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Abstract

Rôle-based access control (RBAC) is increasingly at-
tracting attention because it reduces the complexity and
cost of security administration by interposing the notion of
rôle in the assignment of permissions to users. In this paper,
we present a formal framework relying on an extension of
the π calculus to study the behavior of concurrent systems
in a RBAC scenario. We define a type system ensuring that
the specified policy is respected during computations, and a
bisimulation to equate systems. The theory is then applied
to three meaningful examples, namely finding the ‘minimal’
policy to run a given system, refining a system to be run
under a given policy (whenever possible), and minimizing
the number of users in a given system without changing the
overall behavior.

Introduction

Rôle-based access control (RBAC) [6, 17] has recently
emerged as a widely accepted alternative to classical dis-
cretionary and mandatory access controls: a standard is cur-
rently under development by the National Institute of Stan-
dards and Technology (NIST) [7] and several commercial
applications directly support some forms of RBAC, e.g.,
Oracle, Informix and Sybase in the field of commercial
database management systems.

RBAC is a flexible and policy-neutral access control
technology: it regulates the access of users to information
and system resources on the basis of activities they need
to execute in the system. The essence of RBAC lies with
the notions of user, rôle and permission: users are autho-
rized to use the permissions assigned to the rôles they be-
long to. More specifically, RBAC allows for a preliminary
assignment of permissions to rôles (thus abstracting from
which users will play the various rôles at run-time). A user
may then establish multiple sessions, e.g., by signing on to
the system, during which he activates a subset of rôles that
he is a member of. This greatly simplifies system manage-
ment, as it reduces the cost of administering access control
policies, as well as making the administration process less
error-prone. Anyway, the complexity of the models (e.g., in

large systems the number of rôles can exceed hundreds or
thousands) demands a structured approach to the analysis
and design of such systems.

This paper aims at developing a foundational theory for
system behaviors in a RBAC scenario; to the best of our
knowledge this is the first attempt in this direction. Our ref-
erence model is the so-called RBAC96 model, introduced
by Sandhu et al. in the seminal paper [17]. More advanced
RBAC models include rôle hierarchies and constraints such
as rôle mutual exclusion, separation of duty, delegation of
authority and negative permissions. Our starting point is
the π calculus [18], which provides very well-established
mathematical tools for expressing concurrent and possibly
distributed systems. Essentially, our idea is to equip the π
calculus with a notion of users (i.e., named processes), with
two new constructs for activation/deactivation of rôles, and
with a way to grant permissions to rôles. This is accounted
for by associating each process with a name representing a
user and with a set ρ recording the rôles activated by the
user during the current session. Hence, the term r{| P |}ρ rep-
resents a session of the user named r, running a process P
with active rôles ρ. The calculus is completed by two con-
structs to model rôle’s activation/deactivation, defined by
the following reductions:

r{| role R.P |}ρ 7−→ r{| P |}ρ∪{R}
r{| yield R.P |}ρ 7−→ r{| P |}ρ−{R}

Intuitively, when a user r activates a rôle R during a ses-
sion, R must be added to the set of activated rôles ρ, and the
remaining of the session P will be executed with the set ρ
updated. Vice versa for the deactivation of R.

As an example, the following system

client{| roleauth client.port 80〈index.html〉.P |}ρ
‖ server{| port 80(x).Q |}ρ′

models the interaction between a client and a HTTP server.
The system contains two users, client and server, running in
parallel. It may evolve as follows. First, user client activates
the rôle auth client by exercising the role action, which
in practice would involve to authenticate herself by means
of a secure certificate. Then, she sends the request to the
HTTP server to the usual port 80, i.e., performs an output
action on the channel port 80.



The introduction of named users immediately suggests
the idea of a distributed system. In such systems, as e.g.
the Internet, the notion of global, non-located channels as
port 80 is quite an abstraction over what is realistically
achievable. We therefore use a notion of localized channels
à la Dπ [10], where each channel is associated to a single
user. Syntactically, we realize this feature by tagging output
actions to specify the user (or location) where the exchange
is supposed to take place. Thus the example above may be
rewritten as:

client{| roleauth client.port 80server〈index.html〉.P |}ρ
‖ server{| port 80(x).Q |}ρ′

We also allow user names to be exchanged during com-
munications. This feature adds flexibility and realism to
the language, since in distributed systems users have only
a partial and evolving knowledge of their execution envi-
ronment. For example, the client above can be generalized
to leave the server identity unspecified and to dynamically
retrieve it with an input from channel choose a server:

client{| roleauth client.choose a server(x)
.port 80x〈index.html〉.P |}ρ

More details on our calculus, together with some illustrative
examples, will be given in Section 1.

The mapping among users, rôles and permissions, which
controls the access of subjects to objects, is achieved by a
pair of relations (U ;P), called RBAC schema. In (U ;P),
relation U is the association users-to-rôles, while P is the
association permissions-to-rôles. As a first contribution of
this paper, we define in Section 2 a type system which
complements the dynamics of the calculus by providing
static guarantees that systems not respecting a given RBAC
schema are rejected. In the client/server example above,
a client not authenticated (i.e. interacting with the server
without having previously performed a roleauth client)
would be rejected, if the RBAC schema enables only autho-
rized users to perform HTTP requests.

Often, the overall structure of a distributed system can-
not be known statically. Thus, a typing approach may not be
usable in practice. What is needed is a technique to study
system components in isolation, compositionally, and un-
der different schemata. Hence, as a second contribution, in
Section 3 we introduce a labeled transition system to give a
structured operational semantics to programs, and account
for the dynamic checks necessary to enforce RBAC poli-
cies. Such labeled transition system yields a bisimulation
equivalence, adequate with respect to a standardly defined
(typed) barbed congruence, that allows us to prove some
interesting algebraic laws. As an example, we show how
RBAC schemata may change the semantic theory of the π
calculus. Consider the following system, adapted from the

C: ar , bs , ... ∈ C = Nc ×Nu

I: u, v, ... ∈ Nu ∪V ∪ C ∪ (Nc ×V)

V: m, n, ... ∈ Nu ∪ C

P: P,Q ::= nil
∣∣∣ P | Q

∣∣∣ !P
∣∣∣ [u = v]P∣∣∣ (νa :R)P

∣∣∣ a(x).P
∣∣∣ u〈v〉.P∣∣∣ role R.P

∣∣∣ yield R.P

S: A, B ::= 0
∣∣∣ r{| P |}ρ

∣∣∣ A ‖ B
∣∣∣ (νar :R)A

Table 1. Syntax of the Calculus

client/server example above:

(ν port 80server:R)(server{| port 80(x).Q |}ρ′
‖ client{| port 80server〈index.html〉.P |}∅)

where (ν port 80server :R) is the standard restriction operator
of a typed π calculus (it declares port 80server at type R and
limits the visibility of the channel to client and server only).
By resuming the assumption that only authorized users can
perform HTTP requests, the above system is blocked, i.e. it
is equivalent to the empty system 0, because the client has
not been authenticated. On the contrary, in the π calculus a
similar term would have been equivalent to the term result-
ing from the client/server exchange.

In Section 4 we use types and bisimulations to deal with
three meaningful examples: finding the ‘minimal’ RBAC
schema to execute a system, refining a system to be well-
typed with respect to a given schema (whenever possible),
and minimizing the number of users in a given system with-
out changing the overall behaviour. We conclude by com-
paring our approach with related work in Section 5. In this
extended abstract all proofs are omitted, as is much of the
discussion; complete proofs can be found in [3].

1 The Language

In this section we introduce our calculus formally. First,
we define syntax and operational semantics; then, we for-
malize the RBAC schema to describe the rôles-to-users and
permissions-to-rôles assignment.

1.1 Syntax

The calculus is a conservative extension of the π calcu-
lus. We assume the following countable and pairwise dis-
joint sets: R of rôle names, ranged over by R, S , . . .; Nu of
user names, ranged over by r, s, . . .; Nc of channel names,
ranged over by a, b, . . .; and V of variables, ranged over
by x, y, z. The syntax of the calculus is given in Table 1,
with restricted channels decorated with a rôle as described
in Section 1.3.



A system consists of the parallel composition of user ses-
sions that can share channels. A user session r{| P |}ρ rep-
resents a user named r executing session P with the set ρ
recording r’s active rôles. Observe that different sessions of
the same user can run in parallel within a system A: this is
the usual notion of sessions in RBAC models.

Processes nil, P | Q, !P, [u = v]P, (νa : R)P, a(x).P,
u〈v〉.P are the ordinary π-like constructs representing re-
spectively the inactive process, parallel composition of pro-
cesses, replication (to model recursive process behaviors),
value matching, restriction of channel names and standard
input/output actions over channels. (As usual, in the rest of
the paper we will omit trailing inactive processes.) The nov-
elty of the calculus resides in the actions role R and yield R,
and in the locality of channels, as already described in the
Introduction. Actions role R and yield R implement activa-
tions/deactivations of rôles in the user session they belong
to, and modify the session rôles accordingly.

Channels are uniquely associated to users. The set of
channels C is formed by coupling a channel name with a
user name, and it is ranged over by ar, bs, . . .. Identifiers,
ranged over by u, v, . . ., denote user names, variables, chan-
nels and compound entities made up by a channel name and
a variable. The only transmissible values are user names
and channels and are ranged over by m, n, . . .. Channel
names cannot be transmitted, as they make little sense with-
out the indication of the user owning them. Input channels
cannot be variables and are not decorated with a user name.
This is a syntactic means to localize them, as input chan-
nels implicitly belong to the user the appear in. On the other
hand, output actions must indicate the name of the user con-
taining the invoked channel. For example, r{| as〈. . .〉.P |}ρ
models a user r trying to communicate along channel a as-
sociated to user s (if any). Notice also that a process like
a(x).bx〈v〉.P can be accepted but, in order to be executed, at
run-time x must be assigned a user name r which owns an
input channel br. These properties will be enforced by the
type system of Section 2.

Restrictions (νa : R)P and (νar : R)A and the input pre-
fix a(x).P act as binders for channel name a, channel ar and
variable x, respectively. The sets of free and bound channels
in a system A, written F(A) and B(A), are defined accord-
ingly, and so is alpha-conversion. Just notice that (νa : R)P
within user r binds channel ar. The formal definition of
free and bound channels is in the full paper [3]; here we
assume that systems are closed (i.e. with no free variables),
that bound channels are pairwise distinct and different from
the free ones. Furthermore, observe that user names cannot
be restricted. This seems reasonable since the creation of a
new user is a sensitive operation: it has to be performed by
the system administrator, as it may affect the RBAC policy
underlying the entire system.

In this paper, we denote with ˜ a possibly empty tuple

of entities of kind . Moreover, we write ãr : R̃ to denote
the tuple {ar

1 : R1, . . . , ar
k : Rk}, for k ≥ 0. Sometimes, we

shall use tuples as sets (i.e. without considering the order of
their elements) and we write, e.g., bs ∈ ãr or bs : S ∈ ãr : R̃.

1.2 Dynamic Semantics

The dynamics of the calculus is given in the form of a
reduction relation. As customary, the reduction semantics is
based on an auxiliary relation called structural congruence,
≡, which brings the participants of a potential interaction to
contiguous positions.

Definition 1.1 (Structural Congruence). The structural
congruence relation, ≡, is the least congruence on systems
which equates alpha-convertible systems, makes ‖ and |
commutative and associative with identities respectively 0
and nil, and satisfies the following laws.

r{|P | Q |}ρ ≡ r{| P |}ρ ‖ r{|Q |}ρ

r{| (νa :R)P |}ρ ≡ (νar :R)r{|P |}ρ

(νar :R)(νbs :S )A ≡ (νbs :S )(νar :R)A

(νar :R)A ‖ B ≡ (νar :R)(A ‖ B) if ar
< F(B)

r{| !P |}ρ ≡ r{| P |!P |}ρ

r{| [u = u]P |}ρ ≡ r{| P |}ρ

Definition 1.2 (Reduction Relation). The reduction rela-
tion, 7−→, is the least relation on systems satisfying the fol-
lowing laws.

r{| a(x).P |}ρ ‖ s{| ar〈n〉.Q |}ρ′ 7−→ r{| P[n/x] |}ρ ‖ s{|Q |}ρ′

r{| role R.P |}ρ 7−→ r{|P |}ρ∪{R}

r{| yield R.P |}ρ 7−→ r{|P |}ρ−{R}

A 7−→ A′

A ‖ B 7−→ A′ ‖ B

A 7−→ A′

(νar :R)A 7−→ (νar :R)A′

A ≡ A′ A′ 7−→ B′ B′ ≡ B

A 7−→ B

All structural rules are standard, but the first two. The
first states that a session of user r with rôles ρ hosting two
processes running in parallel can be split in two parallel
sessions of r with rôles ρ. The second one states that a
restriction of a channel name inside a user can be turned
into a restriction over the corresponding channel at the sys-
tem level. Similarly, the reduction relation is an extension
of [18] with the rules for actions role R and yield R. The
first action adds R to the rôles ρ activated in the current
session, while the second one removes R from ρ. Notice



that, by exploiting the first structural rule and the rules for
role/yield, the user r{| role R.P | yield S .Q |}ρ evolves into
r{|P |}ρ∪{R} ‖ r{|Q |}ρ−{S }, i.e. actions role/yield only affect the
process thread executing them.

1.3 RBAC Schema

To conclude the presentation of the RBAC96 model, we
need to define the RBAC schema, i.e., the rôles-to-users
and permissions-to-rôles associations, where permissions
enable the actions a user can perform within a system.

Managing rôles and their interrelationships is a difficult
and sensitive task that is often centralized and delegated to a
small team of security administrators. In our framework, the
RBAC schema consists of a pair of finite relations (U ;P),
whereU assigns rôles to users, whileP assigns permissions
to rôles. More formally,

U ⊆fin (Nu ∪ C) × R P ⊆fin R × A

whereA , {R↑,R?,R!}R∈R represents the set of performable
actions. Intuitively, permission R↑ determines the possibil-
ity to activate rôle R (via the action role), while permissions
R? and R! determine the possibility of performing input and
output actions over a channel of rôle R, respectively. Notice
that permissions over input/output actions are not defined
in terms of channels, but of channel rôles. In this way, we
are flexible enough to model both the permission to com-
municate over a single channel (when the relationU maps
only one channel to a rôle), and the permission to commu-
nicate over the member of a group of channels (when re-
lation U maps more than one channel to the same rôle).
Such a case may be useful in situations where more chan-
nels can handle the same kind of requests (cf. Example 1
for a possible situation). Observe that, if U assigns rôle R
to a channel, then the permissions assigned to R by P are
irrelevant; that is, Pmatters only for users. Moreover, since
channels can be considered as methods provided by users,
it seems reasonable that each channel is assigned only one
rôle. A RBAC schema satisfying this last requirement is
called well-defined; in the following we shall only consider
well-defined RBAC schemata. Observe that in A no per-
mission represents actions yield. Indeed, we assume that a
rôle can be deactivated if (and only if) it has been activated
before.

To conclude the presentation of our language, we now
give a couple of examples using the features introduced so
far. We use the following notational conventions. We use
as a generic placeholder, and writeU( ) to denote the set of
all rôles R such that ( ,R) ∈ U; we call the left projection
of U its domain, and proceed analogously for P. Finally,
we let P(ρ) mean

⋃
R∈ρP(R).

Example 1. Let us now formalize in our framework a sce-
nario where a bank client is waiting to be served by one of

the branch cashiers available. There are two users, r and
s, representing respectively the client and the bank branch,
while cashiers are modeled as channels belonging to user
s, named c1, . . . , cn. The rôles available are client and
cashier. Relation U assigns rôle client to user r and
cashier to channels ci, while P assigns to client the
permission to communicate with any of the cashiers, i.e.,
(client , cashier!) ∈ P. In this way, r can indistinctly
activate any of the cashier methods. The overall system can
be described as follows (where we use Π as a shorthand for
parallel composition):

r{| roleclient.enqueues〈r〉.dequeue(z).

z〈req1〉. · · · .z〈reqk〉.z〈stop〉.yield client |}ρ ‖

s{| (ν free : scheduling)(

!enqueue(x).free(y).dequeuex〈y〉 | Πn
i=1frees〈cs

i 〉 |

Πn
i=1 !ci(x).(

[x = withdrw req]〈handle withdraw request〉 |
[x = dep req]〈handle deposit request〉 | . . . |
[x = stop] frees〈cs

i 〉) ) |}ρ′

Once the client enters the bank (i.e., she activates rôle
client), she queues up and waits to be served. When one
of the cashiers becomes available (information maintained
internally by the bank via the reserved channel free used for
cashiers’ scheduling), the client is notified and can make
requests along the received channel z. Cashiers repeatedly
receive requests; we assume methods to handle money with-
draw and deposit (for simplicity, we do not consider the or-
der in which clients arrive; a system of queues can however
be added routinely).

Example 2 (Prerequisite rôle). In some circumstances,
one may want to require a rôle to be activated only
by a user already playing a certain rôle. This is a
particular model of constrained RBAC called prerequi-
site rôle (see, e.g., [17]). In the banking scenario
of Example 1, imagine that r is member of rôles
client, user and authenticated user, and that the
bank policy requires a preliminary authentication phase
to identify its clients. This can be implemented by
having (authenticated user , client↑) ∈ P; hence
authenticated user must be present in ρ to enable the
evolution of r given above.

Example 2 shows that some form of ‘default’ rôle may be
needed to kick-start users’ activities. Hence, ρ in r{|P |}ρ is
used both to record the rôles activated in the session and to
assign some default rôles to r at the outset.

2 Static Semantics

The type system described below provides static guaran-
tees that the set of actions performed by any user during the



Typing Identifiers:

(T-I1)
Γ( ) = ρ[̃a : C̃] ∈ Nu ∪V

Γ ` : ρ[̃a : C̃]

(T-I2)
Γ( ) = ρ[̃b : C̃, a : C, b̃′ : C̃′] ∈ Nu ∪V

Γ ` a : C

Typing Processes:

(T-I)
Γ ` ar : R(T ) R?∈ P(ρ) Γ, x : T ; ρ `Pr P

Γ; ρ `Pr a(x).P

(T-O)
Γ ` u : R(T ) Γ ` v : T R!∈ P(ρ) Γ; ρ `Pr P

Γ; ρ `Pr u〈v〉.P

(T-R̂)
Γ ` r : ρ′ [̃a : C̃] R∈ ρ′ R↑∈ P(ρ) Γ; ρ ∪ {R} `Pr P

Γ; ρ `Pr role R.P

(T-Y)
R ∈ ρ Γ; ρ − {R} `Pr P

Γ; ρ `Pr yield R.P

(T-N)

Γ; ρ `Pr nil

(T-P)
Γ; ρ `Pr P Γ; ρ `Pr Q

Γ; ρ `Pr P | Q

(T-B)
Γ; ρ `Pr P

Γ; ρ `Pr !P

(T-M)
Γ; ρ `Pr P

Γ; ρ `Pr [u = v]P

(T-R)
Γ, ar: R(T ); ρ `Pr P

Γ; ρ `Pr (νa :R)P

Typing Systems:

(T-E)

Γ `P 0

(T-S)
Γ ` r : ρ′[̃a : C̃] ρ ⊆ ρ′ Γ; ρ `Pr P

Γ `P r{| P |}ρ

(T-SP)
Γ `P A Γ `P B

Γ `P A ‖ B

(T-SR)
Γ, ar: R(T ) `P A

Γ `P (νar :R)A

Table 2. Typing Rules

computation respects the RBAC schema, given an initial set
ρ of activated rôles. The syntax of types can be defined by
the following productions (recall that ˜ denotes a possibly
empty tuple of entities of kind )

Message Types T ::= ρ[̃a : C̃] | C
Channel Types C ::= R(T )

Type ρ[a1 : R1(T1), . . . , an : Rn(Tn)] can be assigned to a
user r belonging to rôles in ρ and owning channels ãr ordi-
nately of type R̃(T ). Type R(T ) can be assigned to channels
exchanging values of type T and belonging to rôle R.

A typing environment Γ is a finite partial mapping from
Nu ∪ V into types; thus we write Γ( ) = T to refer to the
type T of the user name or variable . A typing environment
can be extended as follows:

Γ, x : T , Γ ] {x : T }

Γ, ar : C , Γ′

where

Γ′(s) =

{
Γ(s) if s , r
ρ[a : C, b̃ : C̃] if s = r, a < b̃,

and Γ(r) = ρ[̃b : C̃]

In the rest of the paper, we denote with ] the union of func-
tions/relations with disjoint domains. A typing environment
Γ can be used to type a system under a schema (U;P) only
if the rôle information in Γ respects the associations in U.
This intuition is formalized by the following definition.

Definition 2.1. Given a RBAC schema (U;P) and a typ-
ing environment Γ, we say that Γ respects U if, for all
r ∈ dom(Γ) with Γ(r) = ρ[a1 : R1(T1), . . . , an : Rn(Tn)],
it holds thatU(r) = ρ andU(ar

i ) = {Ri}, for all i = 1, . . . , n.

The primary judgments of the type system are of the
form Γ `P A, that should be read as “the system A is well-
formed with respect to environment Γ and relation P”. This
fact, together with the requirement that Γ respects U, im-
plies that A respects the RBAC schema (U;P). To infer the
main judgment, we rely on two auxiliary judgments, one for
identifiers and one for processes. Judgment Γ ` u : T states
that the identifier u has type T in Γ; judgment Γ; ρ `Pr P
states that P respects Γ and P when it is run in a session of
r with rôles ρ activated.

The typing rules are collected in Table 2. Most of them
are self-explanatory; we comment below the most signifi-
cant ones, i.e. those related to the actions in our calculus.
The underlying idea beyond these rules is that an action can



be executed only if the current session has activated a rôle
enabling the action. Rule (T-I) states that, for typing
a(x).P in a session of r where rôles ρ are activated, we need
to establish that ar has type R(T ) in Γ, that inputs over a
channel of group R can be performed when playing rôles
ρ and that P is typeable once assumed that x has type T .
Rule (T-O) is similar: it checks that an output over
a channel of group R is allowed when rôles in ρ are acti-
vated. Moreover, it also requires that the transmitted value
v can be assigned type T in Γ. Rule (T-R̂) states that for
typing process role R.P in a session of r where rôles ρ are
activated, we need to check that r can assume rôle R, that ρ
enables the activation and that P is typeable for r having ac-
tivated ρ ∪ {R}. Rule (T-Y) states that process yield R.P
is legal for r only when R has been previously activated and
if P is typeable for r when R is off.

Finally, notice that in rules (T-R) and (T-SR) the
type of the restricted channel is not tracked in the restriction
construct. Indeed, for typechecking purposes, it suffices to
ensure that the new channel is used coherently by all the
processes accessing it. To this aim, we only need to invent
a suitable T when applying the rules and verify that all the
accesses to the channel conform to T .

Definition 2.2 (Well-typedness). Given a RBAC schema
(U;P) and a system A, we say that A is well-typed for
(U;P) if there exists a typing environment Γ respectingU
such that Γ `P A.

We now prove the soundness of the type system in the
standard way, i.e., by proving subject reduction and type
safety, which ensure that only systems abiding by the RBAC
schema are allowed (i.e., users performing actions permit-
ted by their duly activated rôles).

Theorem 2.1 (Subject Reduction). If Γ `P A and A 7−→
A′, then Γ `P A′.

Theorem 2.2 (Type Safety). Let A be a well-typed system
for (U;P). Then

1. whenever A ≡ (ν ãr : R̃)(A′ ‖ r{|P |}ρ), it holds that
ρ ⊆ U(r)

2. whenever A ≡ (ν ãr : R̃)(A′ ‖ r{| role R.P |}ρ), it holds
that R ∈ U(r) and R↑ ∈ P(ρ)

3. whenever A ≡ (ν ãr: R̃)(A′ ‖ r{| yield R.P |}ρ), it holds
that R ∈ ρ

4. whenever A ≡ (ν ãr: R̃)(A′ ‖ r{| b(x).P |}ρ), it holds that
either br : S ∈ ãr : R̃ and S ? ∈ P(ρ), or br

< ãr and
S ? ∈ P(ρ), where {S } = U(br)

5. whenever A ≡ (ν ãr : R̃)(A′ ‖ r{| bs〈n〉.P |}ρ), it holds
that either bs: S ∈ ãr: R̃ and S ! ∈ P(ρ), or bs

< ãr and
S ! ∈ P(ρ), where {S } = U(bs)

Example 3. Let us consider again the banking scenario
described in Example 1. To illustrate the type system in-
troduced above, let us give a possible typing for the sys-
tem. Let Tcsh , cashier({request}[]) be the type of the
cashiers, i.e., channels belonging to rôle cashier and ex-
changing values of type {request}[]. Type {request}[]
represents the possible requests of clients; syntactically,
values of this type are names of users belonging to rôle
request which do not provide any channel. Moreover, we
let

Tcl , (ρ ∪ {client})[dequeue : cashier get(Tcsh)]

be the type of r. This represents users belonging to rôles in
ρ∪ {client} and owning a channel named dequeue of type
cashier get(Tcsh). Then, a suitable typing environment Γ
is

r 7→ Tcl

s 7→ ρ′[enqueue : cashier req(Tcl),

c1 : Tcsh, . . . , cn : Tcsh]

withdrw req 7→ {request}[]

dep req 7→ {request}[]

. . . 7→ . . .

stop 7→ {request}[].

A suitable permissions-to-rôles assignment P is

{cashier req!,

cashier get?, cashier!} ⊆ P(client) ;

{client↑} ⊆ P(ρ) ;

A ∪ {cashier req?,

scheduling?, scheduling!,

cashier get!, cashier?} ⊆ P(ρ′) ;

where A ⊆ A is a set of action permissions that allow the
handling of client’s requests. The system of Example 1 is
well-typed for any schema (U,P) such that Γ respectsU.

Example 4. In the real world, it is unrealistic to allow any
bank client to ask for any kind of bank operation. For in-
stance, when a client applies for credit, she is always asked
for some credentials. To model this finer scenario, we let
each available operation to be modeled as a specific method,
which can be activated through a specific channel (e.g.,
channel wdrw handles withdraw requests, opn handles open
account requests, cc handles credit card requests, etc.). The
communication along different channels requires different
rôles and, thus, it is a way to control the credentials of the
client. In this setting, the cashier ci of Example 1 is imple-
mented by the following process (the remaining behaviour



of the bank is implemented as in Example 1):

ci(x).( [x = withdrw req] wdrw(y). . . . |
[x = open req] opn(y). . . . |
[x = creditcard req] cc(y). . . . | . . . |
[x = stop] frees〈cs

i 〉 )

Let relation U assign channel wdrw (respectively, opn
and cc) the group wdrw (respectively, opn and cc), and
P = { (rich client, cc!), (client, wdrw!), (user, opn!),
(user, client↑), (rich, rich client↑) }. Thus, under
this schema, the client

r{| roleclient.enqueues〈r〉.dequeue(z).z〈creditcard req〉.

ccs〈signature〉.z〈stop〉.yield client |}{user}

is not well-typed because she has not activated the correct
rôle for performing credit card requests. Indeed, the type-
checking fails when applying the rule (T-O) to action
ccs〈signature〉 because cc!

< P({user, client}). On the
other hand, the following clients do type-check:

r1{| rolerich client.enqueues〈r〉.dequeue(z).
z〈creditcard req〉.ccs〈signature〉.z〈stop〉 |}{rich} ;

r2{| roleclient.enqueues〈r〉.dequeue(z).z〈withdrw req〉.
wdrws〈sum〉.z〈stop〉 |}{user} ;

r3{| enqueues〈r〉.dequeue(z).z〈open req〉.
opns〈personal data〉.z〈stop〉 |}{user} .

We conclude this section remarking that our type system
is not powerful enough to type all legal systems. For exam-
ple, the absence of a recursive type constructor makes the
system r{| ar〈r〉 |}ρ untypeable. Recursive types can be stan-
dardly handled as in [15]. Similarly, we have no notion of
subtyping. Thus, a channel must always carry values ex-
actly of the same type. By introducing standard π calculus
subtyping (see e.g. [16, 18]), a more liberal typing disci-
pline can be developed in a standard way. For the sake of
simplicity, here we preferred to focus on the core character-
istics needed in our setting.

3 Observational Semantics

Often, the overall structure of a distributed system cannot
be known statically. Thus, the typing approach described
in the previous section, even if interesting from a theoret-
ical point of view, may not be usable in practice. In this
section, we introduce a labeled transition system (LTS, for
short) which embodies dynamic policy checks, and allows
us to study (not necessarily well-typed) system components
in isolation and compositionally. The LTS also provides
a tight operational model for the minimal engine underly-
ing any implementation of a RBAC-based run-time system.

We define a standard bisimulation over the LTS and show
that it is adequate with a typed barbed congruence, a rele-
vant result in at least two respects. Firstly, it signifies that
our bisimulation is a sensible equivalence to consider, as it
agrees with the (typed) contextual semantics derived from
an elementary, natural class of observables. Secondly, it
provides us with a powerful co-inductive proof technique
for barbed congruence.

The standard way to describe the interactions a system
can offer externally is by labeling the system evolution with
this information. Thus, we define a labeled transition sys-

tem,
µ
−−→ , that makes apparent the action performed (and,

thus, the external interaction offered). Since we do not re-

quire
µ
−−→ to act only on well-typed terms, the LTS comes

equipped with runtime checks with respect to the RBAC
schema considered to block the execution of illegal actions.

The LTS evolves from the π calculus’ early-style transi-
tion system. In order to account for systems’ rôles vary-
ing over time, the LTS relates configurations, i.e. pairs
(U;P) . A made up of a RBAC schema (U;P) and a sys-
tem A. Configurations are ranged over by D, E . The labels
of the LTS are derived from those of the π calculus and can
be described as follows.

µ ::= τ | arn | arn : R | arn | arn : R

Label τ represents an internal computation of the system.
Labels arn and arn describe the intention to send/receive
value n, known to the environment, on/from channel ar.
Labels ar n : R and arn : R are similar to but the value
sent/received is ‘fresh’ (i.e. unknown to the environment)
and has group R. Functions F( ) and B( ) are easily ex-
tended to labels. In particular, bs is the bound channel of µ
whenever µ is either arbs : R or arbs : R; free channels are
defined accordingly.

The rules defining
µ
−−→ are given in Table 3. The over-

all structure of the system is similar to π calculus’ (see,
e.g., [18]). We use rules (LTS-S), (LTS-E), (LTS-
M), (LTS-B) and the symmetric versions of rules
(LTS-C), (LTS-P) and (LTS-C) to avoid struc-
tural congruence; however, we still implicitly assume alpha-
conversion. The premises of rules (LTS-K-I), (LTS-F-
I), (LTS-O), (LTS-R̂) and (LTS-Y) adapt
respectively the premises of the typing rules (T-I), (T-
O), (T-R̂) and (T-Y), and block the evolution of
ill-typed systems. Rule (LTS-K-I) can be applied when
the received value is known to the schema, while (LTS-
F-I) is used when a fresh value (i.e. unknown to the
schema) is received. In this case, the schema is extended to
record the group of the fresh value. Similarly, when extrud-
ing a restricted channel bs, rule (LTS-O) enlarges the
relation U of the current configuration by recording that
bs has the rôle declared in the restriction. The information



(LTS-R̂)
R ∈ U(r) R↑∈ P(ρ)

(U;P) . r{| role R.P |}ρ
τ
−→ (U;P) . r{|P |}ρ∪{R}

(LTS-Y)
R ∈ ρ

(U;P) . r{| yield R.P |}ρ
τ
−→ (U;P) . r{| P |}ρ−{R}

(LTS-K-I)
U(ar) = {R} R? ∈ P(ρ) n ∈ dom(U)

(U;P) . r{| a(x).P |}ρ
arn
−−−→ (U;P) . r{| P[n/x] |}ρ

(LTS-O)
U(as) = {R} R! ∈ P(ρ)

(U;P) . r{| as〈n〉.P |}ρ
asn
−−−→ (U;P) . r{| P |}ρ

(LTS-C)

(U;P) . A
arn
−−−→ (U;P) . A′ (U;P) . B

ar n
−−−→ (U;P) . B′

(U;P) . A ‖ B
τ
−→ (U;P) . A′ ‖ B′

(LTS-F-I)
U(ar) = {R} R? ∈ P(ρ) n < dom(U)

(U;P) . r{| a(x).P |}ρ
arn:S
−−−−−→ (U ] {n : S };P) . r{| P[n/x] |}ρ

(LTS-O)

(U ] {bs:S };P) . A
ar bs

−−−−→ (U ] {bs:S };P) . A′ ar
, bs

(U;P) . (νbs:S )A
arbs :S
−−−−−→ (U ] {bs:S };P) . A′

(LTS-C)

(U;P) . A
arbs :S
−−−−−→ (U′;P) . A′ (U;P) . B

ar bs:S
−−−−−→ (U′;P) . B′ bs

< F(A)

(U;P) . A ‖ B
τ
−→ (U;P) . (νbs :S )(A′ ‖ B′)

(LTS-R)

(U ] {ar:R};P) . A
µ
−−→ (U′ ] {ar:R};P) . A′ ar

< F(µ)

(U;P) . (νar:R)A
µ
−−→ (U′;P) . (νar :R)A′

(LTS-P)

(U;P) . A
µ
−−→ (U′;P) . A′ B(µ) ∩ F(B) = ∅

(U;P) . A ‖ B
µ
−−→ (U′;P) . A′ ‖ B

(LTS-E)

(U;P) . (νar :R)r{| P |}ρ
µ
−−→ (U′;P) . A

(U;P) . r{| (νa :R)P |}ρ
µ
−−→ (U′;P) . A

(LTS-S)

(U;P) . r{|P |}ρ ‖ r{|Q |}ρ
µ
−−→ (U′;P) . A

(U;P) . r{|P | Q |}ρ
µ
−−→ (U′;P) . A

(LTS-M)

(U;P) . r{|P |}ρ
µ
−−→ (U′;P) . A

(U;P) . r{| [u = u]P |}ρ
µ
−−→ (U′;P) . A

(LTS-B)

(U;P) . r{| P |!P |}ρ
µ
−−→ (U′;P) . A

(U;P) . r{| !P |}ρ
µ
−−→ (U′;P) . A

plus the symmetric version of rules of (LTS-P), (LTS-C) and (LTS-C)

Table 3. A Labeled Transition System



about a fresh/extruded channel is deleted from the schema
when the channel is communicated: indeed, the restriction
is pushed back in the system and closes the scope of the
channel – cf. rule (LTS-C). Notice that a bound output
can synchronize only with a fresh input (and vice versa),
and the rôle declared for the extruded/fresh channel must
be the same. Also observe that τ-moves do not modify the
schema (U;P).

The semantics given in Definition 1.2 and the LTS just
presented are related by the following

Proposition 3.1. If (U;P) . A
τ
−→ (U;P) . A′, we have

A 7−→ A′. Also, if A is well-typed for (U;P), then A 7−→ A′

implies (U;P) . A
τ
−→ (U;P) . B, for some B ≡ A′.

Next, we build upon this LTS a standard bisimulation. As
usual, =⇒ denotes the reflexive and transitive closure of
τ
−→ , and

µ
==⇒ denotes =⇒

µ
−−→=⇒ . Finally,

µ̂
==⇒ is =⇒ if

µ = τ, and
µ
==⇒ otherwise.

Definition 3.1 (Bisimilarity). A bisimulation is a binary
symmetric relation S between configurations such that, if

(D, E) ∈ S and D
µ
−−→ D′, there exists a configuration E′

such that E
µ̂
==⇒ E′ and (D′, E′) ∈ S. Bisimilarity, ≈, is the

largest bisimulation.

As often happens in typed calculi, ≈ is not a congru-
ence for all system contexts. Indeed, due to the checks in
the LTS for schema compliance, the application of ill-typed
contexts can break equivalences. Consider for instance
A , r{| a(x).br〈·〉 | ar〈·〉 |}ρ and B , 0, when ar

< dom(U),
U(br) = {R} and R?,R! ∈ P(ρ). Then (U;P) . A ≈
(U;P) . B but (U;P) . (νar :R)A 6≈ (U;P) . (νar :R)B.
A similar problem arises if U(ar) = {S } but S ?, S !

< P(ρ).
Moreover, some care must be paid when the configurations
equated rely on different schemata. Indeed, it is easy to find
a situation where (U1;P1) . A1 ≈ (U2;P2) . A2 but
(U1;P1) . A1 ‖ B 6≈ (U2;P2) . A2 ‖ B: it suffices to find a
system B with an action enabled by P1 but disabled by P2.

Theorem 3.2 (Congruence Properties of ≈). The follow-
ing facts hold:

1. if (U1;P1) . A1 ≈ (U2;P2) . A2 and (U1;P1) . B ≈
(U2;P2) . B, then (U1;P1) . A1 ‖ B ≈ (U2;P2) .
A2 ‖ B ;

2. if (U1 ] {ar :R};P1) . A1 ≈ (U2 ] {ar :R};P2) . A2,
then (U1;P1) . (νar :R)A1 ≈ (U2;P2) . (νar :R)A2.

Bisimulation is a sound semantic equivalence, in the
sense that it produces no unreasonable equations. To sub-
stantiate this claim, we prove its adequacy for a standardly
defined typed observational congruence, viz. the reduction
barbed congruence [11]. This is a touchstone equivalence
defined in terms of the reduction relation and of a notion

of observability, and then closed under all possible system
contexts. The reason to consider a typed congruence is that
only well-typed contexts guarantee a reduction behaviour
abiding by the RBAC policy. Indeed, the reduction rela-
tion performs none of the legality checks hard-coded in the
LTS. Hence, the right framework for comparison of ≈ and a
barbed congruence is a typed one.

In its typed version, barbed congruence is tagged with an
environment Γ and a permissions-to-rôles assignment P, to
signify that its equations are typeable under Γ and P. More-
over, only contexts typeable under Γ and P are considered
in the definition of congruence. Thus, following the style
of [9], we write Γ |=P A1 � A2 to mean that Γ `P Ai for
i = 1, 2 and that A1 and A2 exhibit the same behaviour in all
environment ‘compatible’ with Γ and P.

Definition 3.2 (Barbs). The observation predicate A ↓ η
holds if either η = ar and A ≡ (ν b̃s : R̃)(A′ ‖ r{| a(x).P |}ρ)

for ar
< b̃s, or η = ar and A ≡ (ν b̃s : R̃)(A′ ‖ s′{| ar〈n〉.P |}ρ)

for ar
< b̃s. The predicate A ⇓ η holds if there exists A =⇒ A′

such that A′ ↓ η.

Definition 3.3 (Reduction Barbed Congruence). Reduc-
tion barbed congruence is the largest binary and symmetric
typed relation over systems such that the following proper-
ties hold whenever Γ |=P A1 � A2.

1. Barb Preserving: if A1 ↓ η, then A2 ⇓ η

2. Reduction Closed: if A1 7−→ A′1, then there exists a
system A′2 such that A2 =⇒ A′2 and Γ |=P A′1 � A′2

3. Contextual:

(a) for all P′ and ũ : T̃ such that Γ, ũ : T̃ is defined, it
holds that Γ, ũ : T̃ |=P∪P

′

A1 � A2

(b) for all systems B such that Γ `P B it holds that
Γ |=P A1 ‖ B � A2 ‖ B ;

(c) for all ar : R(T ) such that Γ = Γ′, ar : R(T ), it
holds that Γ′ |=P (νar :R)A1 � (νar :R)A2.

Before comparing ≈ and �, we remark that the chosen
barbs only express the ability to interact over channels. In-
deed, observing rôle activations/deactivations is not reason-
able, as no context can determine whether a user performs a
role/yield: these operations only affect the thread perform-
ing them.

The fact that ≈ approximates� only holds for well-typed
configurations, i.e. configurations (U;P) . A such that A
is well-typed for (U;P). Given a typing environment Γ, we
let UΓ be the rôles-to-users assignment extracted from Γ,
that is the least assignment such that, for any association r :
ρ[̃a : R̃(T )] in Γ, it holds that UΓ(r) = ρ andUΓ(ar) = {R}
for any a : R(T ) ∈ ã : R̃(T ).

Theorem 3.3 (Soundness of ≈). Let Γ `P A and Γ `P B. If
(UΓ;P) . A ≈ (UΓ;P) . B then Γ |=P A � B.



Theorem 3.3 shows that ≈ is a sound proof-technique for
barbed congruence. However, while the former is relatively
easy to use, the latter is very hard to handle because of the
contextual closure requirement. We leave as a future work
the development of finer techniques (as e.g. in [8, 14]) to
prove the converse of Theorem 3.3, i.e. that bisimilarity is
complete for barbed congruence.

To conclude, we now list some algebraic laws that illus-
trate the impact of RBAC on the π calculus. In what follows,
we fix a RBAC schema (U;P). The first equation states that
a terminated session of a user does not affect the evolution
of a system. Indeed, it holds that

r{|nil |}ρ ≈ 0.

This is different from some distributed calculi, like e.g. the
Ambient calculus [5], where the presence of a user is rele-
vant. Moreover, by letting α to range over action prefixes
(i.e. inputs/outputs and role/yield), it holds that

r{|α.P |}ρ ≈ 0

whenever α is not legal for a session r{| · |}ρ with respect
to the RBAC schema, that is if the premises of rules
(LTS-R̂), (LTS-Y), (LTS-K-I), (LTS-F-I)
and (LTS-O) are not satisfied. This law stresses that
LTS and types both enforce the same requirements (com-
pare the runtime checks of the LTS with Theorem 2.2). As a
consequence, the following law differentiates our language
from the π calculus. Indeed, it holds that

(νar :R)(r{| a(x).P |}ρ ‖ s{| ar〈n〉.Q |}ρ′) ≈ 0,

if and only if R?
< P(ρ) or R!

< P(ρ′).
Differently from several distributed languages, the user

performing an output action is irrelevant. The only relevant
aspect is the set of permissions activated when performing
the action. This is summarized in the following law:

r{| bs〈n〉.nil |}ρ ≈ t{| bs〈n〉.nil |}ρ.

A similar law holds for the yield action. On the contrary, re-
locating an input action usually breaks the equivalence be-
tween processes. In particular, we have

r{| a(x).P |}ρ 6≈ t{| a(x).P |}ρ

unless both input actions are disabled (in which case both
systems are equivalent to 0). Similarly, it is possible to
migrate a role R prefix between two users only when R is
assigned to both or to none of them. By exploiting these
observations, we can find a relocation procedure to mini-
mize the number of users in a system, while maintaining
the system overall behaviour, as it will be described in the
next section.

4 Applications

In this section, we exploit the theory developed so far
in three non-trivial applications of the RBAC model. The
first deals with the problem of finding the ‘minimal’ schema
which makes a given system legal. The second is somehow
symmetric: given a schema and a system, we aim at ar-
ranging role/yield operations within the system so that the
resulting system can be executed with respect to the given
schema (if possible). Finally, we give a simple but efficient
procedure to determine whether a process can be executed
by different users without compromising the functionality
of the system. This can be useful to minimize the number
of users in a system, while maintaining the overall system
behaviour.

Minimal Schema. Let A be a system well-typed for a
RBAC schema (U;P). Potentially, there are infinitely many
schemata under which the system can run correctly; thus, it
seems reasonable to look for a ‘minimal’ such. This would
make the execution/verification of systems more efficient
both in space and time: the storage of the schema is reduced
in size, thus any query to the schema can be replied faster.

We define the set of configurations for A as CONFA =

{(U′;P′) . A | (U′;P′) is a RBAC schema}. Even if po-
tentially infinite, the relevant part of CONFA can be effec-
tively built up by considering only the rôles and identifiers
occurring in the system A. We now partition CONFA with
respect to ≈ and consider the equivalence class containing
(U;P) . A, called CONF(U;P)

A . By fixing a metrics over
schemata, the minimal schema to run the system A will be
a minimal element of CONF(U;P)

A .
Clearly, the existence of such a minimal element and the

way in which it is chosen depend on a chosen metrics. For
example, one can consider as a good metrics the value |U|+
|P|, i.e., the size of the schema expressed in terms of the
number of couples forming the relations U and P. In this
case, a minimal schema always exists. Other metrics could
be based on the number of rôles used to define the schema,
on the weight of the permissions associated to some users
(once assumed a weight function to discriminate powerful
permissions from common ones), on the average number of
permissions associated to each rôle, and so on.

Notice that in general A may not be well-typed under
the minimal schema. This is because the static typing pro-
cedure over-approximates the behaviour of a system (e.g.,
it also considers unreachable code and connot type all le-
gal systems, as described at the end of Section 2). The
bisimulation-based approach presented here is more accu-
rate since it only considers the effective behaviour of the
system. Thus, the schema obtained in this way describes the
minimal requirements a schema should satisfy to run (and
not to type) system A, while maintaining the behaviour of A



under schema (U;P).

Refining Systems to make them Executable. Usually,
the task of properly putting role/yield operations within a
system is tedious and error-prone; moreover, it assumes a
full knowledge of the RBAC schema at programming time.
We now describe a way to add rôle activations/deactivations
within a system in such a way that the resulting system can
be executed under a given schema, whenever possible. No-
tice that, given a RBAC schema (U;P) and a system A
without actions role/yield , we can simply refine A in a sys-
tem A′ by activating at the beginning of each session of a
(generic) user r all the rôles in U(r). Intuitively, A′ con-
tains all the legal behaviors of A with respect to the RBAC
schema given. However, the fact that all the rôles assigned
to a user are always activated violates a basilar RBAC de-
sign principle: a rôle should be active only when needed. In
the following, we give a procedure to refine this approach
and obtain a system closer to the RBAC design principles.

Let ~R denote a possibly empty, ordered sequence of rôles
and role ~R (resp. yield ~R) denote role R1. · · · .role Rn (resp.
yield R1. · · · .yield Rn) whenever ~R = R1, · · · ,Rn. The re-
fining procedure replaces any input/output prefix α oc-
curring in session r{| · · · |}ρ with the sequence of prefixes

role ~R.α.yield ~R where ~R is formed by rôles that r can ac-
tivate when holding ρ, and that enable the execution of α.1

Moreover, since there are in principle several such ~R, we
choose one of the shortests, i.e. a sequence containing the
minimum number of elements. Let ena(Γ,P, r, ρ) denote a
function which returns a shortest sequence of rôles ~R such
that Γ; ρ `Pr role ~R.a(x).nil, and is undefined if no such se-
quence exists. Function en ū(Γ,P, r, ρ) is similar, but for out-
puts over u. The refining procedure adapts the type system
presented in Section 2; as an example, the following rule
adapts (T-I).

Γ ` ar : R(T ) ena(Γ,P, ρ, r) = ~S Γ, x : T ; ρ `Pr P � P′

Γ; ρ `Pr a(x).P� role ~S .a(x).yield ~S .P′

The typing rules of Table 2 are adapted accordingly. Of
course, when dealing with output prefixes, we use en ūrather
than ena. Functions en (. . .) can be easily calculated by re-
ducing the problem to a breath first search in a direct acyclic
graph (cf. the full paper [3]).

The soundness of the modified judgment Γ `P A � A′

now follows easily.

Proposition 4.1. Let (U;P) be a RBAC schema and Γ a
typing environment respecting U. Then, Γ `P A implies
that Γ `P A � A, while Γ `P A � A′ implies that Γ `P A′.

1Several optimizations can of course be introduced to reduce the num-
ber of role/yield . For example, role R.a(x).yield R.role S .b(y).yield S .P
can be simplified in role R.a(x).b(x).yield R.P, whenever r ôle R enables
inputs from both a and b. In general, such optimizations require compli-
cated algorithms that we leave for future work.

To conclude, notice that there are other possible ways to
find rôle sequences enabling inputs/outputs. For example,
we can enforce the least privilege property. A system satis-
fies such a property if, whenever it performs an action, only
the minimal set of permissions enabling the action are acti-
vated in the corresponding session. The approach presented
above can be adapted to such requirements. The main
change affects how functions en (. . .) are calculated, as the
metrics to minimize is now |P(~R)| rather than |~R|. Thus,
the graph used to calculate these functions is weighted and
records the number of permissions the activation of R adds
to the current session’s permissions. The best ~R is then ex-
tracted by using a minimal path algorithm.

Relocating Activities. We now investigate another appli-
cation of our theory, viz. the transfer of a process from a
user to another, which can be useful in order to minimize
the number of users in a system. Balancing users’ activity
can also have a relevant economical impact: in a corpora-
tion, the management usually tries to raise productivity by
optimizing and reassigning each employee’s workload.

We now give an axiomatic way to infer judgments of the
form

(U;P) . r{| P |}ρ ≈ (U;P) . s{| P |}ρ.

This judgment says that the process P can be executed by r
and s without affecting the overall system behaviour. Thus,
the session r{| P |}ρ can be removed. If no other session of
r is left in the system, then r itself can be removed. The

procedure
U
=
P

equates systems under the schema (U;P).

The rules defining it are given in Table 4, and generalize the
equations given at the end of Section 3. We want to remark
that a rule for relocating processes with restricted channels
is missing. Indeed, the interplay between user names, re-
stricted channel names and restricted channels is subtle. For
example, consider the process P , (νa : R)ar〈as〉 and try to
run it in users r, s and t. In the first case, no transition takes
place; in the second case, a bound output takes place; in
the third case, a free output takes place. Thus, relocating
processes with restrictions breaks equivalences, in general.

As stated by the following Proposition, the procedure
given above is a sound axiomatization for the judgment
(U;P) . r{|P |}ρ ≈ (U;P) . s{|P |}ρ.

Proposition 4.2. If r{| P |}ρ
U
=
P

s{|P |}ρ then (U;P) .

r{|P |}ρ ≈ (U;P) . s{| P |}ρ.

5 Related Work

To the best of our knowledge, no previous study build-
ing on process-calculi has ever been conducted on RBAC.



r{| nil |}ρ
U
=
P

s{| nil |}ρ

r{| P |}ρ
U
=
P

s{|P |}ρ r{|Q |}ρ
U
=
P

s{|Q |}ρ

r{| P | Q |}ρ
U
=
P

s{| P | Q |}ρ

r{|P |}ρ
U
=
P

s{| P |}ρ

r{| !P |}ρ
U
=
P

s{| !P |}ρ

r{|P |}ρ
U
=
P

s{| P |}ρ

r{| [u = v]P |}ρ
U
=
P

s{| [u = v]P |}ρ

r{|P |}ρ
U
=
P

s{| P |}ρ

r{| u〈v〉.P |}ρ
U
=
P

s{| u〈v〉.P |}ρ

U(ar) = {R} U(as) = {S } {R?, S ?} ∩ P(ρ) = ∅

r{| a(x).P |}ρ
U
=
P

s{| a(x).P |}ρ

R < U(r) ∪U(s)

r{| role R.P |}ρ
U
=
P

s{| role R.P |}ρ

R ∈ U(r) ∩U(s) r{|P |}ρ∪{R}
U
=
P

s{|P |}ρ∪{R}

r{| role R.P |}ρ
U
=
P

s{| role R.P |}ρ

R < ρ

r{| yield R.P |}ρ
U
=
P

s{| yield R.P |}ρ

R ∈ ρ r{| P |}ρ−{R}
U
=
P

s{|P |}ρ−{R}

r{| yield R.P |}ρ
U
=
P

s{| yield R.P |}ρ

Table 4. Relocating Activities

A number of papers have instead dealt with the formal spec-
ification and verification of RBAC schema. In [12, 19] for-
mal methods are used only to verify the correctness of the
schema definition but not of the whole system. In [19],
the ALLOY language is used to detect possible conflicts
in RBAC schemata supporting simultaneously delegation
of authority and separation of duty. A constraint analyzer

allows the schema validation to be computed automati-
cally. In [12, 13], the authors use a graph transformation
which combines an intuitive visual description of the RBAC
schema with solid semantical foundations. Ahn et al. in [1]
introduce a formal language for the specification of more
sophisticated role-based authorization constraints, such as
prohibition and obligation constraints. These approaches
are complementary to ours: they can be integrated with our
technique in order to verify the consistency of (U ;P), but
they do not give any hint about the correct execution of a
system as our method does.

In [2], Bertino et al. develop a logical framework for rea-
soning about access control models. The framework is gen-
eral enough to model discretionary, mandatory, and role-
based access control models. Such a framework is useful
for comparing the expressive power of the models, but it
cannot be used to verify the correct execution of a system
under a given schema.

Probably, the most related work, although not aiming at
studying RBAC systems, is [4], insofar as rôles can be un-
derstood as (privilege) groups. Groups are introduced in
loc. cit. as types for channels, and used to limit their visi-
bility. A type system ensures that channels belonging to a
fresh group can be only used by processes within the ini-
tial scope of the group. Thus, processes can access chan-
nels according to their physical distribution (with respect to
group restrictions). In our work this feature is modified so
that not only the place where the process runs (i.e., the user
running the process) but also its execution history (i.e., the
user session where the process runs) is relevant to execute
an action. E.g., outputs over ar of group R can be executed
only by processes whose user r is such that R! ∈ P(U(r));
moreover, such an action must be enabled by at least one
of the rôles active in r’s session. The set of such sessions
changes according to the computation and, thus, the pro-
cesses enabled to access a channel change dynamically. In
this sense, this work can be seen as a calculus of dynamic
groups.
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