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Abstract. We deal with the maximum cut problem on cubic graphs
and we present a simple O(log n) time parallel algorithm, running on a
CRCW PRAM with O(n) processors. The approximation ratio of our
algorithm is 1.3̄ and improves the best known parallel approximation
ratio, i.e. 2, in the special case of cubic graphs.
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1 Introduction and Notation

In this paper we deal with the maximum cut problem, that can be formally stated
as follows:

INSTANCE: An undirected n-vertex graph G(V, E).

SOLUTION: A partition of V into two disjoint sets Vr (right side class) and Vl

(left side class).

MEASURE: The number of edges with one endpoint in Vl and one endpoint in
Vr, i.e. the cardinality of Es = {(u, v) such that either u ∈ Vl and v ∈ Vr or
u ∈ Vr and v ∈ Vl}.

The problem of finding a maximum cut of a given graph is, in general, NP-
complete [6, 7] and has been deeply studied (see, for example, [3, 4, 5, 11, 12,
14, 16, 17]).

In this paper we point out our attention on the special class of cubic graphs
[1, 9]. Even restricted to this class, the maximum cut problem does not become
easier, since it has been proved to be NP-complete if the graph is triangle-free and
is at most cubic [18] and to be APX-complete, even if the degree of G is bounded
by a constant [15]. Here we present new theoretical results characterizing the
cardinality of the cut in cubic graphs with respect to the degree of vertices in
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the graph (V, Es). These results make it possible to design a simple O(log n)
time parallel algorithm, running on a CRCW PRAM with O(n) processors.

The best known approximation ratio for the maximum cut problem in parallel
is 2 and follows from [13]. Our results improve it in the special case of cubic
graphs, since our algorithm achieves an approximation ratio 1.3̄. So, this parallel
algorithm approaches the best known sequential approximation ratio, that is
1.138 proved in [8]. It is worthwhile to note that the sequential algorithm for
Max Cut presented in [8] is based on the use of the primal-dual technique and
its parallelization seems not to be easy.

The remainder of this paper is organized as follows. Section 2 considers the
problem from a theoretical point of view, while Section 3 addresses the design
of the parallel approximation algorithm. Conclusions and open problems are
presented in Section 4.

In the sequel, we denote with B the bipartite graph B(Vl ∪ Vr, Es) and with
Ed the set E −Es, i.e. Ed = {(u, v) s.t. either u, v ∈ Vl or u, v ∈ Vr}. From now
on we call edges in Es and Ed solid and dotted edges, respectively.

We partition the vertices of Vl (Vr) according to their solid degree, that is
their degree in B. In particular, Vl = L0∪L1∪L2∪L3 and Vr = R0∪R1∪R2∪R3,
where Li and Ri are the sets of vertices of solid degree i = 0, 1, 2, 3 in Vl and Vr,
respectively. We also denote with li (ri) the cardinality of Li (Ri).

2 Some Theoretical Results

The aim of this section is to give sufficient conditions on Vl and Vr in order to
guarantee the approximation ratio obtained in this work.

In the following we state some results referring to Vl, but – for symmetry
properties – it will be always possible to exchange the roles of Vl and Vr.

First of all, observe that it is always possible to modify the partition so that
no vertex has solid degree 0; indeed, if such a vertex exists, it is enough to
move it from its class to the other one. Therefore, it is not restrictive to suppose
l0 = r0 = 0.

Moreover, under the condition l1 = l2 = 0, we can trivially deduce the
following equations which will be useful for the rest of the section:

1. 3l3 = 3r3 + 2r2 + r1, derived by counting the number of solid edges as sum
of solid degrees of vertices in Vl and Vr.

2. n = l3 + r1 + r2 + r3, derived by counting the total number of vertices.

Lemma 1. If Vl contains only vertices of solid degree 3, i.e. Vl = L3, then
n
4 ≤ l3 ≤ n

2 .

Proof. The condition is easily deduced from Equations 1 and 2. In particular, in
order to obtain the lower bound we isolate r1 from Equation 2 and we substitute
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it in Equation 1. For what concerns the upper bound, we isolate r3 from Equation
2 and we substitute it in Equation 1.

It is to notice that lower and upper bounds on l3 hold when r2 = r3 = 0 and
r1 = r2 = 0, respectively.

Lemma 2. If Vl contains only vertices of solid degree 3, i.e. Vl = L3, then
r1 ≥ 2n− 5l3.

Proof. From Equation 1 and Equation 2 it follows that r2 + r3 = 3l3+r2−r1
3 and

that r1 = n− l3 − (r2 + r3), respectively.
By substituting the first equality in the second one, simple calculations lead

to r1 = 3
2n − 3l3 − r2

2 . In this latter equality we substitute r2 ≤ n − l3 − r1,
obtained by Equation 2 and by the fact that r3 ≥ 0.

The inequality in the statement follows immediately.

Let c be the maximum number of pairwise vertex-disjoint odd length cycles
in G and let cr be the number of odd length cycles in the subgraph of G induced
by Vr. Note that, due to the structure of the partition of vertices, all cycles in Vr

are vertex-disjoint. Trivially, c ≥ cr. Moreover, let us remind that the odd girth
g of a graph G is defined as the length a shortest odd cycle (if any) in G.

Lemma 3. For any partition (Vl, Vr) of the vertices of G it holds: 0 ≤ cr ≤ r1
g .

Proof. It is easy to see that only vertices of R1 can be involved in cycles in
the subgraph induced by Vr. Moreover, this subgraph is a collection of isolated
vertices, simple paths and cycles. The upper bound for cr holds when all the
connected components of the subgraph induced by Vr are odd length cycles,
each having length g.

3 A Parallel Algorithm for Finding a “Large” Cut

In this section we present a parallel algorithm for finding a “large” cut of a cubic
graph.

The idea behind our algorithm is to find any bipartition of the vertices and
to increase the number of edges in the cut by appropriately moving vertices from
one side of the bipartition to the other. In particular, we move to the opposite
side both vertices of solid degree 0 and vertices of solid degree 1; indeed, as
shown in Figure 1, each time we transfer a 0-degree vertex it becomes a 3-degree
vertex and the number of solid edges increases by 3 and each time we transfer
a 1-degree vertex it becomes a 2-degree vertex and the number of solid edges
increases by 1.

Before detailing the algorithm for approximating the maximum cut, we pre-
sent some preliminary procedures for coloring vertices that will be used in the
following.
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Fig. 1. (a) Vertex v is moved from R0 to Vl; (b) Vertex v is moved from R1 to
Vl.

Lemma 4. Let G(V, E) be a not necessarily connected graph of maximum degree
2. Then O(log n) parallel steps, using O(n) processors on a EREW PRAM model,
are sufficient to find a 3-coloring of G, where the number of vertices having color
3 is as small as possible (possibly 0).

Proof. Observe that G(V, E) is a collection of isolated vertices, paths and cycles.
It is not difficult to recognize all the connected components and to decide

whether they are vertices, paths or cycles by using the pointer jumping technique
[10].

Then we work on each connected component as follows:

– If the connected component is an isolated vertex, we give it color 1.
– If the connected component is a path, we find a 2-coloring using the pointer

jumping technique. Namely, we start from any vertex v, we assign to v color
1 and to its neighbors color 2; in the general step i of the pointer jumping
loop, we assign the color of vertex j to not yet colored vertices at distance
2i from j. First observe that after dlog ne − 1 iterations each vertex has a
color, as guaranteed by the pointer jumping technique. The found coloring
is trivially a 2-coloring and it is valid. Indeed, vertex v assigns its color (that
is, 1) to all vertices with even distance from it, while v’s adjacent vertices
assign their color (that is, 2) to all vertices with even distance from them,
and so with odd distance from v. It follows that adjacent vertices cannot
have the same color.
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– If the connected component is a cycle, we find a 3-coloring such that color 3
is assigned to at most one vertex. We choose at random an edge (u, w) of the
cycle and we remove it; what remains is obviously a path and the previous
procedure can be run. If in the output u and w have the same color, then we
set c(w) = 3. The proof of correctness is very similar to the previous one.

For what concerns the parallel complexity, the pointer jumping technique
guarantees a O(log n) time using O(n) processors on a EREW PRAM model.

We want to underline that although there exist more efficient algorithms to
find a 3-coloring of a cycle [2], the previous algorithm guarantees that at most
one vertex receives color 3.

Before stating the next lemma, we need to introduce the concept of inde-
pendent dominating set of a graph. An independent dominating set of a graph
G(V, E) is a subset V ′ ⊆ V such that for any vertex u ∈ V −V ′ there is a vertex
v ∈ V ′ for which (u, v) ∈ E, and such that no two vertices in V ′ are joined by
an edge in E.

Lemma 5. Let G(V, E) be a graph of maximum degree 3. Then O(log n) parallel
steps, using O(n) processors on a CRCW PRAM model, are sufficient to find an
independent dominating set S for G.

Proof. Assume w.l.o.g. that G is connected (otherwise we apply the same argu-
ment for each connected component of G).

We build an independent dominating set S as follows. First, we find a rooted
spanning tree T of G and assign to each vertex its level in T . Then, we consider
the subgraph induced by the vertices at odd level; as it has maximum degree 2,
we can 3-color it according to the algorithm in the proof of Lemma 4. We put in
S all vertices colored 1 and we delete from G both them and their neighbors. The
remaining vertices are a subset of vertices at even level in T and have maximum
degree 2. We 3-color the graph induced by these vertices and we add to S all
vertices colored 1.

We now prove the correctness of the algorithm.
S is an independent set. First, a 3-coloring of the subgraph induced by all the

vertices at odd level is found and color 1 is an independent set S′ for it. Then,
the subgraph induced by all the vertices at even level that are not adjacent to
any vertex in S′ is considered. By 3-coloring its vertices and considering color
1, we construct an independent set S′′ for this subgraph. S = S′ ∪ S′′ is an
independent set because, by construction, no vertex in S′′ is adjacent to any
vertex in S′.

S is a dominating set. The coloring algorithms ensure that each vertex colored
2 is adjacent to at least one vertex colored 1, and that each vertex colored 3 is
adjacent to exactly one vertex colored 1 and one vertex colored 2. Moreover,
each vertex at even level deleted after the first coloring is adjacent to at least
a vertex colored 1. This guarantees that each vertex in V − S is adjacent to at
least one vertex colored 1.
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For what concerns the complexity and the PRAM model, let us consider
each step separately. Finding a spanning tree requires O(log n) time using O(n)
processors on a CRCW PRAM [10]. Rooting the tree and leveling its vertices
can be done through the Euler Tour technique [10] in O(log n) time using O(n)
processors on a EREW PRAM. Finding connected components and coloring
them requires O(log n) time with O(n) processors on a EREW PRAM in view
of Lemma 4. All the other tests and operations are performed in constant time.

Now we are ready to describe the parallel algorithm for finding a “large” cut.
As already stated, we start by any bipartition of the vertices. The first step

consists in eliminating vertices of solid degree 0, if they exist. Furthermore, in
order to satisfy the hypotheses of Lemma 1 and Lemma 2, we move some vertices
from Vl to Vr in order to obtain Vl = L3. Observe that |Es| may decrease during
this step, but we need it for obtaining a stronger structure of the bipartite graph
B.

At this point we eliminate 1-degree vertices from Vr; unfortunately, we are
not able to ensure the extinction of 1-degree vertices from the whole graph,
because they can be generated in Vl, although they completely disappear from
Vr. We can however guarantee that the performance ratio of our algorithm is
1.3̄.

In the following we give the headlines of our algorithm and then we detail it
step by step.

ALGORITHM Parallel-Approx-Max-Cut(G);
Input: a cubic graph G(V, E) with V = {0, 1, . . . , n− 1}
Output: A bipartition (Vl,Vr) of the vertices of G such that the Max Cut is
approximated by a ratio of 1.3̄
Step 1:

Vl ← {v ∈ V such that v is even}
Vr ← {v ∈ V such that v is odd}
Eliminate-0-Degree(Vl,Vr)

Step 2:
Make-Left-Side-Of-Degree-3(Vl,Vr)
Eliminate-0-Degree(Vl,Vr)

Step 3:
Eliminate-1-Degree-From-Right-Side(Vl,Vr)
Eliminate-0-Degree(Vl,Vr)
RETURN(Vl,Vr)

Recall that moving a node of solid degree 0 or 1 to the opposite side improves
the number of solid edges since all its incident dotted edges become solid and
vice versa. As our algorithm works in parallel, we must pay attention in avoiding
that adjacent vertices are moved in the same parallel step, because this fact could
make useless the local improvement. Hence, our algorithm makes strong use of
coloring procedures to check this independence property. In the following, we
detail its main steps.
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– Eliminate-0-Degree(Vl,Vr)
The aim of this procedure is to eliminate 0-degree vertices from G by moving
some of them to the opposite side. Observe that transferring an independent
dominating set of L0 ∪ R0 makes L0 = R0 = ∅ and the solid degree of
each moved vertex becomes 3. Thus Lemma 5 can be applied to find an
independent dominating set whose vertices can be moved to the opposite
side in a single parallel step. The procedure returns the updated sets Vl and
Vr.
This procedure can be run on a CRCW PRAM model in O(log n) time using
O(n) processors.

– Make-Left-Side-Of-Degree-3(Vl,Vr)
In order to eliminate all vertices of solid degree 1 or 2 in the left side, let
us consider the subgraph induced by L1 ∪ L2 (by the previous algorithm
step we can assume L0 = ∅). If we consider a 3-coloring of such graph and
move to Vr vertices of any two colors, we guarantee remaining vertices have
degree 3. Since we are interested in making l3 as large as possible (remind
|Es| = 3l3), among all sets of vertices of any couple of colors we choose to
move the less numerous one. A convenient 3 coloring can be found by means
of the algorithm described in the proof of Lemma 4.
This procedure can be run on a EREW PRAM model in O(log n) time using
O(n) processors.

– Eliminate-1-Degree-From-Right-Side(Vl,Vr)
Let us consider the subgraph induced by R1. After 3 coloring its vertices, we
move those with color 1 to Vl in order to eliminate 1-degree vertices from
the right side. Unlike the previous procedure, here we move only one color
because we want to minimize the possible new vertices of degree 1 created in
Vl (note that trying to move both a vertex colored 3 and its adjacent vertex
colored 1 should imply that both of them are added to L1). Unfortunately,
not moving vertices colored 3 does not guarantee to have L1 empty at the
end of the procedure: indeed, a vertex in L3 can become of degree 1 each
time it is adjacent to two vertices in Vr colored 1.
The running time of this procedure is the same as the previous one.

Lemma 6. The execution of the procedure Eliminate-1-Degree-From-Right-Side
(Vl, Vr) increases the cardinality of ES by k, if k vertices are moved from R1 to
Vl.

Proof. The assertion follows from the fact that moved vertices are independent
since all of them have color 1 and from the observation of Figure 1(b).

Lemma 7. During the execution of the procedure Eliminate-1-Degree-From--
Right-Side(Vl, Vr) at least r1

2 − cr

2 vertices are moved from Vr to Vl.

Proof. Let us denote by po and pe the number of vertices in R1 involved in odd-
and even-length paths in the subgraph induced by Vr, where the length of a
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path is defined to be the number of its edges. Analogously, co and ce denote the
number of vertices in R1 involved in odd- and even-length cycles in the same
subgraph.

As the procedure Eliminate-1-Degree-From-Right-Side(Vl, Vr) is concerned,
we move from the right side to the left one the following number of vertices:

– for each path of even length l, l
2 vertices; therefore, totally at least pe

2 . Indeed,
let l1, l2, . . . , lk be the lengths of even-lengths paths in the subgraph induced
by Vr . Then, l1 − 1, l2 − 1, . . . , lk − 1 are the numbers of vertices of degree 1
in such paths. Therefore,

∑k
i=1 li = pe + k. The number of moved vertices is

∑k
i=1

li
2 = 1

2pe + 1
2k ≥ 1

2pe;
– for each odd-length path of length l, l−1

2 vertices; therefore – with reasonings
similar to the previous ones – totally exactly po

2 ;
– for each even-length cycle, exactly half of its vertices; therefore, totally ex-

actly ce

2 ;
– for each cycle of odd length l, l−1

2 vertices; therefore, totally exactly
∑cr

i=1
li−1

2 , where li is the length of the i-th odd-length cycle. This sum
is equal to co

2 − cr

2 .

Hence, by summing up all these contributions, the number of vertices moved
from right to left is at least pe

2 + po

2 + ce

2 + co

2 − cr

2 = r1
2 − cr

2 .

The algorithm outputs a partition of the vertices of the graph into two sets
Vl and Vr and the solution is the set Es, i.e. the set of edges connecting Vl with
Vr. The next theorem guarantees the approximation ratio 1.3̄ for our algorithm.

Theorem 8. The performance ratio of Parallel-Approx-Max-Cut(G) is 1.3̄.

Proof. Observe that the size of the optimal maximum cut cannot exceed the
difference between the number of edges and the maximum number of vertex
disjoint odd-length cycles, i.e. 3

2n− c ≤ 3
2n− cr.

From the idea behind the algorithm and Lemma 7 it follows that the size of
our approximate solution is at least 3l3 + r1

2 − cr

2 .
Consequently, the approximation ratio of our algorithm is

R ≤
3
2n− cr

3l3 + r1
2 − cr

2

that is a function of cr, bounded by its maximum over the definition interval
of cr.

This function always decreases since its derivative

−3l3 − r1
2 + 3

4n

(3l3 + r1
2 − cr

2 )2

is always negative in view of Lemma 1 and Lemma 2:

−3l3 − r1

2
+

3
4
n ≤ −3l3 − 1

2
(2n− 5l3) +

3
4
n ≤ −n

8
n

4
< 0
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Considering the definition interval for cr given in Lemma 3, it is easy to prove
that the maximum of our function holds for cr = 0. Furthermore, from Lemma
2 and Lemma 1 we have the following chain of inequalities:

R ≤
3
2n

3l3 + r1
2

≤
3
2n

3l3 + 1
2 (2n− 5l3)

≤
3
2n

n + n
8

=
4
3

= 1.3̄

4 Conclusions

We presented a parallel approximation algorithm for Max Cut on cubic graphs
that achieves a performance ratio equal to 1.3̄, substantially improving the best
known parallel approximation ratio, i.e. 2, in the special case of cubic graphs.

Starting from any bipartition of the vertices, the general strategy of our
algorithm consists of increasing the number of edges in the cut by appropriately
moving vertices from one side of the bipartition to the other.

The algorithm manages with simple coloring procedures and can be efficiently
implemented in O(log n) parallel time on a CRCW PRAM with O(n) processors.

We consider to be interesting to test the experimental behavior of this algo-
rithm and to compare the quality of its solutions with the quality of the solutions
found by the best known sequential algorithm on cubic graphs. Moreover, a gen-
eralization of the approach to d-regular graphs should also represent a valuable
contribution.
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