Ai� Bj . An m× 1 matrix Γ → D is called an interpretation of Γ in D.

Definition 1 A poset sequent Γ `ρ ∆ (just sequent for short) consists of two
finite sequences Γ and ∆ of posets and an m× n matrix ρ : Γ → ∆ of monos.

The posets in a sequent are meant to represent fragments of a configuration
of events. The intuitive meaning of a sequent Γ `ρ ∆ is that whenever a single
configuration interprets all components of Γ , the interpretation extends along ρ
to at least one component of ∆. Of course the ∆i may include more events than
are mentioned in Γ , thus specifying what is required to happen after (or must
have happened before) a certain combination (Γ) of events.

Let Γ `ρ ∆ and Π `σ ∆ be sequents. It is easy to check that Γ,Π `ρ;σ ∆
is a “well formed” sequent, that is: (ρ;σ) : Γ,Π → ∆. Similarly, if Γ `ρ ∆ and
Γ `σ Π are sequents, so is Γ `ρ,σ ∆,Π. Finally, if ρ : Γ → A and σ : A → ∆
are matrices of size m × 1 and 1 × n respectively, we can form their product
ρσ : Γ → ∆, of sizem×n, by using function composition to multiply components.
Hence, if Γ `ρ A and A `σ ∆ are sequents, then so is Γ `ρσ ∆.

Example. Let B,C `f ;g A and A `u,v D,E be sequents, where f : B � A,
g : C � A, u : A� D and v : A� E. Then, B,C `ρ D,E is a sequent, where

ρ =
[
f
g

]
[u v] =

[
fu fv
gu gv

]
,

with fu : B� D . . . and gv : C � E as required.
�

There is no general construction for multiplying two matrices Γ → ∆ → Π.
Some notion of summation on morphisms of the form Γi� Πj would be needed
for that. However, in Section 5 we use the following construction for multiplying
a matrix by a vector of row vectors. Let ρ : Γ → B1, . . . Bn be an m× n matrix
of monos, and let σ : [σ(1), . . . σ(n)] be a vector where each σ(i) is a 1×ki matrix
Bi → Π(i). The product ρ()iσ

(i) : Γ → Π(i) has size m × ki. Pasting all such
matrices together horizontally we obtain a matrix ρ♦σ = (ρ()1σ

(1), . . . ρ()nσ
(n))

of size m× (k1 + · · ·+kn). The ♦ construction is thus described by the following
formation rule:

Γ `ρ B1, . . . Bn B1 `σ(1) Π(1) . . . Bn `σ(n) Π(n)

[♦]
Γ `ρ♦σ Π(1), . . . Π(n)

(σ = [σ(1), . . . σ(n)])

Let L be a set of labels to be thought of as action names. An L-labelled
sequent is a sequent Γ `ρ ∆ where all components X of Γ and ∆ are labelled
by a function X → L and all components of ρ respect the labelling.

3 Configuration Structures

Definition 2 [GP95] A configuration structure is a pair (E, C) where E is a
set, whose elements are called events, and C is a collection of subsets of E, called
configurations.

The events of a configuration structure (or just structure for short) can be
viewed as occurrences of the actions a concurrent system may perform, while a
configuration models a consistent state of the system, represented as the set of
events occurred during computation up to that point. We write just C for (E, C)
when no confusion arises.

Configuration structures originate from [Win82], where they were introduced
as an alternative way to address event structures [NPW81] (in the form known
later as prime event structures with binary conflict). In [Win87] several closure
conditions on the set of configurations of a structure C were given in order to get
a precise match with general event structures (generalising those of [NPW81]).
The requirements were: finiteness (if an event belongs to a configuration C, then
it also belongs to a finite subconfiguration of C), coincidence-freeness (if two
distinct events belong to a configuration C, then there exists a subconfiguration
of C containing exactly one of them), closure under bounded unions and non-
emptyness of C.

In the framework of (general) event structures, configurations (as well as the
order on events) are defined in terms of other mathematical structure. In the
present paper, and following [GG90], we find it convenient to take the notion of
configuration as primitive and that of order as derived. To this effect we adopt
here (and do so implicitly) all of the above requirements except for closure under
bounded unions, which is not needed for the treatment.

Let C be a configuration of a structure C. We write Sub (C) for the set
{D ∈ C |D ⊆ C} of subconfigurations of C. Then, we let ≤C denote the binary
relation on C such that b ≤C a if and only if, for all D ∈ Sub (C), a ∈ D implies
b ∈ D. The set {b ∈ C | b ≤C a} is denoted by C ↓ a, and similarly for C ↑ a.

Proposition 3 The relation ≤C is a partial order. Moreover, for all a ∈ C, the
set C ↓ a is finite.

The antisymmetry of ≤ (we omit indices when no confusion arises) is an
immediate consequence of coincidence-freeness while finiteness of C ↓ a follows
from the finiteness property on configurations (the converse does not hold).
We use this property (only) in Section 6, where a formal rule expressing the
groundedness of configurations is introduced to prove a property of Java. By
the proposition above, we treat configurations as posets. If A is a poset, we
write (EA, CA) for the structure whose events are the elements of A and whose
configurations are the downwards closed subsets of A. When a poset A is treated
as a configuration structure, it is meant (EA, CA).

In general, the collection of partial orders ≤C , C ∈ C, defined as above does
not represent the causality relation on C faithfully. In particular, it does not
hold that a ≤D b implies a ≤C b for D ∈ Sub (C) (while the converse holds by
definition). Calling conservative a structure where the above implication does
hold, it is easy to check the following:

Proposition 4 A configuration structure C is conservative if and only if it is has
downwards-closed bounded intersections: for all C ∈ C, for all D,F ∈ Sub (C),
and for all a ∈ D ∩ F , if b ≤D a then b ∈ F .

If C and D are configurations of a conservative structure, with D ∈ Sub (C),
the inclusion D ⊆ C can be viewed as a morphism in the category of posets,
which we write (D,≤D) ↪→ (C,≤C). We rely on conservativity in Definition 5,
which is the heart of the present paper. Henceforth the configuration structures
of discourse will implicitly be assumed conservative. Note that so are the stable
structures of [GG01], which require closure under bounded intersections. These
are precisely the structures where the order on a configuration determines its
subconfigurations. Indeed all results in the present paper, which rely on weaker
assumptions, specialise to stable structures.

Definition 5 A structure C is said to satisfy a sequent Γ `ρ ∆ when, for any
configuration C ∈ C and interpretation π : Γ → C, there exist a configuration
D ∈ C, a component ∆k ∈ ∆ and a mono q : ∆k � D such that C ∈ Sub (D)
and, for all i, the following diagram commutes.

�� -

-

??

Γi ∆k

q

ρik

DC

πi

(1)

The notion of interpretation given above extends to labelled sequents and
labelled configuration structures [GP95] in an obvious way. The reader should
check that the above definition agrees with the intuitive meaning of sequents
proposed in the previous section. Note that in the present setting we decided
to attach no special computational meaning to the inclusions as C ↪→ D above.
However, the notion of ↪→ must be strenthened in order to prove that satisfaction
is preserved by history preserving bisimulation [GG01].

A sequent is called valid if it is satisfied by all structures. An example of valid
sequent is A `id A. A slightly more complicated example is given in Diagram 2,
which states that if a poset has an element a and it has an element b, then
either a and b are the same element or they are distinct. The adopted graphi-
cal representation of sequents is to be read as follows: posets are separated by
commas and no braces are used to hold elements of a set together. Vertical lines
represent the order within each poset (where a below b means a < b), while their

absence means no order. Links spanning across the turnstile represent the matrix
of monos, where a _ b means a 7→ b by the corresponding matrix component.

�

�� $'

" !
`ba , cb a , (2)

By the above conventions, (2) stands for a sequent A,B `ρ C,D where
A = {a}, B = {b}, C = {a, b} (with a and b unordered) and D = {c}. Moreover,
ρ11(a) = a, ρ12(a) = c and so on.

Example 6 A,A `id;id A is not satisfied by the structure A + A, where +
denotes disjoint union. In fact, the two copies of A on the left side of the sequent
are disjoint in the interpretation A

inl−→ A + A
inr←− A, while the components of

(id; id) do overlap.
�

Here are other examples. The sequent ` denotes absurdity. Note that this
sequent features empty sequences as antecedent and succedent and it is meant
as decorated by the empty matrix. A structure satisfying ` A models a process
where all runs are bound to produce a combination of events matching A. Let a
and b be labelled by l1 and l2 respectively. Sequent (3.i) below is to be read: any
l1 action must be followed by an l2 action, while sequent (3.ii) forbids l2 actions
to be preceded by (to depend causally on) l1 actions.

��
`a
b

a

(i)

b

a
`

(ii)

(3)

By similar statements it is possible to describe the behaviour of concurrent
programs axiomatically. This is shown in Section 6 where we shall develop further
intuition on the meaning of sequents.

4 Configuration Theories

Definition 7 A configuration theory is a set of sequents which is closed under
the rule schemes of Table 1.

The rule [l-weak] only allows the premises of a sequent to be weakened by
the empty poset ∅. Left weakening by an arbitrary poset (as in [r-weak]) would
be unsound, as in fact it would allow the inference of A,A `id;id A from A `id A
(see Example 6). Rule [r-cut] is a special case of [♦], which was introduced as
a formation rule in Section 2. Indeed [♦] can be derived from [r-cut]. Note that
[♦] has an obvious dual, which is a general form (and is derivable from) [l-cut].

[true] ` ∅ [iso]
A `φ B

(φ is iso)

[l-weak]
Γ `ρ ∆

Γ, ∅ `ρ;∅ ∆
[r-weak]

Γ `ρ ∆
Γ `ρ,σ ∆,A

(∗)

[l-contr]
Γ,A,A `ρ;σ;σ ∆

Γ,A `ρ;σ ∆
[r-contr]

Γ `ρ,σ,σ ∆,A,A
Γ `ρ,σ ∆,A

[l-exc]
Γ,A,B,Π `ρ;σ;τ ;θ ∆

Γ,B,A,Π `ρ;τ ;σ;θ ∆
[r-exc]

Γ `ρ,σ,τ,θ ∆,A,B,Π
Γ `ρ,τ,σ,θ ∆,B,A,Π

[l-cut]
Π `τ A Γ,A `ρ;σ ∆

Γ,Π `ρ;τσ ∆
[r-cut]

A `τ Π Γ `ρ,σ ∆,A
Γ `ρ,στ ∆,Π

(∗) where σ is a column vector of monos σi : Γi� A.

Table 1. Structural Rules

A model of a configuration theory is a structure which satisfies all sequents of
the theory.

Theorem 8 The rules of Table 1 are sound.

Proof. It is required to prove that, if a configuration structure satisfies the
premises of a rule, then it also satisfies the conclusion. We just prove the state-
ment for the left and right cut rules. The argument is similar for the others.

[l-cut]. Let C satisfy the sequents Π `τ A and Γ,A `ρ;σ ∆, let C ∈ C be a con-
figuration, and let υ : Γ → C and π : Π → C be matrices of monos. Satisfaction
of τ yields an inclusion C ↪→ D and a map q : A� D making the (∗) square of
diagram (4) commute for all i. Then, considering q in conjunction with the maps
Γj

υj−→ C ↪→ D, satisfaction of ρ;σ yields an inclusion D ↪→ D ′, a component
∆k and a map q ′ : ∆k � D ′ making all the rest of diagram (4) commute for
all i and j. Since τiσk = (τσ)ik, we conclude that C satisfies Γ,Π `ρ;τσ ∆ as
required.

[r-cut]. Let C satisfy the sequents A `τ Π and Γ `ρ,σ ∆,A, let C ∈ C be
a configuration, and let υ : Γ → C be a matrix of monos. Satisfaction of ρ, σ
yields an injection C ↪→ D and moreover, for all Γi ∈ Γ , a commuting square as
(?) below:

�� -

-

??

Γi X

qυi

C D

ξi

(?) �� -

-

??

A Πk

q ′

D D ′

τk

q (??)

where either X = A and ξi = σi, or X = ∆j for a component ∆j ∈ ∆, and
ξi = ρij . In the last case the result follows immediately. Otherwise X = A and,
since τ is satisfied, there exists a component Πk ∈ Π, an inclusion D ↪→ D ′ and
a map q′ : Πk � D ′ such that the diagram (??) above commutes. Pasting (?)
and (??) we get the required instance of diagram (1), where σiτκ = (σ τ)ik.

�

�� -
�� -

-

??

Q
QQs

J
JĴ

-

?

Πi A

q

C D

∆k

πi

τi

ρjk

D ′
q ′

σk

(∗)

Γj

υj (4)

5 Completeness

There are valid sequents which cannot be derived from the inference rules of
Table 1. One is Diagram (2) of Section 3. In this section we obtain a complete
calculus at the cost of constraining sequents (but not the models) to be finite,
that is, made of finite posets. Indeed, since Diagram (2) is finite, new rules are
needed to achieve completeness. Note that the Java axioms of Section 6 are
finite.

First we introduce a notion of order (in fact a preorder) on matrices of poset
maps which is somewhat analogous to the notion of rank in linear algebra. Let
ρ : Γ → A1, . . . Am and σ : Γ → B1, . . . Bn be matrices of posets. We write
ρ ≤Γ σ (omitting Γ when understood) if there exist a function on indices
f : {1, . . . n} → {1, . . .m} and a family {φj} of monos φj : Af(j) � Bj ,
j = 1 . . . n, such that σij = ρif(j)φj , for all i. In this case we say that f and
{φj} witness ρ ≤ σ. The relation ≤ is reflexive and transitive. We call equivalent
two matrices ρ and σ such that ρ ≤ σ and σ ≤ ρ. The equivalence class of ρ is
written [ρ].

Proposition 9 Let Γ `ρ ∆ and Γ `σ Π be sequents: ρ ≤ σ holds if and only
if, whenever a structure satisfies σ, it also satisfies ρ.

Proof. If : Each Πi ∈ Π (viewed as a configuration structure) satisfies σ, and
so it must satisfy ρ. Hence, considering the interpretation σ()i : Γ → Πi, there
exist a ∆f(i) ∈ ∆ and a mono φi : ∆f(i) � Πi such that σi = ρf(i)φi as required.

Only if : Let ρ ≤ σ, let C) satisfy σ and let π : Γ → C ∈ C. There must exist
a D ∈ C, an inclusion u : C ↪→ D, a Πk ∈ Π and a mono q : Πk � D such
that πiu = σikq, for all i. Since ρ ≤ σ, there must exist ∆f(k) ∈ ∆ and a mono
φk : ∆f(k) � Πk such that ρif(k)φk = σik for all i; hence πiu = σikq = ρif(k)φkq
as required. �

By the above result the inference rule [sub] below is sound. This rule is used
in Section 6. Moreover, since any matrix σ : Γ → Π is such that σ ≤ ε, where
ε : Γ → ε is the empty matrix and ε is the empty sequence, the falsum rule
below is a special case of [sub]. Similarly, [sub] subsumes [iso], [r-weak], [r-contr]
and [r-exc].

[sub]
Γ `ρ ∆
Γ `σ Π

(σ ≤ ρ) [falsum]
Γ `

Γ `σ Π

Definition 10 A matrix µ of size m × n is called minimal in its equivalence
class when, for all ρ ∈ [µ] of size m× n′, n ≤ n′.

We show that, when considering matrices Γ → ∆ where all components of
Γ and ∆ are finite, all minimal matrices in an equivalence class are isomorphic.
In the rest of this section we assume, unless otherwise stated, that matrices are
made of maps between finite posets. This assumption should also reassure the
concerned reader that the side condition of [sub] can be checked effectively.

Proposition 11 Let ρ : Γ → ∆ and µ : Γ → Π be equivalent matrices, with µ of
size m×n minimal in [ρ]. Then ρ ≤ µ is witnessed by a family of isomorphisms
φj : ∆f(j) � Πj.

Proof. Let ρ have size m × n′ and let ρ ≤ µ by f : {1, . . . n} → {1, . . . n′} and
by a family of monos φj : ∆f(j) � Πj . Let ρ′ be the matrix obtained from ρ
by deleting all the columns ρ()k : Γ → ∆k such that k 6= f(j) for all j. Clearly
ρ ≤ ρ′, and moreover ρ′ ≤ µ by the same f and φj . Hence ρ′ ∈ [µ]. It follows
that f must be injective, otherwise its image would be smaller than n, thus
contraddicting the minimality of µ. So f is a bijection. Let µ ≤ ρ′ by a function
g and a family ψi : Πg(i) � ∆i. By the same argument as above g must be a
bijection, and hence all nodes in the bipartite directed graph whose edges are
the φj and the ψi belong to (exactly) one cycle, which implies, from the remark
at the the beginning of Section 2, that all φj are isos. �

A consequence of this result is that if two m× n matrices Γ → ∆ and Γ → Π

are equivalent and minimal, there exists a family of n isomorphisms ∆i

∼=−→ Πi

through which all their components factorise. Hence, by a slight mathematical
abuse, we say the minimal matrix of an equivalence class.

We can now define an operation that yields all possible mergings of two finite
posets B and C which are consistent on some common intersection A.

Lemma 12 Let A, B, C be finite posets and let p : A � B and q : A � C
be monos. There exists a (possibly empty) matrix (π; τ) : B,C → Π such that
p πi = q τi for all i, and moreover (π; τ) ≤ (r; s) for all r : B� D and s : C � D
such that p r = q s.

Sketch of proof. LetK be any set of cardinality k = |B|+|C| and letK1, . . .Kn

be the set of all posets whose underlying set isK. Their number (n) is (k−1)3k/2.
For j = 1 . . . n, consider the (finite) set of diagrams B � Kj � C which
commute with (p; q). The components of Π are the images of all such diagrams,
while π and τ are made of the injections. �

Of course, all matrices with the above property are equivalent. We let µ(p, q)
be the minimal one of the equivalence class. By using this construction we can
now introduce a new rule of inference which yields the extension of a sequent
Γ,A ` ∆ along a mono A� C:

Γ,A `ρ;σ B1, . . . Bn[extend]
Γ,C `(ρ♦π);τ Π

(1), . . . Π(n)
(∗)

(∗) where π = [π(1), . . . π(n)], τ = [τ (1), . . . τ (n)], q : A� C and,
for all i, (π(i), τ (i)) = µ(σi, q) : (Bi, C)→ Π(i).

Note that [extend] only makes sense in a calculus of finite posets, where µ(,)
is defined.

Proposition 13 [extend] is sound.

Proof. Let Γ,A `ρ;σ B1, . . . Bn be satisfied by C), let q : A� C be a mono and
let (ζ; p) : (Γ,C) → D be an interpretation of (Γ,C) in a configuration D ∈ C.
Since (ζ; q p) : (Γ,A) → D, there exist D ′ ∈ C, an inclusion u : D ↪→ D ′, a Bk
and a mono r : Bk � D ′ such that σkr = q p u and, for all i, ρikr = ζiu. Let
µ(σk, q) = (π(k); τ (k)) : (Bk, C)→ Π(k). Since (π(k); τ (k)) ≤ (r; p u), there exists
Π

(k)
h ∈ Π(k) and a mono φ : Π(k)

h � D ′ such that π(k)
h φ = r and τ

(k)
h φ = p u.

Moreover, let ρ♦π = (ρ()1π
(1), . . . ρ()nπ

(n)). The h-component of (ρ♦π)(k) is
ρ()k π

(k)
h : Γ → Π

(k)
h , and hence ρik π

(k)
h φ = ρik r = ζi u as required.

�

Lemma 14 [extend] preserves minimality.

Proof. With no loss of generality we develop the argument for A,B `ρ C,D.
Let A,F `σ Π be the extension of ρ along a mono q : B� F , and suppose that
σ is not minimal. Let ν ∈ [σ] be minimal and let f be the funcion on indices
witnessing σ ≤ ν. There must be a Πk ∈ Π(i) such that k 6= f(j) for all j.
The matrix σ′ obtained from σ by deleting σ()k must still be in [σ]. Hence there
must exist Πh ∈ Π(l) and p : Πh � Πk through which the interpretation σ()k

of (A,F) factorises. However, it must be l 6= i, because otherwise µ(ρ2i, q) would
not be minimal. But then ρ()i ' ρ()l contraddicting the minimality of ρ.

�

Theorem 15 (completeness) The system of finite sequents which includes the
axioms of Table 1 and [extend] is complete.

Proof. Let A1, . . . Am `ρ ∆ be a valid sequent. It is required to prove that ρ is
derivable. Consider the derivation:

···

A1 `id A1

A1, ∅ `id;∅ A1

A1, A2, ∅ `π;∅ Π

(∅� A2)

[l-weak]

[extend]

[l-weak] A1, A2 `π Π

A1, . . . Am `σ B1, . . . Bn

[extend] (∅� Am)

where the Ai are introduced one-by-one by m applications of [l-weak] and
[extend]. Since these rules are sound and A1 `id A1 is valid, then so is also
σ. Hence, by Proposition 9, σ ∈ [ρ]. Moreover [l-weak] preserves minimality
trivially, while [extend] does so by Proposition 14. Since A1 `id A1 is mini-
mal, then so is also σ. Therefore, from Proposition 11, ρ ≤ σ is witnessed by a
family of isomorphisms φj : ∆f(j)

'−→ Bj such that ρif(j) φj = σij . Then, by n
applications of [iso] and [r-cut] we derive:

A1, . . . Am `σ B1, . . . Bn Bi `φ−1
i
∆f(i)[r-cut]n

A1, . . . Am `σ()f(1),...σ()f(n) ∆f(1), . . . ∆f(n)

The rest of σ can then be adjoined by [r-weak]. �

6 The Theory of Java

The interaction of threads (lightweight processes) and memory in Java is de-
scribed in the language specification [GJS96, Ch. 17] by means of eight kinds
of actions. Besides Lock and Unlock , which we do not consider here, they are:
Use, Assign, Load , Store, Read and Write. These are abstractions over corre-
sponding Java bytecode instructions. We let u, a, l, s, r and w stand for events
labelled respectively by these types of actions. Each thread has a working mem-
ory where private copies of shared variables are cached. Threads operate on their
own working memory by Use and Assign actions. For example, a thread θ per-
forming an assignment x = x+ 1, first uses the content of its working copy of x
to compute x+1, and then assigns the computed value v to x. However, v is not
available to other threads unless θ decides (nondeterministically) to store the
current value of its copy x to the main memory, where the master copies of all
variables reside. The Store action is just a message sent asynchronously by θ to

the main memory: the actual writing of v in the master copy of x is performed
by the main memory (possibly at a later time) with a Write action. Similarly
Read and Load are used for a loosely coupled copying of data from the main
memory to a thread’s working memory.

Following [CKRW98] we label events by 4-tuples of the form (α, θ, x, v), where
α ∈ {Use,Assign,Load ,Store,Read ,Write}, θ is a thread identifier, x is a vari-
able and v is a value. We write e : l to mean that event e has label l. Label com-
ponents are omitted when undestood or irrelevant. Hence, if ux1 : (Use, ζ, x, 1),
then ux1 represents the use of variable x, whose current value is 1, by a thread
ζ, as in the example below for evaluating the right hand side of the assignment
y = x, while a : (Assign, y) stands for an assignment of an unspecified value to
y by an unspecified thread.

Table 2 shows a possible order of events which may occur when two threads
θ and ζ, running in parallel left to right, execute respectively (x = 1;x = y;) and
(y = 2; y = x;). The events are labeled as follows: ax1 : (Assign, θ, x, 1), sx1 :
(Store, θ, x, 1), ly2 : (Load , θ, y, 2), uy2 : (Use, θ, y, 2), ax2 : (Assign, θ, x, 2), wx1 :
(Write, θ, x, 1), rx1 : (Read , ζ, x, 1), wy2 : (Write, ζ, y, 2), ry2 : (Read , θ, y, 2),
ay2 : (Assign, ζ, y, 2), sy2 : (Store, ζ, y, 2), lx1 : (Load , ζ, x, 1), ux1 : (Use, ζ, x, 1),
ay1 : (Assign, ζ, y, 1). The execution ends with x = y = 2 in the working mem-
ory of θ and x = y = 1 in the working memory of ζ. Note that there is no
causal dependency between actions performed by the memory on different vari-
ables, as between wx1 and wy2. The ordering is legal according to the informal
specification given in [GJS96].

mem.

ζ

-

QQs -

-

XXXXXz��
���1

- ��>

-

- -

-

-

-θ sx1

wx1 rx1

sy2 lx1

wy2 ry2

ly2 uy2ax1

ay2 ay1

ax2

ux1

Table 2. (x = 1;x = y;) || (y = 2; y = x;)

Below we list 12 formal axiom schemes describing the protocol of memory
and thread interaction in Java. They are subject to the side conditions given
below, specifying what labels are to be attached to each event. By wn we mean
a totally ordered set {w1 ≤ w2 ≤ . . . wn} of n events of type Write. Similarly
for sn, ln and rn. We do not consider synchronization by lock and unlock : the
full theory, including synchronization by lock and unlock (6 additional axioms),
is available at http://cenciarelli.dsi.uniroma1.it/~cencia.

As an example we explain axiom scheme (3). It represents all sequents of that
form where a : (Assign, θ, x, v), s : (Store, θ, x, v) and l : (Load , θ, x) (the value
being loaded in x is irrelevant). Hence: a Store action by θ on a variable x must
intervene between an Assign by θ of x and a subsequent Load by θ of x. This
is because a “thread is not permitted to lose its most recent assign” [GJS96,
§ 17.3].

x

yx

y

��

& �

�'

��
1) x y ,`

�� �'

��" �
2) p q ,`

p

q p

q

a

s

l

a

l

� �

��
3) `

� �

��
4) `

s1

s2

s2

s1

a

�'��
`
u

a
,
u

l
u5)

��
s

a
s `6)

l

a1

u

a2

a1

u

� �& �

�'��
,`7)

u

a1 � �& �

�'��
,` l2

l1

u
u

l1
a

l1

u

8)

"�

�#
s

a1
a1

s

a2`9)

��
`
wn

wn

sn
10)

�#
ln

ln

rn
`11)

�#

"�
sn

ln

`12)

ln

sn

wn

rn

The above sequents express the following requirements:

(1) x : (α, θ) and y : (α′, θ), α, α′ ∈ {Use,Assign,Load ,Store} (these are called
thread actions). Intuitively, this axiom means that the actions performed by any
one thread are totally ordered [GJS96, §17.2].

(2) p : (β, θ, x) and q : (β′, θ, x), where β, β′ ∈ {Read ,Write} (memory actions).
The actions performed by the main memory for any one variable are totally
ordered [ibid. §17.5].

(4) s1 : (Store, θ, x, v1), s2 : (Store, θ, x, v2) and a : (Assign, θ, x, v2). A thread
is not permitted to write data from its working memory back to main memory
for no reason [ibid. §17.3].

(5) and (6) u : (Use, θ, x, v), a : (Assign, θ, x, v), l : (Load , θ, x, v) and s :
(Store, θ, x, v). Threads start with an empty working memory and new variables

are created only in main memory and are not initially in any thread’s working
memory [ibid. §17.3].

(7) and (8) a1 : (Assign, θ, x, v1), u : (Use, θ, x, v2), with v2 6= v1, l and
l2 : (Load , θ, x, v2), a2 and a : (Assign, θ, x, v2), l1 : (Load , θ, x, v1). A Use action
transfers the contents of the thread’s working copy of a variable to the thread’s
execution engine [ibid. §17.1].

(9) a1 : (Assign, θ, x, v1), s : (Store, θ, x, v2), a2 : (Assign, θ, x, v2) and v2 6= v1.
A Store action transmits the contents of the thread’s working copy of a variable
to main memory [ibid. §17.1].

(10) and (11) wi : (Write, θ, x, vi), si : (Store, θ, x, vi), li : (Load , θ, x, vi)
and ri : (Read , θ, x, vi), for i = 1 . . . n. Each Load or Write action is uniquely
paired with a preceding Read or Store action respectively. Matching actions bear
identical values [ibid. §17.2,§17.3].

(12) Labels as above. The actions on the master copy of any given variable on
behalf of a thread are performed by the main memory in exactly the order that
the thread requested [ibid. §17.3].

The Java language specification states that a thread is not permitted to write
data from its working memory back to main memory for no reason. Axiom
(4) alone does not seem to guarantee this property, and in fact [GJS96, §17.3]
introduces explicitly a similar clause requiring that an assignment exists in be-
tween a load and a subsequent store. This is expressed formally by a version of
axiom (4), call it (4-bis), where s1 is replaced by l : (Load , θ, x, v1). In [CKRW98]
we proved that (4-bis) follows from the other axioms (in a non-obvious way).
Here we are able to derive this sequent formally in the theory of Java. However,
to do so we need a new rule, [grd], stating that configurations are grounded, that
is: there are no infinite descending chains of events (see Proposition 3).

Let s : A� B and let t : A� D. We write t� s if there exists r : A� B,
r 6= s, such that for all a ∈ A:

– if r(a) < s(a) then D ↑ t(a) ⊆ t(A);
– if r(a) > s(a) then D ↓ t(a) ⊆ t(A) and there exists a′ ∈ A such that
r(a) < r(a′) ≤ s(a′).

When A, B and D are chains, that is totally ordered sets, the condition expressed
by � allows the following inference:

A `ρ,σ D,B[grd]
A `ρ D

(if A, B, D are chains and ρ� σ)

By suitably generalising the relation�, this rule can be extended to arbitrary
posets. The proof of soundness for [grd] is rather lengthy. Here we just give the
intuition with an example: Let A = {a}, B = {a1 < a2}, D = {b < a3}, let a and
the ai be labelled by l and b by l ′ 6= l. Moreover, let σ(a) = a2 and ρ(a) = a3.

It is easy to check that ρ � σ, where the required r : A� B is r(a) = a1. To
wit, σ can be viewed as iteratively “generating” events (namely a2) below a. But
iteration cannot go on indefinitely: the reader can verify that any configuration
C of a structure C satisfying (ρ, σ) must feature a chain of l-actions preceeded
by an l ′-action (postulated by ρ; this justifies the notation ρ� σ), or otherwise
no l-actions at all. Then, any interpretation A → C factorising through σ will
also factorise through ρ, which means that C satisfies ρ.

Derivation of (4-bis). Events are meant as labelled according to the convention
introduced above. Let A = {a < l < s}, B = {a1 < s1 < a2 < l1 < s2} and
D = {a3 < s3 < l2 < a4 < s4}. Let σ : A� B be the map σ(a) = a1; the rest
of σ is forced by the labels, and so is ρ : A� D. The sequent A `ρ,σ D,B can
be derived from axioms (1), (3) and (4) using [extend] and [r-cut]. Since ρ� σ,
[grd] yields A `ρ D. Moreover, let E = {l3 < s5} and F = {l4 < a5 < s6}, and
let τ : E � A and π : E � F be the obvious maps. From (1) and (6) we derive
E `τ,π A,F and hence, by [r-cut], E `τρ,π D,F . Since π ≤ (τρ, π), [sub] yields
E `π F as required. �

Acknowledgements

Thanks to Alexander Knapp and Anna Labella for the many useful discussions.

References

[Cen00] P. Cenciarelli. Event Structures for Java. In S. Drossopoulou, S. Eisen-
bach, B. Jacobs, G. Leavens, P. Mueller, and A. Poetzsch-Heffter, editors,
Proceedings of the ECOOP 2000 Workshop on Formal Techniques for Java
Programs, Cannes, France, June 2000.

[CKRW98] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An Event-Based Struc-
tural Operational Semantics of Multi-Threaded Java. In J. Alves-Foss, ed-
itor, Formal Syntax and Semantics of Java, 1523 LNCS. Springer, 1998.

[GG90] R.J. van Glabbeek and U. Goltz. Refinement of Actions in Causality Based
Models. In W.P. de Roever J.W. de Bakker and G. Rozenberg, editors,
LNCS 430, pages 267–300. Springer-Verlag, 1990.

[GG01] R.J. van Glabbeek and U. Goltz. Refinement of actions and equivalence
notions for concurrent systems. Acta Informatica, 37:229–327, 2001.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

[GP95] R.J. van Glabbeek and G.D. Plotkin. Configuration structures (extended
abstract). In D. Kozen, editor, Proceedings of LICS’95, pages 199–209.
IEEE Computer Society Press, June 1995.

[NPW81] M. Nielsen, G.D. Plotkin, and G. Winskel. Petri Nets, Event Structures
and Domains: Part I. Theoretical Computer Science, 13(1):85–108, 1981.

[Win82] G. Winskel. Event Structure Semantics of CCS and Related Languages.
Springer LNCS, 140, 1982. Proceedings ICALP’82.

[Win87] Glynn Winskel. Event Structures. In G. Rozenberg W. Brauer, W. Reisig,
editor, Petri Nets: Applications and Relationships to Other Models of Con-
currency, number 255 in LNCS. Springer-Verlag, 1987.

