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Theory versus practice

Theory is when you know something, but it
doesn’t work.

Practice is when something works, but you
don’t know why.

Programmers combine theory and practice:
Nothing works, and they don’t know why.

(Anonymous)
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Topic of the talk

Algorithm engineering talk: boosting practice with theory

Theory: data stream algorithmics

Application area: dynamic program analysis
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Program analysis

Development of techniques and tools for analyzing
the structure and the behavior of a software system

Goals:

conclude properties about the program: e.g., correctness,
resource consumption

seek opportunities for optimization

error detection and correction: e.g., type checking, memory
safety, data structure repair, protection against security attacks

study how the program or its parts are used: e.g., usage
patterns, intrusion detection

program understanding
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Static vs. dynamic analysis

Static analysis: based on knowledge of code (source, object, ...)

Examples:
compilers
formal verification systems
theoretical analysis of algorithms

Dynamic analysis: exploits information gathered at runtime

Examples:
debuggers, memory checkers
performance profilers
platforms for the experimental evaluation of algorithms
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Program analysis in algorithm engineering
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Soundness vs. accuracy

Static analysis huge success in software design,
but dynamic nature of modern computing scenarios

makes it increasingly more inaccurate
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Program analysis community

Many disciplines involved:
programming languages, SE, architectures, algorithms, statistics. . .
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This talk: algorithmics for dynamic program analysis

Events of interest:

routine calls
memory accesses
low-level instructions
...

system calls
cache misses
interrupts
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What’s difficult?

Capturing events

hardware support (counters, watchpoints)
programmable interrupts/signals
program instrumentation (source code or binary code)

Intrusiveness: Heisenberg effects (the act of observing a system
causes the system to change)

Performance: analysis inlined with program execution, slow down
analyzed programs, real-time performance (billions of events per
second)

Massive data: dynamic analysis tools process huge amounts of
data, cannot store all of them
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Efficient algorithms can make a difference

Automated dynamic analysis less explored than static analysis from
an algorithmic perspective...
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Software streams

12 / 41 Irene Finocchi CiE 2013 special session on data streams and compression



Intro Software streams Case studies Conclusions Execution traces Some properties

An example: performance profiling

Form of dynamic program analysis that
typically measures:

execution time of instructions, basic
blocks, routines
frequency of portions of code

Our goal: identify routines that contribute
most to the running time (hot routines)

Mainly useful for performance optimization
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Profiler characteristics

Granularity

Basic blocks
Routines

Metrics

Time
Number of routine calls
Cache misses, I/Os . . .

Data aggregation level

Vertex: how many times is routine f called?
Edge: how many times is f called from g?
Calling context: how many times is f called along path
main→ g → h→ f ?
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Vertex vs. calling context profiling

Vertex profiling:

Stream Σ =
= 〈main, g , h, f , ...〉 =
= 〈f1, f2, ..., fn〉

Item universe:
fi ∈ {routines}

Query: find most frequently
called routines

Calling context profiling:

Stream Σ = 〈main,main→
h,main→ g → h ...〉 =
= 〈π1, π2, ..., πn〉

Item universe:
πi ∈

⋃∞
j {routines}j

Query: find most frequent
calling contexts
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Conventional approaches

Keep complete profiling info about vertices or paths

Vertex profiling:

Hash table
Space required = Θ(number
of distinct routines inΣ)

Calling context profiling:

Calling context tree
Space required = Θ(number
of CCT nodes ) =
= Θ(number of distinct call
paths inΣ)
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How much space?

Application |Call graph| |Call sites| |CCT| |Σ|
amarok 13 754 113 362 13 794 470 991 112 563
audacity 6 895 79 656 13 131 115 924 534 168
bluefish 5 211 64 239 7 274 132 248 162 281
dolphin 10 744 84 152 11 667 974 390 134 028
firefox 6 756 145 883 30 294 063 625 133 218
gedit 5 063 57 774 4 183 946 407 906 721
gimp 5 146 93 372 26 107 261 805 947 134

sudoku 5 340 49 885 2 794 177 325 944 813
inkscape 6 454 89 590 13 896 175 675 915 815
oocalc 30 807 394 913 48 310 585 551 472 065
pidgin 7 195 80 028 10 743 073 404 787 763
quanta 13 263 113 850 27 426 654 602 409 403

Runs of a few minutes of real applications produce Gigabytes
of information
Storing the CCT requires hundreds of Megabytes
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Skewness
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Pareto principle (80-20 rule)
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Patterns

Execution traces typically contain:

several event repetitions, either contiguous or not

a very large number of patterns

each pattern can have thousands of occurrences

Data mining, pattern detection, and compression techniques very
useful to understand the characteristics of execution traces
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Case studies
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Mining hot calling contexts space-efficiently

Keep information about hot contexts only

Ignore on the fly info about contexts with low frequency

[D’Elia, Demetrescu & F., PLDI 2011]
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Hot calling context tree

The CCT unfolds during program execution
How do we prune it on-line (to get the HCCT)?
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The Britney Spears problem...
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... tracking who’s hot and who’s not

“... can’t just pay attention to a few popular subjects, because you
can’t know in advance which ones are going to rank near the top.
To be certain of catching every new trend as it unfolds, you have to
monitor all the incoming queries – and their variety is unbounded. ”
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Heavy hitters

Given a stream of n items, find those that appear “most frequently”

E.g., items occurring
more than 1% of the
time

Formally “hard” in small space, so allow approximation
No false negatives: return all items with count ≥ ϕn
“Good” false positives: no item with count < (ϕ− ε)n is
returned (error ε ∈ (0, 1), ε� ϕ)
Related problem: estimate each frequency with error ±εn
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A well-studied problem

Core streaming problem: connections with entropy estimation,
itemsets mining, compressed sensing

Extensive research: scores of streaming papers on frequent
items and its variations

Two approaches:

1 Sketch-based
Maintain a sketch of the whole data set
Estimate frequency of both frequent and non-frequent items

2 Counter-based
Maintain estimated counters of frequent items only
Work very well on skewed input distributions
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(Some) counter-based algorithms

1 Sticky sampling Gibbons & Matias, SIGMOD 1998 – Manku &
Motwani, VLDB 2002]

probabilistic, sampling-based approach
correct with probability ≥ 1− δ, with δ ∈ (0, 1) user-specified
probability of failure
space O( 1

ε · log
1
ϕδ )

2 Lossy counting [Manku & Motwani, VLDB 2002]
deterministic
space O( 1

ε · log(εn))

3 Space saving [Metwally, Agrawal & El Abbadi, ACM TODS 2006]
deterministic
space O( 1

ε ) (provably optimal)
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Back to hot calling contexts

Maintain a set M of monitored calling contexts

Upon query, return a subset A ⊆ M: A = { (ϕ, ε)-heavy
hitters}
All true hot contexts are returned: H ⊆ A (no false negatives)

False positives are “good”

CCT
(all contexts)

false
positives

monitored
M

true hot
H

(ε,ϕ)-heavy
hitters

A

The CCT induces a tree structure over sets H, A, M
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(ϕ, ε)-hot calling context tree
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hot nodes
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(c) (ϕ, ε)-HCCT: (ϕ, ε)-hot calling
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hot nodes
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How many false positives?

Lossy Counting (left bars) versus Space Saving (right bars)
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Parameter tuning

Rule of thumb: ε = ϕ/10 [Cormode and Hadjieleftheriou, PVLDB 2008]

ε = ϕ/5 works great here due to distribution skewness

What about ϕ?

HCCT nodes HCCT nodes HCCT nodes
Benchmark φ = 10−3 φ = 10−5 φ = 10−7

audacity 112 9 181 233 362
dolphin 97 14 563 978 544
gimp 96 15 330 963 708

inkscape 80 16 713 830 191
oocalc 136 13 414 1 339 752
quanta 94 13 881 812 098
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Space analysis

Space Saving (LSS) vs. Lossy Counting (LC): ϕ = 10−4, ε = ϕ/5
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Counter accuracy

Space Saving (LSS) vs. Lossy Counting (LC): ϕ = 10−4, ε = ϕ/5
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Other applications
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Range adaptive profiling

Assume, e.g., that we want to profile lines of code: if 90% of time
is spent on the top half of the code, fine-grained profile data on the
bottom half would not be very useful

Output profile data into a hierarchical fashion, grouping data into
ranges: [Mysore et al., CGO 2006]

most frequent ranges broken down into subranges

least frequent events kept as larger ranges

Adaptive Spatial Partitioning (ranges and their counters stored in a
tree): [Hershberger et al., Algorithmica 2006]

when range gets sufficiently hot, corresponding tree node split
into subranges

ranges that get colder are merged together, pruning the tree
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ranges: [Mysore et al., CGO 2006]
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Uniform sampling over software streams

Sampling very popular to reduce size of execution traces and
runtime overhead of dynamic analysis tools

Main approach in state-of-the-art profilers: fixed rate sampling
(e.g., take one item every 10 ms)

Pros: easy to implement
Cons: produce biased samples when the original trace exhibits
regular patterns

To avoid bias and get representative samples, need uniform
sampling probability [Mytkowicz et al., PLDI 2010]

Randomized approaches (e.g., reservoir sampling [Vitter, ACM
TMS 1985]) leverage these issues [Coppa et al., 2013]
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Conclusions

Dynamic program analysis:
data-intensive nature makes it great source of algorithmic
problems

a lot of fun with algorithms, systems, and architectures

automated analysis provides valuable tools in algorithm
engineering

Challenges: analysis of programs on multi-core platforms, big data
applications, and resource-constrained systems
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