
Intro Software streams Case studies Conclusions

Software Streams
Big Data Challenges in Dynamic Program Analysis

Irene Finocchi
Dept. Computer Science – Sapienza U. Rome

1 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Theory versus practice

Theory is when you know something, but it
doesn’t work.

Practice is when something works, but you
don’t know why.

Programmers combine theory and practice:
Nothing works, and they don’t know why.

(Anonymous)

2 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Theory versus practice

Theory is when you know something, but it
doesn’t work.

Practice is when something works, but you
don’t know why.

Programmers combine theory and practice:
Nothing works, and they don’t know why.

(Anonymous)

2 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Theory versus practice

Theory is when you know something, but it
doesn’t work.

Practice is when something works, but you
don’t know why.

Programmers combine theory and practice:
Nothing works, and they don’t know why.

(Anonymous)

2 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Topic of the talk

Algorithm engineering talk: boosting practice with theory

Theory: data stream algorithmics

Application area: dynamic program analysis

3 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Topic of the talk

Algorithm engineering talk: boosting practice with theory

Theory: data stream algorithmics

Application area: dynamic program analysis

3 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Program analysis

Development of techniques and tools for analyzing
the structure and the behavior of a software system

Goals:

conclude properties about the program: e.g., correctness,
resource consumption

seek opportunities for optimization

error detection and correction: e.g., type checking, memory
safety, data structure repair, protection against security attacks

study how the program or its parts are used: e.g., usage
patterns, intrusion detection

program understanding

4 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Program analysis

Development of techniques and tools for analyzing
the structure and the behavior of a software system

Goals:

conclude properties about the program: e.g., correctness,
resource consumption

seek opportunities for optimization

error detection and correction: e.g., type checking, memory
safety, data structure repair, protection against security attacks

study how the program or its parts are used: e.g., usage
patterns, intrusion detection

program understanding

4 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Static vs. dynamic analysis

Static analysis: based on knowledge of code (source, object, ...)

Examples:
compilers
formal verification systems
theoretical analysis of algorithms

Dynamic analysis: exploits information gathered at runtime

Examples:
debuggers, memory checkers
performance profilers
platforms for the experimental evaluation of algorithms

5 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Static vs. dynamic analysis

Static analysis: based on knowledge of code (source, object, ...)

Examples:
compilers
formal verification systems
theoretical analysis of algorithms

Dynamic analysis: exploits information gathered at runtime

Examples:
debuggers, memory checkers
performance profilers
platforms for the experimental evaluation of algorithms

5 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Program analysis in algorithm engineering

6 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Soundness vs. accuracy

Static analysis huge success in software design,
but dynamic nature of modern computing scenarios

makes it increasingly more inaccurate

7 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Program analysis community

Many disciplines involved:
programming languages, SE, architectures, algorithms, statistics. . .

8 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

This talk: algorithmics for dynamic program analysis

Events of interest:

routine calls
memory accesses
low-level instructions
...

system calls
cache misses
interrupts

9 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

What’s difficult?

Capturing events

hardware support (counters, watchpoints)
programmable interrupts/signals
program instrumentation (source code or binary code)

Intrusiveness: Heisenberg effects (the act of observing a system
causes the system to change)

Performance: analysis inlined with program execution, slow down
analyzed programs, real-time performance (billions of events per
second)

Massive data: dynamic analysis tools process huge amounts of
data, cannot store all of them

10 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

What’s difficult?

Capturing events

hardware support (counters, watchpoints)
programmable interrupts/signals
program instrumentation (source code or binary code)

Intrusiveness: Heisenberg effects (the act of observing a system
causes the system to change)

Performance: analysis inlined with program execution, slow down
analyzed programs, real-time performance (billions of events per
second)

Massive data: dynamic analysis tools process huge amounts of
data, cannot store all of them

10 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

What’s difficult?

Capturing events

hardware support (counters, watchpoints)
programmable interrupts/signals
program instrumentation (source code or binary code)

Intrusiveness: Heisenberg effects (the act of observing a system
causes the system to change)

Performance: analysis inlined with program execution, slow down
analyzed programs, real-time performance (billions of events per
second)

Massive data: dynamic analysis tools process huge amounts of
data, cannot store all of them

10 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

What’s difficult?

Capturing events

hardware support (counters, watchpoints)
programmable interrupts/signals
program instrumentation (source code or binary code)

Intrusiveness: Heisenberg effects (the act of observing a system
causes the system to change)

Performance: analysis inlined with program execution, slow down
analyzed programs, real-time performance (billions of events per
second)

Massive data: dynamic analysis tools process huge amounts of
data, cannot store all of them

10 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Program analysis Static vs. dynamic Dynamic issues

Efficient algorithms can make a difference

Automated dynamic analysis less explored than static analysis from
an algorithmic perspective...

11 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

Software streams

12 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

An example: performance profiling

Form of dynamic program analysis that
typically measures:

execution time of instructions, basic
blocks, routines
frequency of portions of code

Our goal: identify routines that contribute
most to the running time (hot routines)

Mainly useful for performance optimization

13 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

Profiler characteristics

Granularity

Basic blocks
Routines

Metrics

Time
Number of routine calls
Cache misses, I/Os . . .

Data aggregation level

Vertex: how many times is routine f called?
Edge: how many times is f called from g?
Calling context: how many times is f called along path
main→ g → h→ f ?

14 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

Profiler characteristics

Granularity

Basic blocks
Routines

Metrics

Time
Number of routine calls
Cache misses, I/Os . . .

Data aggregation level

Vertex: how many times is routine f called?
Edge: how many times is f called from g?
Calling context: how many times is f called along path
main→ g → h→ f ?

14 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

Profiler characteristics

Granularity

Basic blocks
Routines

Metrics

Time
Number of routine calls
Cache misses, I/Os . . .

Data aggregation level

Vertex: how many times is routine f called?
Edge: how many times is f called from g?
Calling context: how many times is f called along path
main→ g → h→ f ?

14 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

Vertex vs. calling context profiling

Vertex profiling:

Stream Σ =
= 〈main, g , h, f , ...〉 =
= 〈f1, f2, ..., fn〉

Item universe:
fi ∈ {routines}

Query: find most frequently
called routines

Calling context profiling:

Stream Σ = 〈main,main→
h,main→ g → h ...〉 =
= 〈π1, π2, ..., πn〉

Item universe:
πi ∈

⋃∞
j {routines}j

Query: find most frequent
calling contexts

15 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

Vertex vs. calling context profiling

Vertex profiling:

Stream Σ =
= 〈main, g , h, f , ...〉 =
= 〈f1, f2, ..., fn〉

Item universe:
fi ∈ {routines}

Query: find most frequently
called routines

Calling context profiling:

Stream Σ = 〈main,main→
h,main→ g → h ...〉 =
= 〈π1, π2, ..., πn〉

Item universe:
πi ∈

⋃∞
j {routines}j

Query: find most frequent
calling contexts

15 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

Conventional approaches

Keep complete profiling info about vertices or paths

Vertex profiling:

Hash table
Space required = Θ(number
of distinct routines inΣ)

Calling context profiling:

Calling context tree
Space required = Θ(number
of CCT nodes) =
= Θ(number of distinct call
paths inΣ)

16 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

Conventional approaches

Keep complete profiling info about vertices or paths

Vertex profiling:

Hash table
Space required = Θ(number
of distinct routines inΣ)

Calling context profiling:

Calling context tree
Space required = Θ(number
of CCT nodes) =
= Θ(number of distinct call
paths inΣ)

16 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

How much space?

Application |Call graph| |Call sites| |CCT| |Σ|
amarok 13 754 113 362 13 794 470 991 112 563
audacity 6 895 79 656 13 131 115 924 534 168
bluefish 5 211 64 239 7 274 132 248 162 281
dolphin 10 744 84 152 11 667 974 390 134 028
firefox 6 756 145 883 30 294 063 625 133 218
gedit 5 063 57 774 4 183 946 407 906 721
gimp 5 146 93 372 26 107 261 805 947 134

sudoku 5 340 49 885 2 794 177 325 944 813
inkscape 6 454 89 590 13 896 175 675 915 815
oocalc 30 807 394 913 48 310 585 551 472 065
pidgin 7 195 80 028 10 743 073 404 787 763
quanta 13 263 113 850 27 426 654 602 409 403

Runs of a few minutes of real applications produce Gigabytes
of information
Storing the CCT requires hundreds of Megabytes

17 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

Skewness

18 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

Pareto principle (80-20 rule)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

c
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y
 r

e
la

ti
v
e

 t
o

 t
o

ta
l
n

u
m

b
e

r
o

f
c
a

lls

% of hot contexts sorted by rank

cumulative frequency distributions

audacity
audacity (startup only)

bzip2
gimp

gnome-dictionary
inkscape

19 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Execution traces Some properties

Patterns

Execution traces typically contain:

several event repetitions, either contiguous or not

a very large number of patterns

each pattern can have thousands of occurrences

Data mining, pattern detection, and compression techniques very
useful to understand the characteristics of execution traces

20 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Case studies

21 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Mining hot calling contexts space-efficiently

Keep information about hot contexts only

Ignore on the fly info about contexts with low frequency

[D’Elia, Demetrescu & F., PLDI 2011]

22 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Hot calling context tree

The CCT unfolds during program execution
How do we prune it on-line (to get the HCCT)?

23 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

The Britney Spears problem...

24 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

... tracking who’s hot and who’s not

“... can’t just pay attention to a few popular subjects, because you
can’t know in advance which ones are going to rank near the top.
To be certain of catching every new trend as it unfolds, you have to
monitor all the incoming queries – and their variety is unbounded. ”

25 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Heavy hitters

Given a stream of n items, find those that appear “most frequently”

E.g., items occurring
more than 1% of the
time

Formally “hard” in small space, so allow approximation
No false negatives: return all items with count ≥ ϕn
“Good” false positives: no item with count < (ϕ− ε)n is
returned (error ε ∈ (0, 1), ε� ϕ)
Related problem: estimate each frequency with error ±εn

26 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Heavy hitters

Given a stream of n items, find those that appear “most frequently”

E.g., items occurring
more than 1% of the
time

Formally “hard” in small space, so allow approximation

No false negatives: return all items with count ≥ ϕn
“Good” false positives: no item with count < (ϕ− ε)n is
returned (error ε ∈ (0, 1), ε� ϕ)
Related problem: estimate each frequency with error ±εn

26 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Heavy hitters

Given a stream of n items, find those that appear “most frequently”

E.g., items occurring
more than 1% of the
time

Formally “hard” in small space, so allow approximation
No false negatives: return all items with count ≥ ϕn

“Good” false positives: no item with count < (ϕ− ε)n is
returned (error ε ∈ (0, 1), ε� ϕ)
Related problem: estimate each frequency with error ±εn

26 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Heavy hitters

Given a stream of n items, find those that appear “most frequently”

E.g., items occurring
more than 1% of the
time

Formally “hard” in small space, so allow approximation
No false negatives: return all items with count ≥ ϕn
“Good” false positives: no item with count < (ϕ− ε)n is
returned (error ε ∈ (0, 1), ε� ϕ)

Related problem: estimate each frequency with error ±εn

26 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Heavy hitters

Given a stream of n items, find those that appear “most frequently”

E.g., items occurring
more than 1% of the
time

Formally “hard” in small space, so allow approximation
No false negatives: return all items with count ≥ ϕn
“Good” false positives: no item with count < (ϕ− ε)n is
returned (error ε ∈ (0, 1), ε� ϕ)
Related problem: estimate each frequency with error ±εn

26 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

A well-studied problem

Core streaming problem: connections with entropy estimation,
itemsets mining, compressed sensing

Extensive research: scores of streaming papers on frequent
items and its variations

Two approaches:

1 Sketch-based
Maintain a sketch of the whole data set
Estimate frequency of both frequent and non-frequent items

2 Counter-based
Maintain estimated counters of frequent items only
Work very well on skewed input distributions

27 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

A well-studied problem

Core streaming problem: connections with entropy estimation,
itemsets mining, compressed sensing

Extensive research: scores of streaming papers on frequent
items and its variations

Two approaches:

1 Sketch-based
Maintain a sketch of the whole data set
Estimate frequency of both frequent and non-frequent items

2 Counter-based
Maintain estimated counters of frequent items only
Work very well on skewed input distributions

27 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

A well-studied problem

Core streaming problem: connections with entropy estimation,
itemsets mining, compressed sensing

Extensive research: scores of streaming papers on frequent
items and its variations

Two approaches:

1 Sketch-based
Maintain a sketch of the whole data set
Estimate frequency of both frequent and non-frequent items

2 Counter-based
Maintain estimated counters of frequent items only
Work very well on skewed input distributions

27 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

(Some) counter-based algorithms

1 Sticky sampling Gibbons & Matias, SIGMOD 1998 – Manku &
Motwani, VLDB 2002]

probabilistic, sampling-based approach
correct with probability ≥ 1− δ, with δ ∈ (0, 1) user-specified
probability of failure
space O(1

ε · log
1
ϕδ)

2 Lossy counting [Manku & Motwani, VLDB 2002]
deterministic
space O(1

ε · log(εn))

3 Space saving [Metwally, Agrawal & El Abbadi, ACM TODS 2006]
deterministic
space O(1

ε) (provably optimal)

28 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Back to hot calling contexts

Maintain a set M of monitored calling contexts

Upon query, return a subset A ⊆ M: A = { (ϕ, ε)-heavy
hitters}
All true hot contexts are returned: H ⊆ A (no false negatives)

False positives are “good”

CCT
(all contexts)

false
positives

monitored
M

true hot
H

(ε,ϕ)-heavy
hitters

A

The CCT induces a tree structure over sets H, A, M

29 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Back to hot calling contexts

Maintain a set M of monitored calling contexts

Upon query, return a subset A ⊆ M: A = { (ϕ, ε)-heavy
hitters}
All true hot contexts are returned: H ⊆ A (no false negatives)

False positives are “good”

CCT
(all contexts)

false
positives

HCCT monitored
M

true hot
H

(ε,ϕ)-heavy
hitters

A

The CCT induces a tree structure over sets H, A, M

30 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Back to hot calling contexts

Maintain a set M of monitored calling contexts

Upon query, return a subset A ⊆ M: A = { (ϕ, ε)-heavy
hitters}
All true hot contexts are returned: H ⊆ A (no false negatives)

False positives are “good”

CCT
(all contexts)

(ε,ϕ)-HCCT

false
positives

HCCT monitored
M

true hot
H

(ε,ϕ)-heavy
hitters

A

The CCT induces a tree structure over sets H, A, M

31 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Back to hot calling contexts

Maintain a set M of monitored calling contexts

Upon query, return a subset A ⊆ M: A = { (ϕ, ε)-heavy
hitters}
All true hot contexts are returned: H ⊆ A (no false negatives)

False positives are “good”

The CCT induces a tree structure over sets H, A, M

32 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

(ϕ, ε)-hot calling context tree

100

100

100 10050

50

40

10

10 1010

1

false
positive

false
positive

(a) (b) (c)

(a) CCT: entire calling context tree

(b) HCCT: hot calling context tree

hot nodes
cold internal nodes

(c) (ϕ, ε)-HCCT: (ϕ, ε)-hot calling
context tree

hot nodes
cold internal nodes
“almost hot” leaves (false
positives)

33 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

How many false positives?

Lossy Counting (left bars) versus Space Saving (right bars)

 0

 20

 40

 60

 80

 100

 am
arok

 ark
 audacity

 bluefish

 dolphin

 firefox

 gedit

 ghex2

 gim
p

 sudoku

 gw
enview

 inkscape

 oocalc

 ooim
press

 oow
riter

 pidgin

 quanta

 vlc

C
o

ld
 n

o
d

e
s
 /

 h
o

t
n

o
d

e
s
 /

 f
a

ls
e

 p
o

s
it
iv

e
s
 (

%
)

Classification of (φ,ε)-HCCT nodes

34 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Parameter tuning

Rule of thumb: ε = ϕ/10 [Cormode and Hadjieleftheriou, PVLDB 2008]

ε = ϕ/5 works great here due to distribution skewness

What about ϕ?

HCCT nodes HCCT nodes HCCT nodes
Benchmark φ = 10−3 φ = 10−5 φ = 10−7

audacity 112 9 181 233 362
dolphin 97 14 563 978 544
gimp 96 15 330 963 708

inkscape 80 16 713 830 191
oocalc 136 13 414 1 339 752
quanta 94 13 881 812 098

35 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Parameter tuning

Rule of thumb: ε = ϕ/10 [Cormode and Hadjieleftheriou, PVLDB 2008]

ε = ϕ/5 works great here due to distribution skewness

What about ϕ?

HCCT nodes HCCT nodes HCCT nodes
Benchmark φ = 10−3 φ = 10−5 φ = 10−7

audacity 112 9 181 233 362
dolphin 97 14 563 978 544
gimp 96 15 330 963 708

inkscape 80 16 713 830 191
oocalc 136 13 414 1 339 752
quanta 94 13 881 812 098

35 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Parameter tuning

Rule of thumb: ε = ϕ/10 [Cormode and Hadjieleftheriou, PVLDB 2008]

ε = ϕ/5 works great here due to distribution skewness

What about ϕ?

HCCT nodes HCCT nodes HCCT nodes
Benchmark φ = 10−3 φ = 10−5 φ = 10−7

audacity 112 9 181 233 362
dolphin 97 14 563 978 544
gimp 96 15 330 963 708

inkscape 80 16 713 830 191
oocalc 136 13 414 1 339 752
quanta 94 13 881 812 098

35 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Parameter tuning

Rule of thumb: ε = ϕ/10 [Cormode and Hadjieleftheriou, PVLDB 2008]

ε = ϕ/5 works great here due to distribution skewness

What about ϕ?

HCCT nodes HCCT nodes HCCT nodes
Benchmark φ = 10−3 φ = 10−5 φ = 10−7

audacity 112 9 181 233 362
dolphin 97 14 563 978 544
gimp 96 15 330 963 708

inkscape 80 16 713 830 191
oocalc 136 13 414 1 339 752
quanta 94 13 881 812 098

35 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Space analysis

Space Saving (LSS) vs. Lossy Counting (LC): ϕ = 10−4, ε = ϕ/5

36 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Counter accuracy

Space Saving (LSS) vs. Lossy Counting (LC): ϕ = 10−4, ε = ϕ/5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

am
arok

ark
audacity

bluefish

dolphin

firefox

gedit

ghex2

gim
p
sudoku

gw
enview

inkscape

oocalc

ooim
press

oow
riter

pidgin

quanta

vlc
am

arok

ark
audacity

bluefish

dolphin

firefox

gedit

ghex2

gim
p
sudoku

gw
enview

inkscape

oocalc

ooim
press

oow
riter

pidgin

quanta

vlc

A
v
g

/m
a

x
 e

rr
o

r
(%

)

Benchmarks

Avg/max counter error among hot elements (% of the true frequency)

 LSS avg error
 LC avg error

 LSS max error
 LC max error

MaxAvg

37 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Other applications

38 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Range adaptive profiling

Assume, e.g., that we want to profile lines of code: if 90% of time
is spent on the top half of the code, fine-grained profile data on the
bottom half would not be very useful

Output profile data into a hierarchical fashion, grouping data into
ranges: [Mysore et al., CGO 2006]

most frequent ranges broken down into subranges

least frequent events kept as larger ranges

Adaptive Spatial Partitioning (ranges and their counters stored in a
tree): [Hershberger et al., Algorithmica 2006]

when range gets sufficiently hot, corresponding tree node split
into subranges

ranges that get colder are merged together, pruning the tree

39 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Range adaptive profiling

Assume, e.g., that we want to profile lines of code: if 90% of time
is spent on the top half of the code, fine-grained profile data on the
bottom half would not be very useful

Output profile data into a hierarchical fashion, grouping data into
ranges: [Mysore et al., CGO 2006]

most frequent ranges broken down into subranges

least frequent events kept as larger ranges

Adaptive Spatial Partitioning (ranges and their counters stored in a
tree): [Hershberger et al., Algorithmica 2006]

when range gets sufficiently hot, corresponding tree node split
into subranges

ranges that get colder are merged together, pruning the tree

39 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Range adaptive profiling

Assume, e.g., that we want to profile lines of code: if 90% of time
is spent on the top half of the code, fine-grained profile data on the
bottom half would not be very useful

Output profile data into a hierarchical fashion, grouping data into
ranges: [Mysore et al., CGO 2006]

most frequent ranges broken down into subranges

least frequent events kept as larger ranges

Adaptive Spatial Partitioning (ranges and their counters stored in a
tree): [Hershberger et al., Algorithmica 2006]

when range gets sufficiently hot, corresponding tree node split
into subranges

ranges that get colder are merged together, pruning the tree

39 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Uniform sampling over software streams

Sampling very popular to reduce size of execution traces and
runtime overhead of dynamic analysis tools

Main approach in state-of-the-art profilers: fixed rate sampling
(e.g., take one item every 10 ms)

Pros: easy to implement
Cons: produce biased samples when the original trace exhibits
regular patterns

To avoid bias and get representative samples, need uniform
sampling probability [Mytkowicz et al., PLDI 2010]

Randomized approaches (e.g., reservoir sampling [Vitter, ACM
TMS 1985]) leverage these issues [Coppa et al., 2013]

40 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Uniform sampling over software streams

Sampling very popular to reduce size of execution traces and
runtime overhead of dynamic analysis tools

Main approach in state-of-the-art profilers: fixed rate sampling
(e.g., take one item every 10 ms)

Pros: easy to implement
Cons: produce biased samples when the original trace exhibits
regular patterns

To avoid bias and get representative samples, need uniform
sampling probability [Mytkowicz et al., PLDI 2010]

Randomized approaches (e.g., reservoir sampling [Vitter, ACM
TMS 1985]) leverage these issues [Coppa et al., 2013]

40 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Uniform sampling over software streams

Sampling very popular to reduce size of execution traces and
runtime overhead of dynamic analysis tools

Main approach in state-of-the-art profilers: fixed rate sampling
(e.g., take one item every 10 ms)

Pros: easy to implement
Cons: produce biased samples when the original trace exhibits
regular patterns

To avoid bias and get representative samples, need uniform
sampling probability [Mytkowicz et al., PLDI 2010]

Randomized approaches (e.g., reservoir sampling [Vitter, ACM
TMS 1985]) leverage these issues [Coppa et al., 2013]

40 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions Mining calling contexts Other applications

Uniform sampling over software streams

Sampling very popular to reduce size of execution traces and
runtime overhead of dynamic analysis tools

Main approach in state-of-the-art profilers: fixed rate sampling
(e.g., take one item every 10 ms)

Pros: easy to implement
Cons: produce biased samples when the original trace exhibits
regular patterns

To avoid bias and get representative samples, need uniform
sampling probability [Mytkowicz et al., PLDI 2010]

Randomized approaches (e.g., reservoir sampling [Vitter, ACM
TMS 1985]) leverage these issues [Coppa et al., 2013]

40 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

Intro Software streams Case studies Conclusions

Conclusions

Dynamic program analysis:
data-intensive nature makes it great source of algorithmic
problems

a lot of fun with algorithms, systems, and architectures

automated analysis provides valuable tools in algorithm
engineering

Challenges: analysis of programs on multi-core platforms, big data
applications, and resource-constrained systems

41 / 41 Irene Finocchi CiE 2013 special session on data streams and compression

	Introduction
	Program analysis
	Static vs. dynamic
	Dynamic issues

	Software streams
	Execution traces
	Some properties

	Case studies
	Mining calling contexts
	Other applications

	Conclusions

