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Abstract

We address the problem of sorting in the presence of faults that may arbitrarily corrupt
memory locations, and investigate the impact of memory faults both on the correctness
and on the running times of mergesort-based algorithms. To achieve this goal, we develop a
software testbed that simulates different fault injection strategies, and perform a thorough
experimental study using a combination of several fault parameters. Our experiments give
evidence that simple-minded approaches to this problem are largely impractical, while the
design of more sophisticated resilient algorithms seems really worth the effort. Another
contribution of our computational study is a carefully engineered implementation of a
resilient sorting algorithm, which appears robust to different memory fault patterns.

Keywords: sorting, memory faults, memory models, fault injection, computing with unreli-
able information, experimental algorithmics.

1 Introduction

A standard assumption in the design and analysis of algorithms is that the contents of memory
locations do not change throughout the algorithm execution unless they are explicitly written
by the algorithm itself. This assumption, however, may not necessarily hold for very large
and inexpensive memories used in modern computing platforms. The trend observed in the
design of today’s memory technologies, in fact, is to avoid the use of sophisticated error
checking and correction circuitry that would impose non-negligible costs in terms of both
performance and money: as a consequence, memories may be quite error-prone and can be
responsible of silent data corruptions. Memory failures are usually classified as either hard
errors (i.e., permanent physical defects whose repair requires component replacement), or soft
errors (i.e., transient faults in semiconductor devices and recoverable errors in disks and other
devices) [32, 42]. Soft errors are a particularly big concern in the reliability of storage systems
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Figure 1: Mean time between failures of different memories as a function of the memory size
and of the number of failures in time per Mbit (FIT).

as recently discussed, e.g., in [27, 31, 36, 38, 39, 41]. Such errors have several origins and
exhibit complicated patterns. Hardware or power failures, as well as environmental conditions
such as cosmic rays and alpha particles, can temporarily affect the behavior of semiconductor
devices resulting in unpredictable, random, independent bit flips. According to memory
vendors (see, e.g., [41]), the standard soft error rates at sea level for modern memory devices
are between 1000 and 5000 failures in time per Mbit (in short, FIT): this means that a
memory chip of 1 Mbit is likely to experience between 1000 and 5000 faults every 109 hours
of use. We remark that the intensity of cosmic radiation depends strongly on altitude, and
thus the failure rate considerably increases with altitude, being even two orders of magnitude
larger at 10000 meters [27]. Figure 1 illustrates the mean time between failures for computing
platforms with different memory sizes using currently available technologies (at sea level).
The mean time between failures has been obtained as 109/(FIT × memory size in Mbit) and
gives the expected number of hours between two faults as a function of the memory size and
of the FIT rate. As shown by the chart, this number decreases as the memory size becomes
larger: for instance, a system with Terabytes of memory, such as a large cluster of computing
platforms with a few Gigabytes per node, is likely to experience one bit flip every few minutes.
Multiple bit errors can also occur at different levels of the memory hierarchy. For instance, a
systematic analysis of data corruption recently conducted in the CERN computer center [33]
has shown that disks can experience transient errors due to environmental factors, such as
high temperature, and to usage activities, and that a single error can often determine the
corruption of large regions of data, up to 64 KB. This can be a serious problem for algorithms
that work by copying data from disk to main memory, as happens in all those applications
designed to cope with large data sets.

In the design of reliable systems, when specific hardware for fault detection is not avail-
able, it makes sense to assume that the algorithms themselves are in charge of dealing with
memory faults. Informally, we say that an algorithm is resilient to memory faults if, despite
the corruption of some memory values before or during its execution, the algorithm is nev-
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ertheless able to get a correct output at least on the set of uncorrupted values. We note
that classical algorithms are typically non-resilient: if an algorithm is not prepared to cope
with memory faults, it may take wrong steps upon reading corrupted values and errors may
propagate over throughout its execution. Designing resilient algorithms seems important in
a variety of different domains. Many large-scale applications that require the processing of
massive data sets demand large memory capacities at low cost: in these cases even very few
memory faults may jeopardize the correctness of the underlying algorithms. For instance, the
inverted indices used by Web search engines are typically maintained sorted for fast document
access: for such large data structures, even a small failure probability can result in bit flips
in the index, that may become responsible of erroneous answers to keyword searches. Sim-
ilar phenomena have been observed in practice [23]. Another application domain is related
to avionics systems, which make typically use of embedded software with strong reliability
concerns: as observed above, in this case memories may incur rather large numbers of faults,
that can seriously compromise safety critical applications. Finally, in fault-based cryptanal-
ysis some optical and electromagnetic perturbation attacks [7, 40] work by manipulating the
non-volatile memories of cryptographic devices, so as to induce very timing-precise controlled
faults on given individual bits: this forces the devices to output wrong ciphertexts that may
allow the attacker to determine the secret keys used during the encryption. Induced memory
errors have been effectively used in order to break cryptographic protocols [7, 8, 44], smart
cards and other security processors [1, 2, 40], and to take control over a Java Virtual Ma-
chine [22]. In this context the errors are introduced by a malicious adversary, which can
assume some knowledge of the algorithm’s behavior. We remark that, in all the above appli-
cations, both the faults rate and the faults patterns (i.e., random or adversarial faults, single
or multiple corruptions) can be very different.

Related work. Since the pioneering work of von Neumann in the late 50’s [43], the prob-
lem of computing with unreliable information has been investigated in a variety of different
settings, including the liar model [3, 9, 14, 16, 26, 28, 34, 37], fault-tolerant sorting net-
works [4, 29, 30, 45], resiliency of pointer-based data structures [5], parallel models of compu-
tation with faulty memories [11, 12, 24]. We refer the interested reader to [19] and [35] for an
overview. In [18], Finocchi and Italiano introduced a faulty-memory random access machine,
i.e., a random access machine whose memory locations may suffer from memory faults. In this
model, an adaptive adversary may corrupt up to δ memory words throughout the execution
of an algorithm. We remark that δ is not a constant, but a parameter of the model. The
adaptive adversary captures situations like cosmic-rays bursts, memories with non-uniform
fault-probability, and hackers’ attacks which would be difficult to be modelled otherwise. The
algorithm cannot distinguish corrupted values from correct ones and can exploit only O(1)
safe memory words, whose content never gets corrupted. The last assumption is not very
restrictive, since one can usually afford the cost of storing a small number of running vari-
ables in a more expensive and more reliable memory of constant size. In [18, 20] Finocchi
et al. presented matching upper and lower bounds for resilient sorting and searching in this
faulty-memory model.

Let n be the number of keys to be sorted. In [18] Finocchi and Italiano proved that any
resilient O(n log n) comparison-based deterministic algorithm can tolerate the corruption of at
most O(

√
n log n ) keys. They also proved that one can sort resiliently in O(n log n+δ3) time:

this yields an algorithm (Fast) whose running time is optimal in the comparison model as
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long as δ = O((n log n)1/3). In [20], Finocchi et al. closed the gap between the upper and the
lower bound, designing a resilient sorting algorithm (Opt) with running time O(n log n+ δ2).
We note that both Fast and Opt pay only an additive overhead in their running times in
order to cope with memory faults: this seems theoretically much better than a simple-minded
approach, that would produce a multiplicative overhead of Θ(δ) in the running times.

Our results. In this paper we perform a thorough experimental evaluation of the resilient
sorting algorithms presented in [18, 20], along with a carefully engineered version of Opt

(named Opt-Nb). In order to study the impact of memory faults on the correctness and
the running time of sorting algorithms, we implemented a software testbed that simulates
different fault injection strategies. Our testbed allows us to control the number of faults to
be injected, the memory location to be altered, and the fault generation time. Since our
study is not tied to a specific application domain, and since fault rate and fault patterns
can be very different in different applications, we performed experiments using a variety of
combinations of these parameters and different instance families. We tried to determine, for
instance, for which values of δ a naive approach is preferable to more sophisticated algorithms,
and, similarly, if there are any values of δ for which algorithm Fast is preferable to Opt in
spite of the theoretical bounds on the running times.

As a first contribution, we show experimentally that even very few memory faults that
hit random memory locations can make the sequence produced by a non-resilient sorting
algorithm completely disordered: this stresses the need of taking care explicitly of memory
faults in the algorithm implementation. We next evaluate the running time overhead of Fast,
Opt, and Opt-Nb. Our main findings can be summarized as follows.

• A simple-minded approach to resiliency is largely impractical: it yields an algorithm
(Naive) which may be up to hundreds of times slower than its non-resilient counterpart.
We remark that Naive turned out to be very slow even for the smallest values of δ used
in our experiments, i.e., δ = 1 or 2.

• The design of more sophisticated resilient algorithms seems worth the effort: Fast, Opt

and Opt-Nb are always much faster than Naive (even for small δ) and get close to
the running time of non-resilient sorting algorithms. In particular, Opt-Nb is typically
at most 3 times slower than its non-resilient counterpart for the parameter settings
considered in our experiments.

• Despite the theoretical bounds, Fast can be superior to Opt in case of a small number
of faults: this suggests that Opt has larger implementation constants. However, unlike
Opt, the performance of Fast degrades quickly as the number of faults becomes larger.
In particular, the experiments suggest that for large values of δ the theoretical analyses
of both Fast and Opt predict rather accurately their practical performances.

• The time interval in which faults happen may influence significantly the running times of
Fast, while seems to have a negligible effect on the running times of Opt and Opt-Nb.

• Our engineered implementation Opt-Nb typically outperforms its competitors and
seems to be the algorithm of choice for resilient sorting for moderate and large val-
ues of δ. Fast may be still preferable when δ is rather small.
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Algorithms Running times References

Naive O(δ n log n)

Fast O(n log n + αδ2) [18]

Opt O(n log n + αδ) [20]

Opt-Nb O(n log n + αδ) [17], this paper

Table 1: Summary of the running times of the resilient algorithms under evaluation: δ and α
denote the maximum and the actual number of memory faults, respectively.

All the algorithms under investigation make explicit use of an upper bound δ on the number
of faults in order to guarantee correctness. Since it is not always possible to know in advance
the number of memory faults that will occur during the algorithm execution, we analyzed
the sensitivity of the algorithms with respect to variations of δ, showing that rounding up
δ (in absence of a good estimate) does not affect significantly the performances of Opt and
Opt-Nb even when δ is rather large. Finally, we considered a more realistic scenario, called
faults per unit time per unit memory model, where algorithms with larger space consumption
and larger execution times are likely to incur a larger number of memory faults. Even in this
scenario, we observed the same relative performances of the algorithms: Opt and Opt-Nb

appear to be more robust than Fast and can tolerate higher fault rates. However, given an
error rate σ (per unit memory and per unit time), for all the resilient algorithms there exists
an upper bound on the largest instance that can be faithfully sorted in the presence of faults
occurring with rate σ.

Organization of the paper. The remainder of this paper is organized as follows. Section 2
describes the mergesort-based resilient algorithms under investigation and discusses some
implementation issues. Section 3 presents our experimental framework, focusing on fault
injection strategies and performance indicators. Our experimental findings are summarized
in Section 4, and concluding remarks are listed in Section 5.

2 Resilient Sorting Algorithms

In this section we describe the mergesort-based resilient algorithms presented in [18, 20]. The
worst-case running times of these algorithms are summarized in Table 1. We recall that n
is the number of keys to be sorted, δ is an upper bound on the total number of memory
faults, and α is the actual number of faults that happen during a specific execution of a
sorting algorithm. Throughout this paper, we will say that a key is faithful if its value is
never corrupted by any memory fault, and faulty otherwise. A sequence is k-unordered, for
some k ≥ 0, if the removal of at most k faithful keys yields a subsequence in which all the
faithful keys are sorted (see Figure 2). According to this definition, a sequence in which only
the corrupted keys appear in the wrong order is 0-unordered. The notion of k-unordered
sequence has been derived from a classical measure of disorder (see, e.g., [15]) and can be
used in order to characterize the correctness of sorting algorithms in the presence of memory
faults. In particular, we will say that a sorting or merging algorithm is resilient to memory
faults if it is able to produce a 0-unordered sequence.
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Figure 2: A sequence X, where white and gray locations indicate faithful and faulty values,
respectively. Sequence X is not faithfully ordered, but it is 2-unordered since the subsequence
obtained by removing elements X[4] = 0 and X[5] = 1 is faithfully ordered.

2.1 Naive Resilient Sorting

A simple-minded resilient variant of standard merging takes the minimum among (δ+1) keys
per sequence at each merge step, and thus considers at least one faithful key per sequence.
By plugging this into mergesort, we obtain a resilient sorting algorithm, called Naive, which
has a worst-case running time of O(δ n log n). As noted in [18], whenever δ = Ω(nǫ) for some
constant ǫ > 0, it can be shown that Naive runs faster, i.e., in O(δ n) time.

2.2 Two Basic Tasks: Merging and Purifying

Algorithms Fast and Opt reduce the time spent to cope with memory faults to an additive
overhead (see Table 1). This is achieved by temporarily relaxing the requirement that the
merging must produce a 0-unordered sequence and by allowing its output to be k-unordered,
for some k > 0. We now describe the main subroutines used by algorithms Fast and Opt.
In the analysis of each subroutine, we will use α to denote the number of faulty keys that
appear out of order in the input sequences plus the number of faults introduced during the
execution of the subroutine itself.

Weakly-resilient merge [18] is an O(n)-time merging algorithm, which, although unable
to produce a 0-unordered sequence, can guarantee that not too many faithful keys are out
of place in the output sequence. It resembles classical merging, with the addition of suitable
checks and error recovery. Checks are performed when the algorithm keeps on advancing in
one of the two sequences for (2δ + 1) consecutive steps: if a check fails, a faulty key can be
identified and removed from further consideration. Each check requires Θ(δ) time, which can
be amortized against the time spent to output the last (2δ + 1) keys. In [18] it is proved that
each faulty key may prevent O(δ) faithful keys from being returned at the right time: this
implies that the output sequence is O(αδ)-unordered.

Purify [18] is a resilient variant of the Cook-Kim division algorithm [13]. Given a k-unordered
sequence X of length n, it computes a 0-unordered subsequence S in O(n+ δ · (k +α)) worst-
case time. It is guaranteed that the length of S is at least n − 2(k + α), i.e., only O(k + α)
keys are discarded in order to purify X.

Purifying-merge [20] is a fast resilient merging algorithm that may nevertheless fail to
merge all the input keys: the algorithm produces a 0-unordered sequence Z and a disordered
fail sequence F in O(n + αδ) worst-case time, where |F | = O(α), i.e., only O(α) keys can
fail to get inserted into Z. This is an improvement over the weakly-resilient merge described
above (obtained at a small price on the running time), and is achieved by a clever use of
buffering techniques and more sophisticated consistency checks on data. The algorithm uses
two auxiliary input buffers, in which keys to be merged are copied, and an auxiliary output
buffer, from which merged keys are extracted. The merging process is divided into rounds
of length O(δ). At each round the contents of the input buffers are merged until either an
inconsistency in the input keys is found or the output buffer becomes full. In the former case
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Figure 3: Skeleton of the resilient merging subroutine used by algorithms Fast [18] and
Opt [20].

a purifying step is performed, moving two keys (one of which is faulty) to the fail sequence
F . In the latter case the content of the output buffer is flushed to the output sequence Z. In
both cases the input buffers are refilled with an appropriate number of keys and a new round
is started. Note that, after a purifying step, the remaining keys must be compacted before
starting a new round: thanks to the use of buffers, which have size Θ(δ), this compaction can
be done in O(δ) time. This guarantees that the total cost of purifying steps is only O(α δ) [20].

Unbalanced merge [18] requires superlinear time, but is particularly well suited at merging
unbalanced sequences. It works by repeatedly extracting a key from the shorter sequence and
placing it in the correct position with respect to the longer sequence: we need some care to
identify this proper position, due to the appearance of memory faults. The algorithm runs in
O(n1 + (n2 + α) · δ) time, where n1 and n2 denote the lengths of the sequences, with n2 ≤ n1.

2.3 Fast Resilient Sorting

We now recall from [18, 20] how the subroutines described in Section 2.2 can be used to
implement resilient sorting. Consider the merging algorithm represented in Figure 3. A
first merging attempt on the input sequences A and B may fail to merge all the input keys,
producing a 0-unordered sequence Z and a disordered fail sequence F . The sequence F is
sorted using algorithm Naive: this produces another 0-unordered sequence D. The two 0-
unordered unbalanced sequences, Z and D, can be finally merged using unbalanced merging.

Step 1 (the first merging) can be implemented either by using the weakly-resilient merge
and then purifying its output sequence, or by invoking directly the purifying-merge algorithm:
in the former case |F | = O(αδ) and the merge running time is O(n + αδ2), while in the latter
case |F | = O(α) and the merge running time is O(n + αδ). For both subroutines α is defined
as in Section 2.2. A resilient sorting algorithm can be obtained by plugging these merging
subroutines into mergesort: the two implementation choices for Step 1 yield algorithms Fast

and Opt, respectively. We refer the interested reader to references [18, 20] for the low-level
details and the analysis of the method.

2.4 Algorithm Implementation Issues

We implemented all the algorithms in C++, within the same algorithmic and implementation
framework. Since recursion may not work properly in the presence of memory faults (the
recursion stack may indeed get corrupted), we relied on a bottom-up iterative implementation
of mergesort, which makes ⌈log2 n⌉ passes over the array, where the i-th pass merges sorted
subarrays of length 2i−1 into sorted subarrays of length 2i. For efficiency issues we applied the
standard technique of alternating the merging process from one array to the other in order to
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avoid unnecessary data copying. We also took care to use only O(1) reliable memory words
to maintain array indices, counters, and memory addresses.

In the implementation of algorithm Opt, again for efficiency reasons, we avoided allocating
and deallocating its auxiliary buffers at each call of the merging subroutine. In spite of this, in
a first set of experiments the buffer management overhead slowed down the execution of Opt

considerably for some choices of the parameters: this depends on the fact that data need to
be continuously copied to and from the auxiliary buffers during the merging process. Hence,
we implemented and engineered a new version of Opt with the same asymptotic running time
but which avoids completely the use of buffers: throughout this paper, we will refer to this
implementation as Opt-Nb (i.e., Opt with No Buffering).

The algorithmic ideas behind Opt-Nb are exactly the same introduced for algorithm Opt.
The only difference is related to low-level implementation details of Purifying-merge: the
implementation of this subroutine used by Opt-Nb benefits from the same approach used
by algorithm Fast, i.e., it avoids copying data to/from the auxiliary buffers by maintaining
a constant number of suitable array indices and by working directly on the input sequences.
Given two faithfully sorted input sequences X and Y , the aim is to merge them into a unique
faithfully sorted sequence Z, while possibly discarding O(α) keys. Here α denotes the number
of faulty keys that appear out of order in X and Y plus the number of faults introduced during
the execution of the merging process. Discarded keys are added to a fail sequence F . The
algorithm scans X and Y and builds Z and F sequentially: the running indexes on all these
sequences are stored in safe memory. Similarly to Purifying-merge, the merging process
is divided into rounds. However, the implementation of Purifying-merge presented in [20]
uses two auxiliary input buffers of size δ in which keys of X and Y to be merged at each
round are copied. In order to avoid the use of these buffers, in Opt-Nb we identify the
subsequences to be merged at each round by means of four auxiliary indexes that are stored
in safe memory. Similarly, the output is not buffered, but written directly to the output
sequence Z: an additional auxiliary index z maintains the position of the last key added to Z
during previous rounds. The subsequences of X and Y identified by the auxiliary indexes are
merged in the standard way. At the end of the round the algorithm performs a consistency
check of cost O(δ). If the check succeeds, the auxiliary index z can be updated with the
current value of the running index of Z. Otherwise, the algorithm is able to identify a pair
of keys which are not ordered correctly in either of the two merged subsequences: these two
keys are moved to the fail set F . Before starting a new round, the remaining keys in either
X or Y are compacted (shifting them towards higher positions) and the auxiliary indexes are
updated. The analysis of the running time and of the number of discarded keys is exactly
the same as for the buffered implementation of Purifying-merge (see [20] and Section 2.2 of
this paper).

3 Experimental Framework

In this section we describe our experimental framework, discussing fault injection strategies,
performance indicators, and additional implementation details.

3.1 Fault Injection: a Simulation Testbed

In order to study the impact of memory faults on the correctness and running time of sort-
ing algorithms, we implemented a software testbed that simulates different fault injection
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strategies. Our simulation testbed is based on two threads: the sorting thread runs the sort-
ing algorithm, while the corrupting thread is responsible for injecting memory faults. In the
following we discuss where, when, and how many faults can be generated by the corrupting
thread.

Fault location. In order to simulate the appearance of memory faults, we implemented
an ad-hoc memory manager: faults are injected in memory locations that are dynamically
allocated through our manager. The location to be altered by a fault is chosen uniformly
at random. As observed in Section 2.4, the algorithms’ implementation is such that, at any
time during the execution, only a constant number of reliable memory words is in use. To
maximize the damage produced by a fault, the new value of the corrupted memory location
is chosen (at random) so as to be always larger than the old value.

Fault injection models. The number of faults to be injected can be specified according to
two different models. The upper bound model requires an upper bound δ on the total number
of memory faults, and the actual number α of faults that should happen during the execution
of an algorithm: it must be α ≤ δ. The fault injection strategy ensures that exactly α memory
faults will occur during the execution of an algorithm, independently from the algorithm’s
running time. This assumption, however, may not be true in a more realistic scenario, where
algorithms with larger space consumption and larger execution times are likely to incur a
larger number of faults. The faults per unit time per unit memory model overcomes this
limitation (not addressed by the theoretical model of [18]) by using faults generated on a
periodic time basis.

The faults per unit time per unit memory model requires to specify the error rate σ, i.e.,
the number of faults that must be injected per unit memory and per unit time. We note that
the algorithms under investigation were not designed for this model, as they make explicit
use of δ in their implementation. Hence, in order to stress an algorithm in this more realistic
scenario, we need to start from an error rate σ and to generate a suitable value of δ to be used
by the algorithm itself. Such a value δ should be the smallest value larger than the expected
number of faults generated during the execution of the algorithm, assuming fault rate equal
to σ: this would guarantee correctness, while limiting the overhead as much as possible. Since
the running time of the algorithm may be an increasing function of δ, if the fault injection
rate σ is too fast it may be even possible that no value of δ satisfies the condition above. In
this case the algorithm is not guaranteed to behave correctly in the faults per unit time per
unit memory model. Additional details will be given in Section 4.4.

Fault generation time. In the upper bound model, before running the algorithm the
corrupting thread precomputes α breakpoints, at which the sorting thread will be interrupted
and one fault will be injected. The breakpoints can be spread over the entire algorithm
execution, or concentrated in a given temporal interval (e.g., at the beginning or at the end
of the execution). In both cases the corrupting thread needs an accurate estimate of the
algorithm’s running time in order to guarantee that the correct number of faults will be
generated and evenly spread as required: an automatic tuning mechanism takes care of this
estimate. In the faults per unit time per unit memory model, faults are simply generated at
regular time intervals.
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3.2 Experimental Setup

Our experiments have been carried out on a workstation equipped with two Opteron proces-
sors with 2 GHz clock rate and 64 bit address space, 2 GB RAM, 1 MB L2 cache, and 64 KB L1
data/instruction cache. The workstation runs Linux Kernel 2.6.11. All programs have been
compiled through the GNU gcc compiler version 3.3.5 with optimization level O3. The full
package, including algorithm implementations, memory manager, and a test program, is pub-
licly available at the URL: http://www.dsi.uniroma1.it/~finocchi/experim/faultySort/.

Unless stated otherwise, in our experiments we average each data point on ten different
instances, and, for each instance, on five runs using different fault sequences on randomly
chosen memory locations. Random values are produced by the rand() pseudo-random source
of numbers provided by the ANSI C standard library. The running time of each experiment is
measured by means of the standard system call getrusage(). The sorting and the corrupting
threads run as two different parallel processes on our biprocessor architecture and operating
system: concurrent accesses to shared memory locations (e.g., the corruption of a key in
unreliable memory) are solved at the hardware level by spending only a few CPU cycles.
This allows us to get a confident measure of the algorithms’ running time, without taking
into account also the time spent for injecting faults.

4 Experimental Results

In this section we summarize our main experimental findings. We performed experiments
using a wide variety of parameter settings and instance families. In this paper we only report
the results of our experiments with uniformly distributed integer keys: to ensure robustness
of our analysis, we also experimented with skewed inputs such as almost sorted data and data
with few distinct key values, and obtained similar results. We mainly focus on experiments
carried out in the upper bound fault injection model, for which the algorithms have been
explicitly designed. The same relative performances of the algorithms have been observed
in the more realistic faults per unit time per unit memory model: we address this issue in
Section 4.4.

4.1 The Price of Non-resiliency: Correctness

Our first aim was to measure the impact of memory faults on the correctness of the classical
(non-resilient) mergesort, which we refer to as Vanilla mergesort. In the worst case, when
merging two n-length sequences, a single memory fault may be responsible for a large disorder
in the output sequence: namely, if the memory location affected by the fault is adversarially
chosen, it may be necessary to remove as many as Θ(n) elements in order to obtain a 0-
unordered subsequence. A natural question to ask is whether the output can be completely
out of order even when few faults hit memory locations chosen at random.

In order to characterize the non-resiliency of Vanilla mergesort in this scenario, we ran
the algorithm on several input sequences with a fixed number of elements while injecting
an increasing number of faults spread over the entire algorithm’s execution time. In our
experiment memory locations hit by faults were chosen at random, and the corrupted value
was chosen (at random) so as to be always larger than the old value. The correctness of
the output has been measured using the k-unordered metric: we recall from Section 2 that a
sequence is k-unordered if k is the minimum number of (faithful) keys that must be removed

10



Figure 4: Disorder produced by random memory faults in the sequence output by Vanilla

mergesort. In this experiment n = 5 · 106 and α = δ increases up to 1000.

in order to obtain a faithfully ordered subsequence. Given a sequence S, it is not difficult
to compute the measure k of disorder of S by a dynamic programming algorithm: corrupted
keys can be easily recognized during this computation (they are marked as corrupted by our
memory manager) and not considered.

The outcome of the experiment, exemplified in Figure 4, shows a deep vulnerability of
Vanilla mergesort even in the presence of very few random faults. As it can be seen from
Figure 4, when sorting 5 million elements, it is enough to have only 10 random faults (i.e.,
roughly only 0.0002% of the input size) to get a k-unordered output sequence for k ≈ 115·103 :
in other words, only 0.0002% faults in the input are able to produce errors in approximately
2.3% of the output. The situation gets dramatically worse as δ increases: with 1000 random
faults (i.e., roughly only 0.02% of the input size) 80% of the output will be disordered! Similar
results have been obtained for different instance sizes. The influence of memory faults on the
correctness of Vanilla mergesort turns out to be even stronger if we consider that: (1)
our implementation uses two arrays of size n to store the input and to assemble the output
at each merging pass; and (2) among the memory faults happening during a merging pass,
only faults corrupting an input memory location not yet read or an output memory location
already written may be potentially dangerous. Since at any time there exist exactly n such
locations, a random fault has probability 1/2 to hit any of them. This halves the number of
faults that can effectively influence the sorting process.

4.2 The Price of Resiliency: Running Time Overhead

In order to operate correctly, resilient algorithms must cope with memory faults and be
prepared to pay some overhead in their running times. In the following experiments we will
try to evaluate this overhead by comparing the sorting algorithms of Table 1 with respect to
the non-resilient Vanilla mergesort.

For correctness, in Figure 5 we first compare the running time of Vanilla mergesort with
the running times of different (non-resilient) implementations of Quicksort and Shellsort.
The algorithm named Quicksort1 is a carefully tuned recursive implementation of quicksort
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Figure 5: Comparison of the running times of non-resilient algorithms: Vanilla mergesort
against tuned implementations of Quicksort and Shellsort.

due to Bentley and Sedgewick [6]. The algorithms named Quicksort2 and Shellsort

are available in the standard C library in Linux: these are general-purpose algorithms and
use a comparator function that is passed as an argument. Thus, we expect them to be
less efficient than Quicksort1. We note that our implementation of Vanilla mergesort
compares rather well: its running time is only slightly larger than the running time of the
fastest implementation of Quicksort, which is among the fastest algorithms in practice for
internal memory sorting.

Overhead of Naive. Once the need for resilient algorithms is clear, even in the presence
of very few non-pathological faults, another natural question to ask is whether we really need
sophisticated algorithms for this problem. Put in other words, one might wonder whether a
simple-minded approach to resiliency (such as the one used by algorithm Naive) would be
enough to yield a reasonable performance in practice. To answer this question, we measured
the overhead of Naive on random input sequences using different values of δ. Figure 6(a) and
Figure 6(b) illustrate two such experiments, where we measured the running times of Vanilla

and Naive on random input sequences of increasing length by keeping fixed the number of
faults injected during the sorting process (α = δ = 2 and α = δ = 500, respectively). The
running times of Naive are comparable with those of Vanilla and of the other resilient
algorithms when δ is very small: note, however, that even in this case Fast and Opt-Nb are
still preferable. As suggested by the theoretical analysis, when δ = 500 the Θ(δ) multiplicative
factor in the running times of Naive makes this algorithm even hundreds of time slower than
its non-resilient counterpart, and thus largely impractical. For this reason, we will not consider
Naive any further in the rest of the paper and from now on we will focus our attention only
on the more sophisticated algorithms Fast, Opt, and Opt-Nb.

Overhead of Fast, Opt, and Opt-Nb. According to the theoretical analysis, algorithms
Fast, Opt, and Opt-Nb are expected to be much faster than Naive. Overall, our experi-
ments confirmed this prediction. Figure 6 illustrates the running times of the algorithms on
random input sequences of increasing length using both small and large values of δ. The chart

12



0

5

10

15

20

0 5 10 15 20
millions of elements

ru
n
n
in
g
 t
im
e
s
 (
in
 s
e
c
o
n
d
s
)

VANILLA

FAST

OPT

OPT-NB

NAIVE

(a)

(b)

(c)

Figure 6: Running times on random input sequences of increasing length. (a) Vanilla and
all the resilient algorithms with α = δ = 2; (b) Naive and Vanilla with α = δ = 500; (c)
Fast, Opt, Opt-Nb, and Vanilla with α = δ = 500.

13



0

20

40

60

80

100

120

140

160

180

0 500 1.000 1.500 2.000
  (= !)

ru
n

n
in

g
 t

im
e
s
 (

in
 s

e
c
o

n
d

s
)

VANILLA

FAST

OPT

OPT-NB

Figure 7: Running times of Fast, Opt, Opt-Nb, and Vanilla on random input sequences
of length n = 20 · 106 and increasing number of injected faults.

in Figure 6(a), for instance, is related to the case α = δ = 2 and shows that even for such
small number of faults all the algorithms, except for Opt, are better than Naive. The ad-
vantage becomes more evident as δ gets larger: the charts in Figure 6(b) and Figure 6(c), for
instance, have been obtained using α = δ = 500. They show that Fast, Opt, and Opt-Nb

perform very well for this choice of the parameters: indeed, they exhibit a running time which
approximately ranges from 2.5 times to 3 times the running time of Vanilla mergesort, while
Naive appears to be more than two orders of magnitude slower.

Note that, despite the theoretical bounds, Fast seems to have a better performance than
Opt on this data set. This suggests that Opt may have larger implementation constants
(probably due to the buffer management overhead) and that there are situations where Fast

is able to perform better than Opt, at least in the presence of few faults. Our efforts in
engineering Opt so as to avoid the use of buffers seem to pay off and confirm this intuition:
indeed, in this experiment Opt-Nb performs always better than Opt and better than Fast

if δ is not too small.

Impact of faults on the running time. According to the asymptotic analysis, we would
also expect that the performance of Fast, Opt, and Opt-Nb degrade substantially as the
number of faults becomes larger. In order to check this, we designed experiments in which
the length of the input sequence is fixed (e.g., n = 20 · 106) but the number α = δ of injected
faults increases. One of those experiments is illustrated in Figure 7, and shows that only the
running time of Fast seems heavily influenced by the number of faults for the parameter
settings considered in the experiment. Opt and Opt-Nb, instead, appear to be quite robust
as their running times tend to remain almost constant even for the largest values of δ. This
is not very surprising if we analyze the range of parameters of the experiment: ignoring
the constant factors hidden by the asymptotic notation, the overhead O(αδ) of algorithm
Opt is indeed much smaller than the O(n log n) contribution to the running time when
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Figure 8: Average and maximum length of the fail sequence F to be sorted by Naive.

α = δ = 2000 and n = 20 · 106. According to additional experiments not reported in this
paper, a non constant trend in the behavior of Opt can be observed only for values of δ
that are extremely large if compared to n: for instance, when n = 5 · 106, the running time
slowly starts increasing only for δ larger than 4000. In the case of Fast the situation is
different, since even in the experiment illustrated by Figure 7 the overhead O(αδ2) dominates
the running time. In summary, for large values of δ the theoretical analyses of both Fast and
Opt appear to predict rather accurately their practical performances.

To get a deeper understanding of the large difference between Fast and Opt, we profiled
all the algorithms: in particular, for Fast we observed that when δ is large, most of the time
is spent in Step 2, where the disordered fail sequence F returned by Purify is sorted by means
of algorithm Naive. This suggests that either the number of calls to Naive or the number
of elements to be sorted in each call tends to be bigger in Fast than in Opt. Computing the

15



Figure 9: Breakpoint analysis: the breakpoint value is the smallest value of δ for which
Opt-Nb becomes preferable to Fast.

average and the maximum length of the fail sequences F throughout the algorithm execution
confirmed the second hypothesis1. As shown in Figure 8, the fail sequences in Fast can
be even 10, 000 times larger than in Opt. Since sorting the fail sequences appears to be a
bottleneck in the resilient algorithms, the capability of obtaining much shorter fail sequences
confirms also in practice the theoretical advantage of the purifying-merge approach over the
weakly-resilient merge, at least for large values of δ.

Breakpoint analysis. Figure 7 shows that Opt-Nb is always faster than Opt. However,
in spite of the carefully engineered implementation of Opt-Nb and of the theoretical bounds,
algorithm Fast remains faster for small values of δ. In order to understand when Fast is
preferable to Opt-Nb as the instance size changes, we performed a series of experiments
whose outcome is summarized by Figure 9. The figure plots, for instance sizes ranging from
5 to 40 millions of elements, the smallest values of δ for which Opt-Nb becomes preferable
to Fast. This breakpoint value roughly increases with the instance size, suggesting that
algorithm Opt-Nb, although more efficient in practice than Opt, has still larger constant
factors hidden by the asymptotic notation than algorithm Fast.

Early versus late faults. In all the experiments presented so far, we have considered
random faults uniformly spread in time over the entire execution of the algorithm. The time
interval in which faults happen, however, may significantly influence the running time of the
algorithm. Indeed all of the resilient algorithms considered tend to process many sequences
of smaller size in the initial stage of their execution, and few sequences of larger size at the
end of their execution. As a consequence, faults occurring in the initial phase of the execution
will likely produce short fail sequences, while faults occurring during the ending phase may
produce longer fail sequences. Since sorting fail sequences appears to be a bottleneck in the

1The average length is obtained by first finding the arithmetic mean of the lengths of the fail sequences
obtained during a single execution of an algorithm on a specific instance, and then averaging these values over
five executions (with different fault sequences) and ten different instances.
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Figure 10: Increasing number of faults concentrated in (a) the initial 20%, (b) the middle
20%, and (c) the final 20% of the algorithms’ running times (n = 20 · 106 in this experiment).
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Figure 11: Sensitivity to δ: in this experiment n = 20 · 106, α = 400, and δ ≤ 2000.

resilient algorithms, faults appearing at the beginning or at the end of the execution may
produce quite different running times. To check this, we performed experiments in which we
injected faults only in the initial 20%, middle 20%, and final 20% of the running time. The
outcome of one of those experiments, presented in Figure 10, confirms that faults occurring
early during the execution of Fast are processed more quickly than faults occurring late. The
effect is instead negligible for algorithms Opt and Opt-Nb, whose running time seems to be
quite independent of the fault generation time. This fact is related to the result of Figure 8,
that shows that not only the average, but also the maximum length of the fail sequences
computed by these algorithms is always small.

4.3 Sensitivity to δ

All the resilient algorithms considered in our experiments need an explicit upper bound δ on
the number of faults that may happen throughout their execution. This is not a problem
when δ is known in advance. However, if the rate of faults is unknown, the algorithms need
at least an estimate on δ to work properly, and a bad estimate on δ may affect their running
times or even their correctness. In this section we discuss issues related to finding a good
estimate for δ in the upper bound model.

In all the experiments described up to this point we used δ = α. However, the exact
number of memory faults that occur during the execution of an algorithm is not always
known a priori. As mentioned above, this raises the question of estimating a suitable value
of δ to be used by the algorithm: on the one side, rounding up δ may lead to much slower
running times; on the other side, rounding it down may compromise the whole correctness
of the resilient sorting algorithm. Within this framework, we analyzed the sensitivity of
Fast, Opt, and Opt-Nb with respect to variations of δ. In the experiment illustrated in
Figure 11, for instance, we run the algorithms on input sequences of length n = 20 · 106,
keeping the actual number of faults fixed (α = 400) and increasing δ from 400 to 2000. When
δ = 400, this simulates a good estimate of δ; as δ gets much larger than α, this tend to
simulate bad estimates of δ. Note that, while the performances of Opt and Opt-Nb are
substantially unaffected by the increase on the value of δ for this choice of the parameters,
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the running time of Fast seems to grow linearly with δ: once again, this appears to depend
on the fact that the length of the fail sequences in Fast is proportional to δ, differently from
what happens in the case of both Opt and Opt-Nb. As a result, the experiment confirms the
theoretical prediction that Opt and Opt-Nb are much less vulnerable than Fast to potential
bad estimates of the value δ.

4.4 Faults per unit time per unit memory model

The faults per unit time per unit memory injection model introduces a major novelty with
respect to the upper bound model, as the actual number of faults that will be generated
throughout the execution of an algorithm is not bounded a priori. Thus, the quest for a
good estimate of δ here is even more crucial. Note that in this model rounding up δ not only
pushes additional overhead on the resilient sorting algorithm, but also increases the number
of faults that will actually occur throughout the execution, because the running time becomes
larger. In more details, let t(n, δ) denote the running time and let σ be the error rate, per
unit memory and per unit time. Then, ignoring constant factors in the running time and in
the space usage, the actual number of faults that will occur is σ · t(n, δ) · n log n, since the
sorting algorithms use n log n bits of memory. An algorithm is guaranteed to be correct only
if

δ ≥ σ · t(n, δ) · n log n

Since the running time t is an increasing function of δ itself, if the fault injection rate is too
fast (i.e., σ is too large) it may be possible that no value of δ satisfies the above inequality.
In particular, the above inequality suggests that, given a fault rate σ, for all the resilient
algorithms that we have considered there is an upper bound on the largest instance that
can be faithfully sorted in the presence of faults that occur with rate σ. Similarly, given a
number n of keys to be sorted, there must be an upper bound on σ such that the algorithm
is guaranteed to sort faithfully n keys only if the fault rate is smaller than that bound.

To investigate this issue, we tried to determine, for each algorithm and given the number
σ of faults per seconds, the smallest value of δ that is larger than the actual number σ ·t(n, δ) ·
n log n of faults: we will refer to this value of δ as the correctness threshold. Table 2 reports
the correctness thresholds for the three algorithms Fast, Opt, and Opt-Nb corresponding
to six different values of σ and to n = 20 · 106. Since n is fixed in this experiment and all
the three algorithms use (asymptotically) n log n bits, it is more convenient to report the
correctness thresholds as a function of σ′ = σ · n log n. For a practical deployment of the
algorithms studied in this paper in the realistic faults per unit time per unit memory model,
one should provide lookup tables similar to Table 2 for several different values of n.

As one may expect, the correctness thresholds increase with σ′, and thus with σ: this
is because larger values of σ yield larger total numbers of injected faults. The experiment
also confirms our intuition that a correctness threshold may not always exist, limiting the
possibility of using the algorithms in the faults per unit time per unit memory model only
when the fault injection rate is small enough. In particular, it is remarkable that algorithm
Fast has no correctness threshold already for σ′ = 50, i.e., it cannot tolerate more than 50
faults per second when the space usage is equal to n log n bits with n = 20 · 106. Algorithms
Opt and Opt-Nb appear to be more robust and can tolerate much higher fault injection
rates. This is in line with the previous experiments, where we observed that the running time
of Fast grows much more quickly than the running times of Opt and Opt-Nb as the number
of faults increases.
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Algorithm σ′ = 10 σ′ = 20 σ′ = 30 σ′ = 40 σ′ = 50 σ′ = 60

Fast 100 180 290 410 - -

Opt-Nb 100 210 300 400 500 590

Opt 160 310 445 620 770 880

Table 2: Correctness thresholds for n = 20 · 106 and σ′ = σ · n log n ∈ [10, 60]. Algorithm
Fast cannot be run when σ′ ≥ 50 (no correctness thresholds exist).

Algorithm σ′ = 10 σ′ = 20 σ′ = 30 σ′ = 40 σ′ = 50 σ′ = 60

Fast 8178 8285 8576 9097 - -

Opt-Nb 8894 8866 8931 8957 8912 8992

Opt 13878 13714 13725 13671 13738 13672

Table 3: Running times (measured in milliseconds) of algorithms Fast, Opt, and Opt-Nb in
the faults per unit time per unit memory model when n = 20·106 and σ′ = σ ·n log n ∈ [10, 60].
For each value of σ′, the algorithms have been run using the correctness thresholds given in
Table 2.

We used the correctness thresholds shown in Table 2, when defined, to compare Fast,
Opt, and Opt-Nb in the faults per unit time per unit memory model. The outcome of one of
these experiments is shown in Table 3. The experiment confirmed the relative performances
observed in the upper bound model. If the fault injection rate is small, the running times of
Opt-Nb and Fast are comparable, with Fast slightly better when σ′ ≤ 30: this confirms
that Fast might be preferable to Opt-Nb for small numbers of faults (Figure 7 and Figure 9
give the corresponding results in the upper bound model). When σ′ ≥ 50, however, Fast

cannot be run since no correctness threshold exists. Opt and Opt-Nb, instead, can tolerate
such higher fault injection rates and still guarantee the correctness of their output. Notice
that, similarly to the upper bound model, Opt is about 1.5 times slower than Opt-Nb.

5 Conclusions

In this paper we have addressed the problem of sorting in the presence of faults that may
arbitrarily corrupt memory locations. We have experimentally investigated the impact of
memory faults both on the correctness and on the running times of mergesort-based sorting
algorithms, including the algorithms Fast and Opt presented in [18, 20], a naive approach,
and a carefully engineered version of Opt, named Opt-Nb, introduced in this paper. We
have performed experiments using a variety of fault injection strategies and different in-
stance families. The full software package used in our study is publicly available at the URL:
http://www.dsi.uniroma1.it/~finocchi/experim/faultySort/.

Our experiments give evidence that simple-minded approaches to the resilient sorting
problem are largely impractical, while the design of more sophisticated algorithms seems
worth the effort: the algorithms presented in [18, 20] are not only theoretically efficient,
but also fast in practice. In particular, our engineered implementation of Opt is robust to
different memory fault patterns and appears to be the algorithm of choice for most parameter
choices. Algorithm Fast, however, might be preferable for rather small values of δ.
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The model in which the algorithms under investigation have been designed assumes that
there exist an upper bound δ on the maximum number of faults that may happen throughout
the execution of the algorithm. However, in practice algorithms with larger execution times
are likely to incur a larger number of memory faults. We have thus adapted the algorithms
to work in a different faults per unit time per unit memory model. Even in this more realistic
scenario, we have observed the same relative performances of the algorithms: Opt and Opt-

Nb appear to be more robust than Fast and can tolerate higher fault rates.
The design and the theoretical analysis of resilient algorithms in the faults per unit time

per unit memory model certainly deserve additional investigation. In particular, it would be
interesting to understand whether it is possible to obtain fault-oblivious resilient algorithms,
i.e., resilient algorithms that do not assume any knowledge on the maximum number δ of
memory faults. In [10, 21, 25] the problem of designing resilient dictionaries and priority
queues has been also addressed: an experimental study of the performances of these resilient
data structures would represent a valuable contribution.
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