
Local dependency dynamic
programming in the

presence of memory faults

Saverio Caminiti,
Irene Finocchi, and Emanuele G. Fusco

Department of Computer Science, Sapienza University of Rome

Memory fault

• One or more bits is read differently from how were
last written

• Due to

• Impact

STACS 2011 - Dortmund - March 10-12, 2011 2

Hardware problems

Transient electronic noises

Machine crash

Unpredictable output

Security vulnerability

How common are memory errors?

• Cluster of 1000 computers

• 4 GB memory each

• One bit error every 3 seconds!

• Each computer: 1 error every 50 minutes

[Schroeder, Pinheiro, and Weber. SIGMETRICS 2009]

STACS 2011 - Dortmund - March 10-12, 2011 3

Possible Solutions

• Hardware: ECC (not always available)

• Software: robustification

– Redesign algorithms

– Rewrite software

– Faults longer execution

STACS 2011 - Dortmund - March 10-12, 2011 4

Faulty RAM model

• Based on the unit cost RAM model

• Adversary

– Unbounded computational power

– Can corrupt up to d words (at any time)

• O(1) safe memory words

• O(1) private memory words (random bits)

Known results: searching, sorting, dictionaries, priority queues, …

[Finocchi, Italiano, STOC’04]

STACS 2011 - Dortmund - March 10-12, 2011 5

Local dependency dynamic programming

• Strings X = x1···xn and Y = y1···ym (n ≥ m)

• ED(X, Y) = the number of edit op {ins, del, sub}
required to transform X into Y

• en,m = ED(X, Y)

• O(nm) running time

STACS 2011 - Dortmund - March 10-12, 2011 6

ei,j =
ei−1,j−1 if xi = yj

1 + min {ei−1,j , ei,j−1, ei−1,j−1} otherwise{

DP table
i

j

A naïf approach

• Resilient variables

– Write 2d+1 copies

– Read by majority (in O(1) safe memory)

• Naïf algorithm O(nmd) running time

• Match O(nm) running time of the standard
non-resilient implementation d = O(1)

STACS 2011 - Dortmund - March 10-12, 2011 7

Algorithm RED (Resilient Edit Distance)

• Assume X and Y are stored resiliently

• ED(X, Y) can be computed:

• in O(nm + ad2) time

a ≤ d is the actual number of faults

• correctly w.h.p.

• Assume m = Θ(n):

match O(n2) d = O(n2/3)

STACS 2011 - Dortmund - March 10-12, 2011 8

Techniques

• Resilient variables

• Table decomposition (one-level/hierarchical)

• Karp-Rabin fingerprints

– Can be computed incrementally in O(1) private memory

• Partial recomputation upon fault detection

STACS 2011 - Dortmund - March 10-12, 2011 9

Table decomposition

• DP table is split into blocks
of dd cells

• Last row and column are
written reliably in the
unreliable memory

STACS 2011 - Dortmund - March 10-12, 2011 10

Block computation

• Column-major order

• While writing column h
compute write fingerprint jh

on written data

• While reading column h
compute read fingerprint h

on read data

• Fingerprint test:
if jh ≠ h recompute block

STACS 2011 - Dortmund - March 10-12, 2011 11

• Similar fingerprints for X and Y

Running time analysis

• Successful block computations:

– No fingerprint mismatch

– O(1) amortized cost per operation O(nm)

• Unsuccessful block computations:

– Each block recomputation can be attributed to (at least)
a distinct fault

– a faults O(ad2)

• Overall running time: O(nm + ad2)

• Correct w.h.p. (game based proof)

STACS 2011 - Dortmund - March 10-12, 2011 12

Tracing back

• Edit sequence is given by p

• In each block traversed by p

– Compute a segment of p
unreliably

– Verify the segment reading
input and block borders
reliably

– Segment not valid
recompute the block forward

STACS 2011 - Dortmund - March 10-12, 2011 13

Faster error recovery

• Edit distance and sequence can be computed:

• in O(nm + ad1+e) time

• correctly w.h.p.

• Assume m = Θ(n):

match O(n2) d = O(n2/(2+e))

STACS 2011 - Dortmund - March 10-12, 2011 14

Semi-resilient data

• An r–resilient variable

– written in 2r+1 copies and read by majority

– can be corrupted (as r < d) but at the cost of > r faults

• k resiliency levels (k constant = 1/e)

– level i[1,k] uses on di –resilient variables, di = di/k

d1/3 –resilient

E.g., with k = 3 d2/3 –resilient

d–resilient

STACS 2011 - Dortmund - March 10-12, 2011 15

Long-distance fingerprints

• Every di columns we store a
di –resilient copy

• One fingerprint for resilien-
cy level (k fingerprints)

• Level i fingerprint associated
with the last column written
di –resilient

STACS 2011 - Dortmund - March 10-12, 2011 16

d1/k d2/k

d1 –resilient

d2 –resilient

resilient

Long-distance fingerprints

• Fingerprint mismatch on
non resilient columns:

– restart computation from the
last d1 –resilient column

• Fingerprint mismatch while
reading at level i:

– restart computation from the
last di+1 –resilient column

STACS 2011 - Dortmund - March 10-12, 2011 17

d1/k d2/k

d1 –resilient

d2 –resilient

resilient

Trace-back with semi-resilient cols

• Exploit semi-resilient
columns but intermediate
fingerprints are no longer
available

• Compute segments at
resiliency level i and glue
them together to obtain
segments at level i+1

STACS 2011 - Dortmund - March 10-12, 2011 18

d1/k d2/k

d1 –resilient

d2 –resilient

resilient

Trace-back with semi-resilient cols

• Level i segments are verified
against di –resilient columns

• Invalid segment
recompute forward only the
di/k slice of the DP table

O(nm + ad1+e)

STACS 2011 - Dortmund - March 10-12, 2011 19

d1/k d2/k

d1 –resilient

d2 –resilient

resilient

Conclusions

• All Local Dependency Dynamic Programming
problems

• Generalize to higher dimensions

• Well known optimization techniques:

– Hirschberg: reduce space usage

– Ukkonen: reduce running time if strings are similar

STACS 2011 - Dortmund - March 10-12, 2011 20

The End

