Mathematical Structures in Computer Science, 20(3):319-358. © C.U.P. 2010.

Tree-Functors, Determinacy and Bisimulations

Rocco De Nicola!, Daniele Gorla? and Anna Labella?

L Dip. di Sistemi ed Informatica — Univ. di Firenze. Viale Morgagni 65, 50134 Firenze (IT).

email: rocco.denicolaQunifi.it

2 Dip. di Informatica — Univ. di Roma “La Sapienza”. Via Salaria 113, 00198 Roma (IT).

email: {gorla,labella}@di.uniromal.it

We study the functorial characterization of bisimulation-based equivalences over a categorical
model of labeled trees. We show that, in a setting where all labels are visible, strong bisimilarity can
be characterized in terms of enriched functors by relying on reflection of paths with their
factorizations. For an enriched functor F, this notion requires that a path (an internal morphism in
our framework) 7 going from F'(A) to C corresponds to a path p going from A to K, with

F(K) = C, such that every possible factorization of 7 can be lifted in an appropriate factorization
of p. This last property corresponds to a Conduché property for enriched functors and a very rigid
formulation of it has been used by Lawvere to characterize determinacy of physical systems. We
also consider the setting where some labels are not visible and provide characterizations for weak
and branching bisimilarity. Both equivalences are still characterized in terms of enriched functors
that reflect paths with their factorizations: for branching bisimilarity, the property is the same as the
one that characterized strong bisimilarity when all labels are visible; for weak bisimilarity, a weaker
form of path factorization lifting is needed. This fact can be seen as an evidence that strong and
branching bisimilarity are strictly related and that, differently from weak bisimilarity, they preserve
process determinacy in the sense of Milner.

1. Introduction

In concurrency theory, behavioural equivalences have been used as abstraction mechanisms to
equate systems that exhibit the same behaviour. Different notions of equivalence have been devel-
oped in the years; in particular, bisimulation equivalence or bisimilarity (Park 1981) has turned
out to be a key concept in many areas of computer science. In practice, such an equivalence
equates systems that offer the same interaction possibilities with the external world at every
stage of their computation.

As an example, consider the two processes of Figure 1; we represent them as labeled trees,
where paths represent computations and bifurcations represents nondeterministic choice between
different evolutions. They are not equivalent, even though they exhibit the same traces, because,
after the initial a, the rightmost tree can offer both b and ¢, while the leftmost one cannot.

In process algebra, strong bisimilarity (Milner 1989) is generally considered as the behavioural
equivalence which provides the minimum abstraction level from the operational semantics of pro-
cesses. Indeed, it is generally considered as “the” natural equivalence, when all process actions

De Nicola, Gorla and Labella 2

x Y x Yy
Fig. 1. Two Trees

are visible, also because it preserves what in (Milner 1989) is called strong determinacy, a no-
tion deeply related to predictability of behaviours. An equivalence enjoying strong determinacy
guarantees that the computations of two equated processes, at any point of their progress, have
a direct ‘back and forth’ correspondence. Within our tree-based model, this amounts to requir-
ing that all paths and their factorizations are preserved and reflected by the mapping associating
equivalent processes via their computations (paths). By path factorization we mean a splitting of
the path in two sub-paths whose concatenation yields the original path.

If one considers the two trees of Figure 1 and defines the (unique, in this case) mapping that
associates paths with the same labeling, then path factorizations are preserved and reflected but,
in doing it, the mapping does not associate equivalent processes. Indeed, after the initial a, the
possible evolutions of the leftmost tree of Figure 1 are those of Figure 2, whereas the tree obtained
from the rightmost tree of Figure 1 is the one reported in Figure 3. Of course, the three trees do
not offer the same behaviour.

Fo

Fig. 2. The derivatives after a of the leftmost tree in Figure 1

N

Fig. 3. The derivative after a of the rightmost tree in Figure 1

Indeed, there is no way to associate the paths of the two trees in Figure 1 in such a way that path
factorizations are properly reflected.

Strong bisimilarity can be too discriminating, mainly because it keeps into account every in-
termediate state, even those reachable via invisible actions. For this reason, when considering
systems with silent (usually called 7) actions, different variants have been proposed in the lit-
erature. The two main ones are known as branching bisimilarity (van Glabbeek and Weijland
1989) and weak bisimilarity (Milner 1989) and there are still discussions about which of them is
the most appropriate. In this paper, we will study a new kind of characterization of these equiv-
alences in terms of preservation/reflection of path factorizations and see that, in the presence of
T-actions, the reflected path factorizations are not necessarily unique.

Tree-Functors, Determinacy and Bisimulations 3

Let us consider the pair of trees in Figure 4 and the function mapping path z into path z’
and paths y; and ys into y’. We have that all the factorizations of ' and ' have an appropriate
corresponding factorization in the corresponding source paths of the leftmost tree; in particular,
the factorization of ' as a and b can be reflected both in y; (as a.7 and b) and in y5 (as a and b);
moreover, the corresponding intermediate states do offer the same visible behaviour.

a a
SN N
A

T Y1

Fig. 4. Two Branching Bisimilar Trees

It can however happen that not all the possible factorizations of a path can be reflected in an
appropriate factorization of a path mapped to it by the associating function. Let us consider the
trees in Figure 5 and the function mapping v into 3" and both x; and x5 into z’. The factorization
of 2/ as a and 7.c can be appropriately reflected on x1, but not on x5, since x2 after a does not
offer any b. Only the factorization of =" as a.7 and ¢ can be reflected on z5.

AN

1 X

Fig. 5. Two Weakly Bisimilar Trees

We show that the mapping functions like the one used for Figure 4 characterize branching
bisimulation, whereas the weaker factorized path reflection property illustrated by means of Fig-
ure 5 captures weak bisimulation. To this aim, we work in a categorical framework and character-
ize strong, branching and weak bisimulation equivalences through proper functorial definitions
capturing the intuitions underlying the examples above. Our aim is to use category theory and
its abstract constructions as a tool for understanding and assessing the relative merits of differ-
ent concepts, and to better appreciate their meaning and their inter-relationships. In particular, a
clear evidence of the quality of an equivalence is the functoriality of the map it is induced by:
this is because any functor has the property of faithfully respecting the morphism structure of the
category it is applied to.

We take as our starting point the tree-based categorical model of concurrency by (Kasangian
and Labella 1999), which adapts the categorical modeling of finite (or infinite) state automata

De Nicola, Gorla and Labella 4

(Arbib and Manes 1974; Betti and Kasangian 1982). Such models are based on a “local” ap-
proach in that an automaton is described via the languages (the sets of words on a given alphabet
A) determining the transitions between any pair of states, i.e.

Lyy ={weA* : i(s,w) =5}

Initial and terminal states can be specified when necessary. In that case, the set of words lead-
ing from the initial state to the terminal ones describes the global behaviour of the automaton'.
The usual equivalence used for automata is a global one, taking into account the extensional be-
haviour only; computations of different automata are associated if and only if they correspond to
the same sequence of actions (thus they have the same label and no path factorization is consid-
ered). The equivalence induced by this kind of associations is usually called trace equivalence
by concurrency theorists and ignores the traversed states.

When moving from automata to nondeterministic processes, greater attention must be devoted
to the notion of state, because one has to consider the possible alternative steps that are available
at intermediate states. In this case,sets of words” are no more sufficient to represent nondeter-
ministic behaviours. For this reason, computations of Labeled Transition Systems (LTS), one
of the most popular operational model of concurrency, can be better modeled via a tree-shaped
labeled structure, with internal nodes representing possible choices during the evolutions; equiv-
alences for LTS do not rely on terminal states and have a local formulation.

Our basic category is Tree, the category whose objects are treest and whose morphisms can
be seen as simulations between them, i.e. functions such that each “state” of the source tree is
mapped into a “state” of the target tree able to simulate it. Trees are described as a set of labeled
paths suitably glued together, where the gluing is sufficient to give a tree structure to a language.
An important aspect of our model is that transitions between states can be rendered again as trees
with paths of finite length; more technically, since Tree is a (left-closed) monoidal category, we
can consider a category Beh that has the same objects as Tree and it is enriched over it (thus,
its arrow-objects are trees as well). In this way, objects of Beh describe states (processes) and
arrow-objects describe the evolution (operational semantics) of our models. We then provide a
Tree-functorial assessment of strong bisimulation equivalence, where Tree-functoriality means
that the internal morphism structure (i.e., its operational semantics) is respected.

Similarly, we can consider Tree, and Beh, ., i.e. the category and the Tree,-category ob-
tained like Tree and Beh but with a special meaning assigned to T-actions. The category Beh -
has 7-labels both on its objects and on its arrow-objects but, through a change of base that elimi-
nates T-labels from the arrow-objects, we can consider Beh - also as a Tree-category. We shall
call Beh this category, where 7’s have become invisible, and study the Tree-functors over it that
characterize weak and branching equivalences.

We will provide functorial characterizations of the different bisimulation-based equivalences

T Technically, A-automata are modeled as categories enriched on the base 2-category (Walters 1981) provided by the
structure of the languages, p(A*), and comparisons between automata are defined in terms of “change of base” (Kelly
1982), i.e. in terms of the local structure.

% Formally, Tree is the category of the categories enriched over a locally posetal 2-category determined by a fixed
alphabet with the corresponding functors: see Remark 1.

Tree-Functors, Determinacy and Bisimulations 5

by identifying the properties that must be enjoyed by the Tree-functor inducing them. In partic-
ular:

1 Strong bisimilarity will be characterized in Beh as the equivalence preserved by any Tree-
functor F' that reflects paths. This property requires that any path (internal morphism) from
F(X) to Y arises from at least one path going from X to X', with F(X’) =). Because
of the structure of Beh, it will also result that, if a path =’ of the target tree is factorized as
a’; xh, then every source path x mapped into 2’ can be factorized as x1; x5 in such a way that
x; is mapped into x}. Hence our Tree-functor will also reflect path factorizations. Existence
of such a functor is provided by the definition of a standard strong representative for every
tree, obtained by quotienting the set of paths.

2 Branching bisimilarity is the equivalence preserved in Beh, by Tree-functors that reflect
paths with their factorizations. Notice that, while in Beh such a property is equivalent to a
simpler one (reflection of paths), the presence of an invisible action in Beh, makes the re-
quirement on the equivalence of all the intermediate states (reachable via invisible actions) of
the paths unavoidable. Again, we show existence of such a functor by introducing a standard
branching representative for every tree, in strict analogy with the strong case.

3 Weak bisimilarity is the equivalence preserved by Tree-functors that enjoy only a weaker
form of factorized path reflection. This weaker property is similar to the one for
strong/branching bisimulation, but only requires that to each factorization of a target path
2’ there corresponds a factorization of one of the source paths; in particular, it does not re-
quire that each source path does faithfully mirror all factorizations of their image. Thus, if a
path 2’ of the target tree is factorized as 2 ; x5, it is might be that we have two source paths
2 and y mapped into 2’ with only « that can be factorized as x1; x5 in such a way that z; is
mapped into «;. This amounts to requiring that for each target state there is at least an equiva-
lent source state one has gone through. The standard representative, that we use to guarantee
existence of the required functor, is obtained from the one for branching equivalence by an
appropriate pruning.

Reflecting factorizations has a particular meaning; it coincides with the enriched form of a
necessary and sufficient condition that we call Conduché property, after (Conduché 1972) that
a functor has to satisfy for guaranteeing that its inverse image has a right adjoint. It has been
proved (Kasangian and Labella 2009) that the natural translation of Conduché property for Tree-
functors still guarantees the existence of a right adjoint for the inverse image. If we take the
standpoint of (Lawvere 1986) and (Bunge and Fiore 2000), that used a strong form of Conduché
property for establishing system determinacy, we have a further evidence of the fact that weak
bisimilarity does not preserve process determinacy.

The advantage of our framework is that it leads to characterizations that are parametric w.r.t.
the way 7’s are considered (either as visible or as invisible); moreover, it allows us to express
behavioural equivalences in terms of Tree-functors enjoying specific properties that determine
(depending on the equivalence under consideration) the kind of correspondence between the
operational semantics of the equated systems. For this reason, we think that our results provide
a new insight on the difference between branching and weak bisimilarity, and on the extent to
which they abstract from silent actions, in terms of preservation of states/determinacy. Moreover,
our approach can be easily scaled to more sophisticated models of concurrency than LTS, like,

De Nicola, Gorla and Labella 6

e.g., Labeled Event Structures that have been used to model causal (in-)dependencies of systems
actions (Winskel 1988).

The rest of the paper is organized as follows. In Section 2, we present the tree model of (Kasan-
gian and Labella 1999), define the notion of strong bisimulation between trees and prove that it
can be characterized as the equivalence induced by Tree-functors that reflect path factorizations.
In Section 3, we allow to ignore T-actions, define the notion of branching and weak bisimulations,
and prove that they are the equivalences induced by Tree-functors that, besides reflecting paths,
reflect and weakly reflect path factorizations, respectively. In Section 4, we prove the converse,
i.e. that strong, branching and weak bisimilarity imply existence of Tree-functors that, besides
reflecting paths, reflect (or weakly reflect, in the weak case) path factorizations. In Section 5 we
show how our treatment can be instantiated in the cases of labeled transition systems and labeled
(prime) event structures. Section 6 contains a detailed comparison with related work, while in
Section 7 we sum up and discuss our contribution. We assume that the reader is familiar with
basic Category Theory, and in particular with the notions of tensor product, monoidal category
and monoidal functor. The necessary background can be found in (Kelly 1982).

2. The Tree Model for Nondeterministic Processes
2.1. Basic Definitions

We now recall from (Kasangian and Labella 1999) a category of labeled trees, Tree, and some
of its properties. A single tree is modeled by specifying its paths, the computations along each of
them (the extent) and the part of the extent in which pairs of computations agree (the agreement).
Path labels are elements of a free monoid A*, for some (finite) alphabet A.

Example 1. Consider the trees in Figure 1 of Section 1: they both have two paths, x and y, that
are labeled with ab and ac respectively; in the leftmost tree, z and y do not agree at all (i.e., their
agreement is €); in the rightmost tree, = and y agree by the initial a. o

For mathematical reasons (see Remark 1 below), it is convenient to make it explicit the order
structure that is instead implicit in the free monoid (A*, e, €) generated by A (where e denotes
word concatenation and e is the empty word). Indeed, (A*, e, ¢) satisfies the following properties:

1 itis equipped with a partial order defined by s < ¢ iff there exists u € A* suchthat seu =t
(this is the usual notion of prefix of a word);

2 it has meets, A, given by the maximum common prefix, with € as bottom element;

it has a join, V, for every family that has an upper bound;

4 it enjoys the left-cancellation property, i.e., for every s,t,u € A* suchthat set = s e u, it
holds that t = u.

|9V}

The resulting structure will be called the meet-semilattice monoid associated with (A*, e, €) and
denoted by A.

Definition 1. An A-tree X is a triple (X,ex,ax) where X is the set of paths,
ex : X — A* is the extent map and ax : X x X — A* is the agreement between paths
such that, for every x,y, z € X, it holds that:

1 ax(z,z) =ex(x)

Tree-Functors, Determinacy and Bisimulations 7

2 ax(z,y) <ex(z)Aex(y)
3 ax(z,y) Nax(y,z) < ax(z,z)
4 G’X(xvy) :ax(y,$)

Property (1) requires that a path agrees with itself along all its length. Property (2) states that the
agreement between two paths cannot be bigger than their largest common prefix (paths are forced
to agree on a common initial segment and they cannot re-join once split). Property (3) states
that the common agreement between z, y and z cannot be bigger than the common agreement
between x and z. Finally, Property (4) states that the agreement is symmetric.

Example 2. The two trees illustrated in Figure 1 are formally specified by X = (X, ex,ax)
and Y = (Y,ey,ay), where X =Y = {z,y}, ex(x) = ey (x) = ab, ex(y) = ey (y) = ac,
ax(z,y) = € and ay(z,y) = a. Thus, they have the same paths and extent but a different
agreement. o

Remark 1. We can observe that A-trees are symmetric A-categories, or categories enriched
over A, when A is thought of as the locally posetal 2-category associated with A (Walters 1981).
Therefore, the appropriate notion of comparison for trees is given in Definition 2 and coincides
with the notion of A-functor.

Definition 2. A Tree-morphism f : X — Yisamap f : X — Y suchthatey (f(z)) = ex(x)
and ay (f(z), f(y)) = ax(z,y).

The intuition behind the notion of Tree-morphisms is that the target tree (viz.,) simulates
the source one (viz., X) in the sense of Milner: a computation = simulates a computation y if
they both have the same label (i.e., perform the same actions) and x passes through intermediate
states that at least offer the same behaviours as the corresponding intermediate states of y.

Example 3. Consider again the trees in Figure 1. It is well known (Milner 1989) that the right-
most tree simulates the leftmost one, but not vice versa. Indeed, the identity mapping on the set
of paths induces a Tree-morphism from left to right, whereas there exist no Tree-morphisms
from right to left (the identity reduces the agreement, whereas the remaining three mappings do
not respect path labeling).

We denote by Treea the category of A-trees (to make notation lighter, we shall write Tree
instead of Treea, by leaving A implicit when clear from the context). Tree has (among other
features):

— an initial object: the empty tree, 0 = (0, (), 0);

— aterminal object: the monoid itself considered as a tree, (A*,id, A);

— finite coproducts (i.e., sums): given two trees (X, ex,ax) and (Y, ey, ay), their sum is ob-
tained by joining them at the root, i.e. it is the tree (X WY, ex Wey,ax Way W {(z,y,€) :
x € X and y € Y'}), where ‘W’ denotes disjoint union.

Definition 3. Given two A-trees X and)/, we can form the sequential composition of X and),
X®Y=(Zez,az),as follows:

— Z=XxY

— ez(z,y) = ex(z) e ey (y)

De Nicola, Gorla and Labella 8

— az((z,y), (@,y))isax(x,2’),if x # 2/, and ex (z) ® ay (y,y’), otherwise.

Intuitively, X ®) attaches a copy of) rooted at every leaf of X. Thus, a pathin X ®) is a
path in X followed by a path in), and its label is the label in X followed by the label in). Paths
that are different in X inherit their A agreement, while paths that differ only in) have their X’
agreement concatenated with their) agreement. In the sequel, the path (z,y) in X ® Y will be
denoted by z;y.

Proposition 1. Sequential composition defines the object part of an associative tensor product
on Tree with unit Z = ({*},[x — ¢€],[(x,%x) — ¢]). Tree with sequential composition is a
monoidal category.

Since Tree is a monoidal category, we can define Tree-categories and Tree-functors between
them (Kelly 1982).

Definition 4. A Tree-category C is a set of objects such that, for every pair of objects (A, B),
there is an object of Tree, called C[A, B], such that there are two Tree-morphisms

1 C[B,C]®C[A, B] Ao, C[A,C] (multiplication)
2 T4 C[A, Al (identity)
that make the diagrams in Figure 6 commute. There, a4 g ¢ p is the associativity morphism of

the tensor product, and I 4,B) and T4, B) are, respectively, the left and the right composition
with the tensor product identity.

Definition 5. A Tree-functor is a function F' : C — D such that, for every pair (A, B) of
objects in C, there exists a Tree-morphism F4 5 : C[A, B] — DI[F(A), F(B)] that make the
diagrams of Figure 7 commute.

Intuitively, a Tree-category is a class of objects C where we suitably put between any two
of them, say C and C’, a tree C[C", C]. Moreover, a Tree-functor from C to D is a mapping
from objects of C to objects of D that induces a Tree-morphism between the trees C[C’, C] and
D[F(C"), F(C)], for every C and C’. Pictorially:

C F(C)
Fere

D[F(C"), F(C)]
c’ F(C)
Example 4. Consider the Tree-category T with only one object, say T'. If we let T[T, T] =
(A*,id, N), T will be the terminal Tree-category. Indeed, for every Tree-category C and for ev-
ery C and C” objects of C, there exists a unique Tree-morphism mapping C[C’, C] into T[T, T):
it suffices to associate both C' and C” with T and every path of C[C’, C] to the (unique) equally
labeled path of T[T, T].

Tree-functors induce Tree-morphisms and hence they let us associate paths by taking into
account their labels and their agreement. Our aim is to characterize functors by imposing further

Tree-Functors, Determinacy and Bisimulations 9

(ClC,D]® C[B,C]) ® C[A,B] —AB¢P | ¢, D) (C[B,C]® C[A, B))

mpcp® ClA,B] ClC,D] @ maBc
C[B,D]® C[A, B| C[C,D|® C[A,C)
m %
C[A, D]

cla,
TocA,B 142 PGB Ble 4, B

~ MABB

lcia, B
C[A, B]

C[A,B] @14
_—

C[A,B|®T C[A,B] ® C[A, A]

MAAB
T'ClA,B]

C[A, B|
Fig. 6. The commutativity diagrams for Definition 4

conditions over their induced morphisms. For example, we want to keep into account also an
‘inverse’ correspondence between paths and the possibility of reflecting factorizations.

Definition 6. Let F': C — D be a Tree-functor.

1 Fis path reflecting (PR, for short) iff for every C' € C and for every path y € D[D, F(C)]
there are C' € Cand z € C[C',C] s.t. F(C') = D and Foro(x) = y.
2 F'is factorized path reflecting (FPR, for short) iff
(a) itis PR, and
(b) for every path z € C[C’, C] it holds that:
Foo(x) =y, withy' € DD, F(C)] and y’ € D[D, D], implies that
there exist C”" € C, 2’ € C[C",C] and 2" € C[C’,C"]
such that Forg(a') =y, Foren (") = 3" and F(C") = D'.
3 F'is factorized path weakly reflecting (FPWR, for short) iff
for every y = y';y”, withy’ € D[D’, F(C)] and y” € D[D, D],
there exist ', C” € C, x € C[C’,C], 2’ € C[C”,C] and 2" € C[C’,C"]

De Nicola, Gorla and Labella 10

Fpc®Fap

C[B,C] ® C[A, B] - D[F(B),F(C)]® D[F(A), F(B)]
MABC MF(A) F(B) F(C)
ClA, C] Fac -~ D[F(A), F(C)]
ClA, A]
1a
A Faa
1pa
D[F(A), F(A)]

Fig. 7. The commutativity diagrams for Definition 5

such that F(Cl) =D, Fclc(l') =Y, Fc//c(l'/) = y/, Foor (1’") = y” and F(C”) =D
Proposition 2. FPR implies FPWR, that implies PR.

Proof. Lety € D[D, F(C)]; by PR (that is holds because F' is FPR) there exists a C/ € C
and z € C[C’,C] such that F(C') = D and Feoro(z) = y. Then, by Definition 6(2b), every
factorization of y can be reflected into z; thus, FPR implies FPWR.

Let us now fix C € C and y € D[D, F(C)]; by FPWR, there exists a x € C[C’, C] such that
Fero(x) = yand F(C') = D; thus, FPWR implies PR. Ul

Example 5. Let C contain only C' and C’ and D contain only D and D’; moreover, let the two
trees below

(a&{ i

T)

be C[C’, C] and D[D’, D], respectively. The Tree-functor that associates C' with D and C’ with
D' is FPR, and hence it is PR and FPWR. In the next section (see, e.g., Proposition 4), we will
see examples of functors that satisfy Definition 6(2b) but not PR.

Since in our model trees represent process behaviours, it is natural to define what happens to
a tree after the execution of some of its actions. In analogy with language theory, we can define

Tree-Functors, Determinacy and Bisimulations 11

the derivative of X reached after word s along a given path x. To this aim, we denote with ¢ — s
the word obtained from ¢ by deleting the prefix s.

Definition 7. Let X = (X,ex,ax) be a tree. The derivative reached in X along the path x
(e X) after s (< ex(z)), written D(X, z, s), is the tree ({2}, [x — €], [(z,2) — ¢€]) (that is
isomorphic to Z defined in Proposition 1), if ex (x) = s, and otherwise it is the tree (Y, ey, ay)
where

—Y={d'eX :ax(x,2') > s},
— ey (') =ex(a') — s,
— ay(2,2") = ax(2',2") — s.

The following figure illustrates our terminology.

More concretely, by letting

S

S
RN
x zoZ/\izz

we have that D(X, x, caa) = Z, D(X, z, ca) = Yy and D(X,y, cbc) = Vs, where

Indeed, given A" and), we can consider all the paths leading from X to (a tree isomorphic to)
Y. The family of all such path prefixes is not just a set: it is tree shaped, as exemplified by the
following:

De Nicola, Gorla and Labella 12
/ K

We can look at this tree as a structured set of morphisms from) to X’ (the reversed notation is
due to technical reasons) and consider the category Beh with the same objects as Tree, but with
these new morphism-objects in place of simulations.

Definition 8. The category Beh is the Tree-category with the same objects as Tree and where,

for any X and), Beh[), X] is the tree such that

— its set of paths is {|z|p : =z € X and Y = D(X,z,s)}, where z =p y iff D(X, z,s) =
D(X,y, s) and |z|p denotes the equivalence class of w.r.t. =p;

— the extent of a path |z|p is s, whenever) = D(X, z, s);

— aBehy (1710 2']D) = eBehpy.x)(1210) A eBety (12']p) A ax (. ')

— composition in Beh is given by the tensor product of T'ree.

Intuitively, Beh[)Y, X] is the initial behaviour of X’ formed by all the computations leading to
an isomorphic copy of). Graphically:

X

o

where the);’s are all isomorphic to). Beh is a Tree-category, exploiting monoidality of T'ree
(see Proposition 1)%. If) is not isomorphic to D(X, z, s) for some x and s, then Beh[), X is the
initial tree 0 = (0, (), 0). Moreover, Beh is well-defined, as proved in the following proposition.

Proposition 3. For every X and) in Tree, it holds that Beh[), X] is a tree.

Proof. The fact that the four properties of Definition 1 hold is trivial to check, once we
have shown that the choice of the representative |x|p, for every path z € X, does not af-
fect the definition of Beh[), X]. Let " € |2/|p; the only non-trivial thing to prove is that
aBeh[y,X](|x|D’ |2’|p) = aBeh[y,X](mDv |=”'|p). Let us consider two cases:

§ Beh is a Tree-subcategory of the canonical enrichment of the class of the objects of the category Tree over Tree.
This is due to Theorem 4.1 in (Kasangian and Labella 1999) that proves that the left cancellation property enjoyed
by the monoid A* implies closedness of Tree. It is worth noting that we could also define Tree[), X], but in this
case it would be the initial behaviours of X formed by all the computations leading to a homomorphic (instead of
isomorphic) copy of).

Tree-Functors, Determinacy and Bisimulations 13

— aBeh[y,X]ﬂxlD» 2'|p) < eBeh[yyx](|x|D) A eBeh[y,X](|xl|D): by property 3 in Defini-
tion 1, agehy x| (1%p, [2'[D) A aBehpy 1) (|12D: [2" D) < agehy x(|Z|p, |2"|p); since
2’ and z” belong to the same =p-class, aBeh[y,X](|$/|p, 2"|p) > eBeh[y,X](‘x/‘D) and,
hence, aBeh[yA;c](|$|Da |2'|p) < aBeh[y X](|x|p, |z”|p). In a similar way, we can prove
that aBeh[y,X}(|33|Da |z"|p) < aBeh[y,X}(|x|Dv |#’|p) and conclude.

—_ a’BehDi,X](l'rID’ ‘$/|D) Z eBeh[y,X]("ﬂD) (the case in which aBeh[y,X](‘ﬂD? ‘x/‘p) Z
€Behy,x] (|2'|p) is similar): this case is simpler, since, by definition of aBehyy,x)- it holds

that ageny (%[, [2'|D) = agenpy, x| (|2]p; [2"|D) = eBehy 1 (12]D)- U

Proposition 4. ((Kasangian and Labella 2009)) The unique Tree-functor from Beh to the ter-
minal Tree-category T (see Example 4) is not PR, but every reflected path satisfies the property
given in Definition 6 (2b) where the reflected factorization is unique.

Proposition 5. Let F' : Beh — Beh be a PR Tree-functor; then, F' is also FPR (and, hence,
FPwR).

Proof. We only have to prove the second condition of Definition 6(2). Let x € Beh[X”, X]
and y € Beh[F(X'), F'(X)] the path such that Fix'x(x) = y. Let also consider the factorization
y = y';y”, with ' and s” the extent of y’ and y” respectively, and let Z = D(F(X),y,s').
Since F' is a Tree-functor, the extent of z is s's”; thus, there exists D(X,x,s’). The claim
is proved if we show that F(D(X,z,s")) = Z. Let 2/ and z” the portions of = with ex-
tent s’ and s”, respectively; thus, z = z’;2”. By Tree-functoriality, Fy/ x(z';2") = y and
there exist Fp(x 55,1 () and Fx p(x 2, (x); however, by definition of Beh, it can only be
Fp(x u,,x(x) =y and Fx: px »,¢)(x) = y"; thus, F(D(X,z,s")) = Z, since by functori-
ality y' € Beh[F(D(X,z,s")), F(X)]. Ul

Remark 2. It is clear from the previous proof that in Beh every reflected factorization is unique
(up-to isomorphisms), i.e. every PR Tree-endofunctor also enjoys what in (Bunge and Fiore
2000) is called unique factorization lifting (UFL).

Though most of what we are going to prove holds for general trees, we shall restrict ourselves
to regular trees, i.e. trees with finitely many non-isomorphic derivatives; we believe that this
is not a limitation, since we designed our model to represent regular processes, e.g. processes
definable in terms of a (finite) system of equations.

2.2. Strong Bisimilarity

We now work directly on our trees to provide the definition of strong bisimulation equivalence
that agrees with the corresponding one usually introduced for LTS (see Section 5.1).

Definition 9. A symmetric relation between trees R is a strong bisimulation if, for every
(X,Y) € R, it holds that Vo € X Jy € Y such that ey (y) = ex(x) and Vs < ex(x) it
holds that that (D(X, z, s),D(Y,y, s)) € R.

Two trees are strongly bisimilar, written X ~g)/, if and only if there exists a strong bisimu-
lation relating them.

De Nicola, Gorla and Labella 14

‘We can show that strong bisimulations are the equivalences induced by factorized path reflect-
ing Tree-functors. Notice that, in Beh, FPR coincides with PR (see Proposition 2 and Proposi-
tion 5 above); however, for the sake of uniformity with the case of branching bisimulation (see
Section3.2), we shall rely on FPR.

Lemma 1. Let ' : Beh — Beh be a FPR Tree-functor; then
1 F(I)=1,
2 F(X) =T implies that X’ has only e-labeled paths.

Proof. For the first claim, let 7 € Beh[Z, F(Z)]; since F is PR, there exist A’ € Beh and
p € Beh[A’, 7] such that F'(A") = Z. But the only such p is the path labeled with € leading Z to
itself; thus, A’ = 7 and, hence, F'(Z) = Z. The second claim is trivial.]

Theorem 1. Two trees X and) in Beh are strongly bisimilar if there is a FPR Tree-functor
F : Beh — Beh such that F(X) = F()).

Proof. First of all, notice that F' is PR. We prove that relation ® = {(X', (X))} is a bisimula-
tion, as defined in Definition 9; by transitivity of ~¢ and by the fact that isomorphic trees are also
bisimilar, this will allow us to conclude, since X ~g F(X) = F(Y) ~g V. Let (X, F(X)) € R.

1 Fix z € X, that is also a path in Beh[Z, X]; by reasoning up to =p, it holds that, since F' is
a Tree-functor, Fr x () is a path in Beh[F'(Z), F(X)] with the same extent as . Because of
Lemma 1(1), Fz () is a path in Beh[Z, F(X)], i.e. Fr x(x) is a path of F/(X). Now, fix a
s < ex/(x). Since F'is a Tree-functor, it holds that F/(D(X, z, s)) = D(F(X), Fr x(x), s);
this suffices to conclude that (D(X, z, s), D(F(X), Fr x(x),s)) € R.

2 Now, take any path z in F'(X), i.e. z € Beh[Z, F/(X)]; since F is PR, it holds that there exist
X’ and z € Beh[X’, X] such that F'(X") = 7 and Fx+ x(z) = z. Because of Lemma 1(2), X’
has only e-labeled paths and so we can consider x as a path of X'. Moreover, since F'is a Tree-
functor, x and z have the same extent. Now, let s be a prefix of the extent of z and call 2’ the
portion of z corresponding to s. By Proposition 5, F' is also FPR; thus, there exist X/, z’, 2"
such that 2’ € Beh[X’, X], 2" € Beh[Z, X’], Fx'x(2') = 2 and F(X') = D(F(X), z, s).
By Tree-functoriality, Fyx(z') = 2’ implies that 2’ and 2’ have the same extent (viz., s)
and so we can put X’ = D(X, z, s), as required.

3. Trees with Silent Actions

In the previous section, we gave a characterization of strong bisimilarity over trees in Beh. We
now examine two notions of bisimulation arising in the presence of silent actions. For branch-
ing bisimilarity, factorized path reflection is still the property to use; in the weak case, a less
demanding property is needed.

3.1. Basic Definitions

Let us specify an element of the alphabet to represent the silent action, called 7, and denote A,
the set AU {7}, for 7 ¢ A. Elements t € A* have a decomposition 7°a; . ..T""~1a,7"", where
ar, € A; the notion of prefix in A, is the usual one.

Tree-Functors, Determinacy and Bisimulations 15

We also introduce the canonical function DEL : A¥ — A* which deletes 7’s in words as
follows:

€ ifs=ce
DEL(s) =< peDEL(s) ifs=pes andyu#7
DEL(s") ifs=7es

Function DEL can be canonically extended to a monoidal functor from trees with silent actions,
i.e. A -trees (denoted Tree, when A is clear from the context), to Tree as follows.

Definition 10. DEL : Tree, — Tree is a functor such that DEL(X, ex,ax) = (Y, ey,ay),
where Y = X, ey(xz) = DEL(ex(z)) and ay (x,y) = DEL(ax(z,y)). Morphisms remain
unchanged under DEL (indeed, functions defining morphisms from & to) define morphisms
from DEL(X) to DEL(D) as well).

Since Tree, is a monoidal category, we can trivially define Tree,-categories, by rephrasing
Definition 4. Then, the monoidal functor DEL just defined can be used to pass from a Tree,-
category C to a Tree-category C': objects are the same as in C and C'[A, B] = DEL(CJ[A, B)).
Such an operation is an instance of a more general operation in enriched categories called change
of base. More precisely, in analogy with Beh, we can consider Beh ; as the Tree,-category
whose objects and morphism-objects are objects of Tree,. Nonetheless, we will forget about 7’s
in morphism-objects of Beh ; by applying DEL to them. This procedure defines a Tree-category
Beh,, where it is possible to define bisimulations between A .-trees without mentioning 7’s.Y In
practice, Beh, has the same objects as Beh, , but Beh.[), X] = DEL(Beh, [}, X]).

Once we delete 7’s, many derivatives can be accessed along a path after a given visible prefix
s. For example, consider the tree

s

-
/ X
N

x
Here, the path z leads to both the derivative X + 7)) and)/, respectively after DEL(s) or DEL(s e

7). It is however important to notice that there is always the largest of such trees (X + 7)) here)
and any other tree so accessed (like)) is a 7-derivative of this one. The largest tree is D(X, z, s)
and its existence allows us to work with finite chains.

Notation We let s < ex (z) mean that s = DEL(t), for some ¢t < ex (x) (where ‘<’ is the prefix
relation).

Definition 11. Let X = (X,ex,ax) be a tree in Tree;, © € X and s < ex(z); then,
D, (X,z,s) = {D(X,z,t) : DEL(t) = s}.

9 Notice that the passage from Beh - to Beh corresponds to the passage from the arrow 2 to the arrow = done by
Milner in the context of LTS.

De Nicola, Gorla and Labella 16

Intuitively, D, (X, x, s) is the family of derivatives in X reachable along z by s, once we forget
7’s. Hence, given two of them, one is a 7-derivative of the other one.

Proposition 6. ((Kasangian and Labella 2009)) The unique Tree-functor from Beh, to the ter-
minal Tree-category T (see Example 4) is not PR, but every reflected path satisfies the property
given in Definition 6(2b) where the reflected factorization is unique up to silent moves.

In fact different objects of Beh.. allowing the reflected factorization on a path x = z’; 2", with
DEL(e(z’)) = s are elements of D (X, x, s).

Proposition 7. Let F' : Beh, — Beh, be a FPR Tree-functor; then the reflected factorization is
unique up to silent moves.

Proof. Similar to the proof of Proposition 5. L]

Remark 3. In particular, in Beh, every FPR Tree-endofunctor also enjoys the enriched form of
Conduché property (see (Conduché 1972) and (Kasangian and Labella 2009)).

3.2. Branching Bisimilarity

We can now define branching bisimilarity in terms of 7-less paths; in Section 5.1 we shall prove
that our definition agrees with the corresponding one usually introduced for LTS.

Definition 12. A symmetric relation on trees R is a branching bisimulation if, for every
(X,Y) € R, it holds that Vo € X Jy € Y such that DEL(ey (y)) = DEL(ex(x)) and

1 Vs<xex(z) VX' € D (X,x,s) 3V € D.(V,y,s) such that (X', V') € &;

2 Vsxey(y) VY € D (V,y,s) IX’' € D, (X,x,s) such that (X',)’) € R.

Two trees X’ and Y are branching bisimilar, written X ~p J, iff there is a branching bisimula-
tion relating them.

We are now ready to prove for branching bisimilarity the same result that we have for strong
bisimilarity in the case without 7’s, by simply replacing Beh with Beh... We start with some
preliminary results.

Lemma 2. Let F': Beh, — Beh, be a PR Tree-functor; then
1 F(I)=1,
2 F(X) =T implies that X’ has only 7-labeled paths.

Theorem 2. Two trees X’ and) in Beh, are branching bisimilar if there is a FPR Tree-functor
F : Beh, — Beh, such that F'(X') = F(Y).

Proof. We prove that 8 = {(X, F/(X))} is a branching bisimulation; to this aim, fix any
(X, F(X)) e R
— Letx € X, that is also a path in Beh, [Z, X']; as usual, we reason up to =p.

1 Since F is a Tree-functor, it holds that F7 x(x) is a path in Beh,[F(Z), F(X)] with
the same visible extent as z. By Lemma 2(1), Fzx(z) € Beh;[Z, F(X)]; thus, we have
found a path of F'(X) with the same visible extent as .

Tree-Functors, Determinacy and Bisimulations 17

2 Now fix a s < ex(x) and a X' € D,(X,x,s); moreover, let © = x1;x2 for
x1 € Beh [X',X] and 22 € Beh.[Z,X’]. By Tree-functoriality and Lemma 2(1),
Fxix(z1) € Beh [F(X'), F(X)] and Frx/(x2) € Beh.[Z, F(X’)]. By composition-
ality (that holds since F' is a Tree-functor), Fx/x(x1); Frx(22) = Frx(z) and so
F(X'") € D, (F(X), Fz x(x), s), up-to isomorphism.

3 Now fix a prefix s of the extent of Fry(x) and a Z € D.(F(X), Frx(x),s); let 2’; 2"
be the factorization of z such that Z is the derivative after z’. Since F' is FPR, we can
always write = as «’; " such that 2’ € Beh,[X’, X], Fx:x(2') = 2’ and F(X') = Z.
But then X’ € D, (X, z, s) up-to isomorphism, as required.

— Let 2z be a path in F'(X'). We can reason like the 2nd item in the proof of Theorem 1 (here we
have to use Lemma 2 in place of Lemma 1) to prove that there exists a x € X with the same
visible extent as z and that, for every derivative Z along z, we can find a derivative X’ along
x (after the same visible prefix) such that F'(X’) = Z: it suffices to consider Beh. in place
of Beh and D; in place of D. To prove that, for every s < ex(z) and X’ € D, (X, x, s), it
holds that F'(X’) € D,(F(X), Fzx(x), s) up-to isomorphism, we can reason like in point
2. of the previous item of this proof. L]

3.3. Weak Bisimilarity

We now define weak bisimilarity in terms of 7-less paths; in Section 5.1 we shall prove that our
definition agrees with the corresponding one usually introduced for LTS.

Definition 13. A symmetric relation on trees R is a weak bisimulation if, for every (X,)) € R,
it holds that Vo € X Jy € Y such that DEL(ey (y)) = DEL(ex(z)) and Vs < ex(z) VX' €
D.(X,z,s) 3V € D.(V,y,s) such that (X',)’) € R.

Two trees X and) are weakly bisimilar, written X ~y, Y, iff there exists a weak bisimulation
relating them.

It is interesting to notice that Definition 12 differs from Definition 13 only for an extra sym-
metry requirement. Mainly, this implies that branching bisimilarity induces a correspondence
between paths and so it is an equivalence relation between paths (in the style of the ‘back-and-
forth’ approach (De Nicola et al. 1990)); on the contrary, such a path correspondence cannot be
defined for weak bisimulations.

Theorem 3. Two trees X and Y in Beh, are weakly bisimilar if there is a FPWR Tree-functor
F : Beh, — Beh, such that F'(X) = F(Y).

Proof. We prove that ® = {(X, F(X)} is a weak bisimulation. We first fix + € X and
show that: (i) there exists a path z in F'(X) with the same visible extent as z; and, (i7) every
X' e D (X, z,s), where s < ex(z), is such that F(X") € D, (F(X), z, s) up-to isomorphism.
These facts can be proved like the 1st and 2nd point of the first item of the proof of Theorem 2
(in that proof, it was only exploited that F' is FPWR). Now, let z be a path in F'(X); like in the
2nd item of the proof of Theorem 2, we have that there exists a x € X with the same visible
extent as z and that, for every derivative Z along z, we can find a derivative X” along x (after the
same visible prefix) such that F'(X”) = Z up-to isomorphism. This suffices to conclude. U

De Nicola, Gorla and Labella 18

4. Complete Characterizations and Standard Representatives

The converse of Theorems 1, 2 and 3 hold as well but, to prove them, we have to provide a
standard representative for every tree: such a representative will be obtained by merging those
paths that have the same extent and equivalent relationships with other paths in the same tree. To
this aim, we will define equivalences of paths as induced by ~g and ~p (remember that a simple
equivalence on paths associated to ~yy is not possible).

4.1. Standard Representatives for Strong Bisimilarity

Definition 14. Let =g be the equivalence relation on paths of a tree X' defined by z =g '
if and only if ex (z) = ex(z’) and, for every s < ex(z), D(X,z,s) is strongly bisimilar to
D(X,2’,s). Let |x|s denote the =g-class of x.

The standard strong representative of a tree X = (X,ex,ax) is the tree SX =
(SX,esx,asx), where

— SX ={|z|s : € X}
— esx(|7]s) = ex(2);
- aSX(|$‘S7 ‘y|S) = \/"L’/Elajls’ylely‘s U:X(l‘/,y/)'

It is worth noting that the join above exists, thanks to the definition of meet-semilattice monoid,
and it is a maximum. Moreover, we can prove a stronger property:

Lemma 3. For every ' € |z|g there exists a ¢’ € |y|s such that ax (z', ') = asx(|z]s, [y|s)-

Proof. By definition, there exist Z € |z|g and § € |y|s such that ax(Z,y) =
asx(|zls,lyls) = s. Clearly, s < ex(z) = ex(Z) = ex(z') and s < ex(y) = ex(y) =
ex (y'). Now, by definition of =g, D(X, 2/, s) ~g D(X, Z, s); moreover, since ax (T, §) = s,
it holds that § € D(X, Z, s). Hence, there must be a y’ € D(X, 2, s) such that y’ =g § and so
ax(z',y") > s. Since s is the maximum agreement between elements in |z|s and |y|s, we can
conclude. U

We approach the proof that SX is a standard representative of the ~g-equivalence class of
X by showing that X and SX" have the same transitions; this also easily implies that S is a
Tree-functor.

Lemma 4. S(D(X,z,s)) = D(SX, |z|s, 5).

Proof. f D(X,x,s) = T, the claim is trivial. Let y € X be a path belonging to D(X, x, s);
thus, ax(z,y) > s. By Definition 14, the agreement between |z|s and |y|s in SX is at least
ax (z,y); hence, |y|s is a path in S(D(X, z, s)). Vice versa, let |z|s be a path of SX belonging
to S(D(X, x, s)); by definition, the agreement between |z|s and |z|g is s > s. By Lemma 3,
there exists a 2’ € |z|g (C X) such that ax(z,2") = §'; so, 2’ is also a path in D(X, z,s). A
similar reasoning applies to agreements, while extents are trivially identical. L]

Lemma5. X ~g SX.

Proof. Define the relation ® = {(X,SX)}, fix (¥,SX) € R and pick up any € X (the
case in which we pick up a path |z|s € SX is similar); by construction, |z|g is a path in SX with

Tree-Functors, Determinacy and Bisimulations 19

extent ex (z). Now, choose s < ex(x); by Lemma 4, S(D(X, z,s)) = D(SX, |x|s, s). and this
suffices to conclude. Ul

Proposition 8. X ~g Y if and only if S = S).

Proof. The “if” part trivially follows from Lemma 5. For the “only if” part, we prove that
X ~g Y induces a Tree-isomorphism between SX and S). Let x € X and y € Y be corre-
sponding paths in the bisimulation. Hence, we can build up a bijective mapping between paths
in SX and S) that preserves the extent: each &’ € |z|g is associated by the bisimulation to a
y' € Y such that y' € |y|s (by transitivity, ¥’ can also bisimulate z, that in turn bisimulates
), and vice versa. So, the mapping is surjective; it is also injective, since two different paths
in the representative cannot be equivalent (by construction). This proves that St and S) have
corresponding paths with the same extent; we are left with proving that their paths have also
the same agreement. Choose |z|s and |z’|s in S and let s be their agreement; thus, there exist
x1 € |z|g and x2 € |2’|s such that ax (x1, z2) = s and this is the maximum. Let |y|s and |¢/|g
be the corresponding paths in SY; by hypothesis, D(X, x1, s) ~g D(), vy, s); since x5 is also a
path in D(X, z1, s), there exists a 3’ in D()), y, s) (i.e. such that ay (y,y’) > s) corresponding
to zo. By contradiction, let ay (y,y’) > s. Then, consider D(}, y, ay (y,y')); by hypothesis of
bisimilarity, it corresponds to a proper derivative of D(X, 21, s). But then s would not be the
maximum agreement between paths in |z|s and |z’|g. Ul

Corollary 1. S(SX) = SX.

Because of Proposition 8 and Corollary 1, SX can be considered a minimal strong representa-
tive of the ~g-equivalence class of X'. We are now ready to prove the converse of Theorem 1.

Theorem 4. Let X’ and) be strongly bisimilar trees in Beh; then there is a FPR Tree-functor
F : Beh — Beh such that F(X) = F()).

Proof. We prove that S can be extended to the desired Tree-functor. By Proposition 8§,
S(X) = S(¥). To prove that S is a Tree-functor, we have to prove that S induces a Tree-
morphism between Beh[X”, X'] and Beh[SX’, SX], for every X'. If Beh[X”, X] is the empty tree,
we trivially conclude. Otherwise, take any path ' € Beh[X”, X]; then, X' = D(X, x, s) up-to
isomorphism, where x is a path in X’ such that 2’ is its initial part labeled by s. By Lemma 4,
SX evolves to SX’ via a path with the same extent as z’; moreover, by definition of standard
representatives, the agreement between any two paths cannot decrease.

We have to prove that S is FPR; because of Proposition 5, it suffices to prove that it is PR.
Fix a Z and a 2z’ € Beh[Z,SX]; thus, Z = D(SX,|z|g, s) up-to isomorphism, where |z|g is
a path in SX such that 2’ is its initial part labeled by s. By Lemma 4, Z = S(D(X, z, s)) up-
to isomorphism; thus, we have found a X (that, up-to isomorphism, is D(X, z, s)) and a 2’ €
Beh[X’, X] (viz., the initial portion of z labeled by s) such that SX’ = Z and Sx' x(2') = 2/.[J

Example 6. Let us consider the tree X

De Nicola, Gorla and Labella 20

By using the construction put forward in Definition 14, we can obtain its standard representative,
i.e. the tree):

If we now consider the tree Z:

its standard representative is still) and, indeed, X’ and Z are strong bisimilar. Indeed, by letting
f:X —>Yandg: Z — Y be the Tree-morphisms such that f(x1) = f(x2) =z = g(z1) =
g(w2) = g(x3) and f(y1) = f(y2) = f(y3) =y = 9(y1) = 9(y2) = g(y3), we have that

x Ly z

i.e., there exists a span of Tree-morphisms between the two strongly bisimilar trees X and Z.
These morphisms reflect paths with their factorizations.

To conclude, notice that S is characterizable also through a maximality condition among those
enjoying factorized path reflection, i.e., every PR Tree-functor is annihilated by S.

Proposition 9. Every FPR Tree-functor F' : Beh — Beh is such that SF" = S.

Proof. Since F reflects paths, F7_y is an epimorphism from Beh[Z, X] to Beh[Z, F/(X)] (see
Lemma 1(1)); therefore, there is an epimorphism from X to F'(X). This means that F'(X) is a
quotient of X’ w.r.t. a strong bisimulation; but S induces the coarsest strong bisimulation, hence
the assert. Tree-naturality of the isomorphism holds since both images are induced via quotient-
ing on paths. L]

Tree-Functors, Determinacy and Bisimulations 21

4.2. Standard Representatives for Branching Bisimilarity

We now rephrase the results of the previous section to deal with branching bisimilarity. However,
due to the presence of 7’s, we need some extra efforts to build the standard branching represen-
tative. The same technicalities will be useful for building the standard weak representative in the
next section.

Definition 15. Let X = (X,ex,ax) be atree in Tree,, x € X and s X ex(x). Then

— Dy(X,z,8) = {DEL(Z) : Z €D, (X,x,8)};
— Ds(X,z,5) = {S(2) : Ze€Dy(X,z,s)}.

Intuitively, Dy(X, z, s) and Dg (X, x, s) are the families of T-less derivatives reachable along x
by s, pruned by DEL and also quotiented by S, respectively.

Notice that the sets D, (X, x, s), Dy(X, z, s) and Dg(X, z, s) are chains w.r.t. the property of
being 7-summand, that are finite thanks to regularity of our trees; DEL induces also a monotonic
function from the first to the second one preserving the extremes; similarly, S induces a mono-
tonic function from the second to the third one preserving the extremes. This last correspondence
is actually made out of a family of epimorphisms in Tree.

Definition 16. Let =g be the equivalence relation on paths of a given tree X defined by z =p 2’
if and only if DEL(ex(z)) = DEL(ex(z’)) and, for every s < ex(x), Dg(X,z,s) is in a
bijective correspondence with Dg(X, 2’, s), such that corresponding trees are isomorphic; let
|z| 5 denote the =p-equivalence class of .
The standard branching representative of a tree X = (X,ex,ax) is the tree BX =
(BX,epx,apx), where
— BX ={|z|p : v € X};
— epx(|z|g) = 1181728 ... Tin s, Tint, with iy = |Dg(X, 1,81 ...55_1)]—1,for1 <k <
n+landex(z) = 7F1s7k2 5, .. TR g, Thn1;
— apx (|7, lylB) = Th s 89 . .. 8T+, With
- i, =|Dg(X,z,81...5,-1)] — 1, for 1 <k < m,and
- %m+1 = h — 1, where h is the length of the longest common pre-
fix of the chains Dg(X,x,8182...55,) and Dg(X,y,8182...5m) (e,
Ds(X,2z,8182...8m) = {Xl,...,Xk7X,’l+1...,X,;+p} and Dg(X,y, 5182 ... 8m) =
{Xl,...,Xh,X,’lg_l...,X,’lﬁrq},foreitherp: gq=0,orp=0andqg > 0,o0rp > 0 and
q=0,0r X} # X)
k1

VAN ko k
whenever \/ ¢, ey 0x (@, 4) = 77 8172855 T

MSmTkm+1.

Lemma 6.

1 IfYeD, (X, z,s),then BY € D, (BX, |2|5, 5);
2 if Z2eD,(BX,|x|p,s), then Z =BY, for some Y € D.(X,z,s).

Proof. Fixax € X anda s = ay...a, < ex(z); by construction of BX, it holds that
D, (BX, |x|B,s)| = |Ds(X,x,s)| because epx (|x|) = Tlai7™ ... apT+t .. apyTimt,
where i1 = |Ds(X,x,s)| — 1. We let ¢ be the monotonic bijective correspondence between
Ds(X,z,s) and D, (BX,|z|p, s); thus, ¢ o S o DEL : D.(X,x,s) — D,(BX,|x|p,s) is a

De Nicola, Gorla and Labella 22

surjective function (it is a composition of surjective functions). We can prove both claims of this
Lemma if we show that ¢ o S o DEL coincides with B. To this aim, assume that Z is the n-th
element of the chain D, (BX, |z|p, s) and take any YV € D, (X, z, s) such that S(DEL(})) is the
n-th element of the chain Dg (X, x, s); we shall prove that B) = Z. This fact will trivially prove
the first claim, whereas the second claim is implied by surjectivity of ¢ o S o DEL.

By construction, Z = (Z,ez,az), where Z = {lylp : apx(|z|B,|ylB) >
a2 ap™ Y, ez(lylg) = T T Day o rir g, it and az(|yls, Y| B) =
apx([ylB, |V|B) — 7 a7 ... a7 L. To prove that BY = Z, we have to prove three facts
about BY:

its set of paths is Z: Let y € Y; thus, ax(z,y) > 7Fa;7%...a,7%, where J =
D(X,x, 7% a7 ... a;7F). Hence, y corresponds to a path in the n-th element of the chain
Ds(X,x,a1...ap);80, Ds(X,x,a1...ap) and Dg(X,y,aq . ..ap) share at least their first
n elements. This implies that apx (|2|5, |y|g) > 79 a17% ... a7~ and hence |y|5 € Z.
Conversely, let |y|p € Z; then, apx (|z|p,|y|B) = 7% a17% ...ap7 L. Then, we can find
a) and y € Y’ N|y|p such that S(DEL())) is the n-th element in Dg(X,x,a;...an);
but then Dg (X, z,a; ...ap) and Dg(X,y',a; . ..ap) have at least the first n derivatives in
common. Since also S(DEL()Y)) is the n-th element in Dg(X, x,a; . ..an), we can find a
y’ € Y such that Dg(X,y',a; ...ap) and Dg(X,y", a; ... ayp) are in a bijective correspon-
dence whose corresponding derivatives are isomorphic. But, hence, ' =g 3’ =p y and we
can conclude.

its extent function is e: first notice that |Dg (), z,€)| = |Ds(X, x,s)| — (n — 1). Thus, every
|yl € Z has extent that starts with |Dg (X, z,s)| — (n—1) —17’s and thenis egx (|z|5) —
a7 .. apTi+1, Recall that |[Dg(X, 2, 8)| — 1 = i 1; thus, [Dg(X, z,5)| — (n—1) —
1=ipy1—(n—1).S0,epy(ly|s) = ez(|y|s), as required.

its agreement function is a z: similar to the extent. L]

Lemma7. X ~p BX.

Proof. Define the relation ® = {(X,BX)}, any (X,BX) € R and any z € X; then, by
construction, |x|p is a path in BX" with extent ex (x) such that DEL(e(|x|5)) = DEL(ex(x)).
Now, choose s < ex (z) and let Y € D, (X, x,s). By Lemma 6(1), BY € D,(BX, z, s) and, by
construction, (), BY) € R. The converse is proved by using Lemma 6(2). |

Proposition 10. X ~p) if and only if BX = B)).

Proof. If BX = B), then X ~p) holds because of Lemma 7. Suppose X ~p). Then,
given x € X, there exists y € Y with the properties in Definition 12; we have to prove that the
function associating |z|p to |y|p can be extended to an isomorphism of trees. Let s < ex (z);
then D, (X, x, s) is a chain and D (), y, s) is the corresponding chain in). By the symmetry
in the first item of Definition 12, there is a correspondence between the two chains which is
surjective on both sides, and, being monotonic, preserves the extremes. This correspondence
induces a correspondence between Dy(X, x, s) and Dy(), y, s), via application of DEL, which
preserves order and extremes and, again, between Dg (X, x, s) and Dg(Y, y, s), via application
of the function S. In this last stage, the correspondence becomes injective on both sides because
two adjacent members of the chain cannot be equivalent. Hence we have a bijection as required,

Tree-Functors, Determinacy and Bisimulations 23

because, due to the fact that we are dealing with standard representatives, corresponding trees
must be isomorphic. As a consequence, |z|p and |y| 5 have the same extent, and also agreement
with any other path is strictly preserved. On the other hand the symmetric case can be dealt with
analogously, hence we have an isomorphism of trees. L]

To prove the converse of Theorem 2, we need to prove that the correspondence which asso-
ciates BX with X is a FPR Tree-functor. Moreover, similarly to the strong case, B can be also
characterized through a maximality condition among those that reflect factorized paths.

Theorem 5. If two trees X and Y in Beh, are branching bisimilar, then there is a FPR Tree-
functor F' : Beh, — Beh, such that F'(X) = F(Y).

Proof. Consider the correspondence induced by B. Such a correspondence is a Tree-functor
(by Lemma 6(1)) that reflects paths (by Lemma 6(2)); this fact can be proved like in Theorem 4,
by using Lemma 6 in place of Lemma 4 and Beh. in place of Beh.

We are left to prove that B is FPR. To this aim, fix a Z and a z € Beh,[Z,BX]; by paths
reflection, we know that there exist X’ and z € Beh,[X”, X] such that B(X’) = Z and
By (x) = 2. We must prove that, for every such x and for every factorization z = z1; zo (Where
zo € Beh.[Z, Z'] and z; € Beh.[Z’BX]) we can find a X" and a factorization x = x1;x2
such that x5 € Beh, [X', X”], 1 € Beh.[X", X], B(X") = Z’ and Bx»x(x1) = 2. By
Lemma 6(2), Z’ is the branching representative of a X"’ € D..(X, x, s) up-to isomorphism, for
some X" and s that is the visible extent of the paths 1 and 2.]

Example 7. Consider the two trees in Figure 4: the rightmost (call it X) is the standard branching
representative of the leftmost (call it)). It suffices to apply the construction put forward in
Definition 16 to), and let 2’ = |z|p and ¥’ = |y1|5 = |y2|5. Thus, similarly to the case of
strong bisimulation, we can find a span of Tree-morphisms

y Iy oy

where f has been intuitively described in the introduction (just before Figure 4) and g is the
identity. These morphisms reflect paths with their factorizations, as prescribed by Definition 6(2).

Proposition 11. Every FPR Tree-functor F' : Beh, — Beh is such that BF = B.

Proof. Since F reflects paths, Fr x induces an epimorphism from Beh,[Z,X] to
Beh, [Z, F(X)] (see Lemma 2); therefore, there is an epimorphism from X’ to F(X). Since F
reflects factorized paths, F(X) is a quotient of X’ w.r.t. a branching bisimulation; but B induces
the coarsest branching bisimulation, hence the assert. Tree-naturality of the isomorphism holds
because both images are induced via quotienting on paths. Ul

4.3. Standard Representatives for Weak Bisimilarity

To build up the standard weak representative, we shall work on the branching representative and
prune it of some paths, namely the non-maximal (w.r.t. the induced chains of derivatives) ones.
We now formally define such an order relation over trees and use it to build the representative.

De Nicola, Gorla and Labella 24

Definition 17. Let <p be the preorder relation on paths of a given tree X defined by x <p ' if
and only if DEL(ex (x)) = DEL(ex (z)) and, for every s < ex (), there is a monotonic injective
function from Dg (X, z, s) to Dg(X, z’, s) such that corresponding trees are isomorphic.

When considered on =pg-classes of paths, <p becomes a partial order with finite chains (recall
that finiteness is guaranteed by the fact that we restricted ourselves to regular trees) and, there-
fore, with maximal elements; representatives of maximal classes will be called maximal paths in
the original tree. In the sequel, |z|y will denote the equivalence class |2’| 5 of a maximal path
a’ such that || <p |2'|B.

Definition 18. The standard weak representative of a tree X = (X, ex,ax) is the tree WX =
(WX, ewx,awx), where

— WX ={|z|lw : z € X and x is maximal};

— ewx(lzlw) = epx(|z|B);

— awx ([zlw, lylw) = asx (7|5, y|B).

We start the completeness proof with a technical proposition that will be useful in the sequel;
we then follow a path very similar to the ones followed for the strong and branching cases.

Proposition 12. Let X be a tree; then, for all x € X thereis a2’ € |z|w such that forall y € X
there is a ¢’ € |y|w such that DEL(ax (2',y")) = DEL(awx (|z|w, |y|w))-

Proof. First, notice that for all z,y € X and for all 2’ € |x|p there exists a y’ € |y|p such
that DEL(ax (2',y")) = DEL(apx (|x|B,|y|B)). Indeed, by definition, Vo € X Vy € X Iz’ €
|z|p Jy' € |y|p such that DEL(ax (z',y')) = DEL(apx(|z|s, |y|B)); moreover, since ' €
|z| 5, we have that 2’ =5 .

To prove this Proposition, we just notice that |x|y = |2'|p, for a maximal z’, and |y|w =
|y'| 5, for a maximal y’. What we have just proved for =p-classes entails that we can take such
2’ and 4/ to obtain the claim.]
Lemma 8.

1 ifY € D (X,z,5), then WY € D, (WX, |z|w, 5):
2 if Z2e€D (WX, |z|w,s), then Z = WY, for some Y € D, (X,2',s) and 2’ € |z|w.

Proof. The same argument as in the proof of Lemma 6, by only considering maximal paths.
To prove the second claim, we exploit Proposition 12: z’ is the path fixed by the first existential
of that result. Ul

Lemma9. X ~y WX.
Proof. Similar to the proof of Lemma 7, but using Lemma 8. L]
Proposition 13. X' ~y,) if and only if WX = W)).

Proof. f WX = WY, then X ~y) holds because of Lemma 7. Suppose X ~y,). Then,
given © € X, there exists y € Y with the properties as in Definition 13; we have to prove that
the function associating |z'| to |y’| s for maximal paths can be extended to an isomorphism
of trees. Let us take a maximal x; then, for a corresponding y, we will have |y|z <p V|5,
for ¢/ maximal. Let s < ex(x), with D, (X, x,s) and D.(Y,y, s) its corresponding chains.

Tree-Functors, Determinacy and Bisimulations 25

By Definition 13, there is a correspondence between the two chains which is surjective on the
side of D, (X, z,s). This correspondence induces a correspondence between Dy(X, z, s) and
Da(Y,y, s), via application of DEL, which preserves order and, again, between Dg (X, x, s) and
Ds(Y,y, s), via application of the function S. In this last stage, the correspondence becomes in-
jective because two adjacent members of the chain cannot be equivalent. On the other hand, there
is an injection from Dg (), y, s) to Ds(Y, y, s), hence we have an injection from Dg (X, z, s) to
Ds(Y,y', s). Corresponding trees must be isomorphic as required, because we are dealing with
S-standard representatives.

At this point, we can say that e(|z|p) and e(|y’| 5) are mapped to the same word by function
DEL, with e(|y’| g) possibly longer (it can have more 7’s). Using the symmetry in Definition 13,
|y'| s will determinate a maximal |2’|p such that e(|y’|) and e(]2’|g) will be mapped to the
same word by DEL, with e(|z’|g) possibly longer. Let us now compare |z|p with |2'|5: they
are maximal elements of the same < g-chain, hence they are equal. This implies that e(|2’|g) =
e(]y’|) and the correspondence between paths in WX and WY is a bijection preserving extent.
A similar reasoning proves preservation of agreement. L]

To prove the converse of Theorem 3, we need to prove that the correspondence which asso-
ciates WX with X is a FPWR Tree-functor.

Theorem 6. If two trees X and) in Beh. are weak bisimilar, then there is a FPWR Tree-functor
F : Beh, — Beh, such that F'(X') = F(Y).

Proof. The desired functor is defined as W on objects and Lemma 8(1) allows to define it on
arrow-objects; FPWR derives from Lemma 8(2).]

Example 8. Consider the two trees in Figure 5: the rightmost (call it X') is the standard weak
representative of the leftmost (call it), once we let ¥ = |y|w and 2’ = |z1|lw = |z2|w.
Indeed, the standard branching representative of) is itself; moreover, the pruning defined in
Definition 18 reduces it to X, since |z2|p is smaller (with respect to the ordering defined in
Definition 17) than |21 |p. Also in this case, we can find a span of Tree-morphisms

yLxLox

where f has been intuitively described in the introduction (just before Figure 5) and g is the
identity. However, f reflects paths with their factorizations only in the weaker way prescribed by
Definition 6(3).

Proposition 14. Every FPWR Tree-functor F' : Beh, — Beh is such that WF = W.

Proof. Similar to the proof of Proposition 11.]

5. Applications

The theory developed so far does not need any assumption on the alphabet A. We now show
that, by properly instantiating it, we can easily model LTS and labeled (prime) event structures.
Moreover, we show that the notions of equivalences for the resulting trees do indeed correspond
to standard equivalences already developed for the two models.

De Nicola, Gorla and Labella 26

5.1. A Tree-based Model for LTS

Definition 19. A labeled transition system (or LTS) is a quadruple (S, E, —, s¢), where S is a
set of states, ranged over by s, u, - - -, E is a set of actions, for E C A, — C S x E x S'is the
transition relation and sy € S is the starting state.

As usual, we write s —— ¢ rather than (s, 1, 8'") € —. Moreover, if s, u, s, u’ are states of S,
we write = for the reflexive and transitive closure of —, s =E5 1 if there exist s’ ,u such that
s= s L = u, and s =5 4 for s = u, if p # 7, and for s = u, otherwise. We now
introduce three well-known bisimulation-based relations.

Definition 20. Let (S, E, —, s¢) be an LTS. A symmetric relation R C .S x Sisa

1 strong bisimulation if (s,u) € ® and s — s imply that u — v/ and (s’,u’) € R, for
some u';

2 branching bisimulation if (s,u) € R and s - s imply that either ;1 = 7 and (s',u) € R,
or u = u; —— uy = ug for some w1, us, uz such that (s,u1) € R, (s',uz) € R and
(s',us) € R.

3 weak bisimulation if (s,u) € R and s - &' imply that v == « and (s',u') € R, for some

.

Two states are said to be strongly/branching/weakly bisimilar if there exists an eponymous bisim-
ulation relating them. Two LTS are strongly/branching/weakly bisimilar if, when considering
their disjoint union, their starting states are strongly/branching/weakly bisimilar. We write ~g,
~p and ~yy for strong, branching and weak bisimilarity on LTS, respectively.

We now show that the equivalences that we have defined for general trees in Section 2 and
Section 3 agree with the standard bisimulation-based equivalences defined in literature for la-
beled transition systems. To do this, we introduce the notion of unfolding of an LTS; then, we
prove that the classical equivalences on LTS correspond to the ones we have defined, once we
apply them to the trees obtained as unfoldings of LTS.

We define the unfolding of S to be UNF(S) = (RUNS(S), es, as), where:

— RUNS(S) = {sou181p62 - - - nSn : So N NN Sn}s

— es(So181 -« nSn) = M1 -« - fhn;
— as(So[181 - - - hnSny SOVIUL - - - VipU) = pq - - - g Where, for all k& < [, it holds that vy, =
Wk, S = U and either 41 # Vy41 Or Si41 # wyp1 orl =norl =m.

By definition, UNF(S) is a tree; it is obtained by taking all the finite approximations of all the
possible sequences of actions that can be generated in the LTS. By construction, this implies that
all the (possibly infinite) paths of UNF(S) have finite length.

We now prove that this simple modeling of LTS via trees enjoys full abstraction w.r.t. strong,
branching and weak bisimilarities. In the following proofs, we shall use notation S | s to denote
the LTS obtained from S by letting its initial state be s; moreover, we shall write s —4 to mean
that there exist no p nor s’ such that s - s’

Lemma 10. Let =z = SQM1S1 -+ - fhnSn € RUNS(S), then we have that
D(UNE(S), x, f11 . . . i) = UNF(S];,) whenever either k < n, or k = n and s,, —.

Tree-Functors, Determinacy and Bisimulations 27

Proof. Letk < n,or k =n and s,, —~; we now prove that
D= {80/1151 e MESEH1ST - - - U Sm b SEM1S1 - .- UmSm € RUNS(Slsk)}

is the set of paths in D(UNF(S), , 41 - - - jix). This will easily allow us to conclude: we can easily
define a bijection between D and the paths of UNF(S |5,) such that, trivially, corresponding paths
have the same extent and the same agreement with other paths in the same tree.

Let y = s0f1181 - .. fin8y be a path of D(UNF(S),x, 1 - .. pg); by definition, as(z,y) >
11 - . . 4 and, by construction of the unfolding, we can say that h > k and, foreveryi =1...k,
we have that ji; = p; and §; = s;. Hence, Sgfij+15k+1 - - - [thSn € RUNS(S |5,), that implies
y € D, as desired.

Vice versa, let y = Sou181 ... UkSEkH1S1 - - - kmSm € D; by definition, Sgfi151 ... b Sm €
RUNS(S |,) and so y € RUNS(S). Now, we can trivially conclude that y is a path of
D(UNE(S), x, ft1 - - . i), since as(z,y) > f1 - - . fhie- Ul

Proposition 15. Let S and S’ be two transition systems. Then, S ~g &’ if and only if
UNF(S) ~g UNF(S).

Proof. For the “if” part, we have to prove that the relation * = {(S,S8’) : UNE(S) ~g
UNF(S’)} is a strong bisimulation on LTS. Consider a step 5o —— s1 in S. If 51 —7~, we let
x be sousy; otherwise, we let x be sousiis, for any i and s such that s, £, 5 (at least one
exists, since it does not hold that s; —#4). By strong bisimulation on trees, there exists a path
y € RUNS(S’) whose extent starts with 1 such that D(UNE(S), z, u) ~g D(UNE(S’), y,). Let,
y = spus] - - - since x and y are related by a bisimulation on trees, it is easy to prove that s; —~
if and only if s; —%, so both = and y satisfy the premises of Lemma 10. This easily allows us to
conclude: by Lemma 10, UNF(S |5,) = D(UNF(S), z, 1) ~5 D(UNF(S), z, i1) = UNF(S’ |)
and, by definition, (S |, , &' |) € R.

For the converse, we have to prove that the relation 8 = {(UNF(S), UNF(S')) : S ~g &'}
is a strong bisimulation on trees. Pick up a x € RUNS(S), for & = sou151 - - fhnSn; there

. H Hn .
exist s},...,s), such that sj — s}j--- — s/ and s; ~g s}, for every i. Thus, y =

r n

SQU1SY - -+ pnSl, € RUNS(S’); moreover, y has the same extent as = and s,, —~ if and only

if s/, —~. Thus, by Lemma 10, the derivatives along x are all in relation ® with the correspond-
ing derivatives along v; this suffices to conclude. L]

Lemma 11.

I Let Xy, &y, , Xy, and Vo, Vi,--- , Y, be two chains of 7-derivatives; if X; ~p Y,
Xit1 ~p Vi and YV; #p Vi then k > j.

2 If X ~p)Y then, forevery x € X and s < ex(z), the maximum element of D (X, z, s)
is branching bisimilar to the maximum element of D, (), vy, s), where y is the path of)
corresponding to x in the given branching bisimulation between X and).

Proof. For the first claim, reason by contradiction and assume k < j. This means that)} is
a T-derivative of Vy; since V; %5 Vi, there exists a ¢ in), that cannot be simulable in ;.
However, X;11 ~p YV and, hence, there exists a Z in X, that simulates §; but Z is also a path
of &;. Since X; ~p Y;, there exists a g’ in); that simulates Z; by transitivity, y7 also simulates
1, contradiction.

De Nicola, Gorla and Labella 28

For the second claim, we know that, since X ~p Y, every element of D (X, x, s) (that is a
chain of 7-derivatives Xy, X1, - - - , X}y, is branching bisimilar an element of D, (), y, s) (that is
a chain of 7-derivatives Yy, V1, - , V). We have to prove that Xy ~p Vp. Let Xy ~p V; if
h = 0, we have done. Otherwise, by the first claim of this Lemma,), ..., Y,_1 must all be
branching bisimilar to an element of D, (X, x, s) branching bisimilar to Xy. By transitivity, we
easily conclude. L]

Proposition 16. Let S and S’ be two transition systems. Then

1 S=p & ifand only if UNF(S) ~p UNF(S');
2 S~y S ifand only if UNE(S) ~y UNF(S').

Proof. We only prove the first claim, that is more complex. For the “if” part, we have to prove
that the relation ® = {(S,S8’) : UNF(S) ~p UNF(S’)} is a branching bisimulation on LTS.
Consider a step sg £ 51 in S; let be Sops1, if s1 —4, and be sous1 s (for any i and s such
that s; —— 3), otherwise; let also X’ be D(UNF(S), z, 1) that, by Lemma 10, is isomorphic to
UNE(S |,).

— If u # 7, we have that X € D, (UNF(S), z, ut); by hypothesis, there exists a y in UNF(S’)
such that es/ (y) = 7" ur"w and X ~p Y, for some Y € D, (UNE(S’),y,). Since = and
y are put in correspondence by a branching bisimulation, it is easy to prove that s; —% if
and only if ug —~%, where s})(—)™ - (—5)™ ugz and s}, is the starting state of S’; this
allows us to freely apply Lemma 10 in what follows. Let s},(——)™ u; —— us(—)" us;
by Lemma 10, }; = D(UNF(S'),y,7™) = UNE(S’ |4,), Yo = D(UNE(S'),y, 7™pn) =
UNF(S’ |4,) and Y = D(UNF(S'),y, 7™ ut™) = UNF(S’ |,,). Since X ~p), we
have that (S |s,, S’ lu;) € R. By Definition 12.1(b), UNF(S) ~p Y; (indeed, the only
tree in D, (UNE(S),x,€) is UNF(S), since ;1 # 7); this implies that (S,8’ |.,) € R.
To conclude, observe that X and) are the maximum elements in D, (UNF(S), x, 1) and
D, (UNE(S"),y, 1), respectively; thus, by Lemma 11(2), (S |s,,S" lu,) € R. This suffices
to conclude.

— If u = 7, we have that X € D, (UNE(S), z, €); by hypothesis, there exists a y € RUNS(S’)
such that X ~p Y, for some)V € D.(UNE(S'),y,€). If Y = UNF(S’), we then conclude
that (S |s,,S’) € R. Otherwise,) is a 7-derivative of UNF(S’) and, so, we can find)y
and)s in D, (UNE(S’),y, €) such that UNF(S’), V1, Vo and) appear in this order in the
chain associated to D,(UNF(S’),y,€). By Lemma 10, we have that J); = UNE(S’ |,),
Y2 = UNF(S' |4,) and Y = UNE(S’ |,,), for sj = uy 2 Uy = us. Since X ~p Y,
we have that (S |s,, S’ |4;) € R. Since UNF(S’) ~p UNF(S) and Y ~p X, by virtue of
Lemma 11(1), we have that the elements in D, (UNF(S), z, €) branching bisimilar to }; and
Y5 can only be (branching bisimilar to) UNF(S) and X, respectively; thus, (S,S’ |4,) and
(8ls,, 8" lu,) are both in R, and this suffices to conclude.

For the “only if” part, we have to prove that the relation ® = {(UNF(S),UNF(S’)) : S =p

S’} is a branching bisimulation on trees. Choose © = sgu151 - finSn, € RUNS(S). From
the hypothesis, we know that we can find a path y = wjului --- /ﬂflu]fly%ué e ufj"‘u’?
piul - pknyke € RUNS(S') such that uf = s and

ki_1

— either y; = 7, k; = 0and s; ~p u; "7,

Tree-Functors, Determinacy and Bisimulations 29

—ork; =kl + 1+ K/, =71 foreveryj e {1,..., kL, ki +2,... Kk}, amd,ufpr1 = Wi

kj+1

~ ki ~ ~ ki
moreover, s;_1 ~p u;, s; ~p u; and s; ~Xp u;".

By construction, DEL(es(z)) = DEL(es/(y)); moreover, it is not difficult to prove that, for every
w X p1 - iy and for every X € D, (UNE(S),z,w), there exists a Y € D, (UNF(S’),y, w)
such that (X',)) € R, and vice versa. This suffices to conclude.]

5.2. Labeled event structures

We will show now that our machinery can provide a model for labeled event structures (LES),
equipped with a pomset-bisimulation relation. It has to be said, that other bisimulations can be
dealt with similarly.

Definition 21.
1 A labeled (prime) event structure is a tuple £ = (FE, <, #, L, {) where
(a) FE is a set of so-called events taken from a universe Ev,

(b) < and # are two binary relations on F, that are called causality and conflict, and are such
that < N# = 0,

(¢) Lis an alphabet and ¢ : E — L is a labelling function,
(d) < is a partial order such that for, every e € E, the set {e’|e’ < e} is finite,
(e) # is symmetric, irreflexive and enjoys conflict heredity: if e#e’ and ¢’ < e’ then e#te”.

2 An event structure is said to be conflict free if # = ().

A configuration in £ is a finite, conflict free and downwards closed subset of F.

4 Two configurations y = (X, <, L,¢) and x' = (X', =<', L, ') are isomorphic if there is an
order-preserving, labeling-preserving bijection between X and X'.

5 A pomset is an isomorphism class of finite configurations. Pom g, 1, denotes the set of pom-
sets on the set of events Fv, labeled by L.

|9V}

A prime event structure represents a concurrent system in the following way: action names
a € L represent the actions the system might have performed, an event e € E labeled with
a represents an occurrence of a during a possible run of the system, d < e means that d is a
prerequisite for e, and d#e means that d and e cannot have occurred in the same run.

The behaviour of a prime event structure is described by means of configurations, that ex-
plain which subsets of events constitute possible (partial) runs of the represented system. Thus,
configurations must be conflict-free; furthermore, they must be closed with respect to causal
predecessors: all prerequisites for any event occurring in the run must also have occurred.

It is well known (see, e.g., (Winskel and Nielsen 1995; Roggenbach and Majster-Cederbaum
2000)) that we can consider a (prime) labeled event structure as a transition system, labeled
by pomsets, where states are configurations and the label on the transition relation denotes the
partially ordered multiset of moves induced by the events that occurred in going from the first
configuration to the second one. Notice that this intuitive interpretation is somehow dual w.r.t.
the one given for processes: there, when going from the first to the second one by performing an
action, this action (and possibly many others) are erased from the possible behavior of the second

De Nicola, Gorla and Labella 30

one. Here, in some sense, we suppose to find in the second one the first one and the record of
what has been performed.

Definition 22. A (prime) labeled event structure £ = (E, <, #, 1), generates the pomset-labeled
transition system Tpom (E) = (Conf(E), Pomgy, 1, —, 1), where, for every x = (X, <, L,)
and ' = (X', </, L, ") in Conf(E), we let y — " iff X C X" and p € Pomp, y, is the
isomorphism class of X’ \ X as poset.

Definition 23 ((van Glabbeeck and Goltz 1990)). Two (prime) labeled event structures £ =
(E,<,#,l)and F = (F, <, #,1), are pomset bisimilar if there is a relation R C F X F s.t.: for
every (x,¢) € Rand p € Pomg,, we have:

— () if xy € Conf(E), x == x/, then there is ¢’ € Conf(F) such that { = ¢', (X', ') € R,
and
— (i) if ¢ € Conf(F),(-2 ¢, thenthere is ' € Conf(€) such that y - x’, (X', ') € R.

Once we have T'p,,, (€), we can unfold it like in Section 5.1 and obtain a tree whose paths are
labeled with sequences of pomsets. Thus, in our framework, we can consider the free monoid
(Pompg,,1)* and carry our construction as usual, by describing the behaviour of an event struc-
ture as a pomset-labeled tree. Pomset-bisimulation will coincide with strong bisimulation on
our model (this result can be proved like Proposition 15) and a minimal representative can be
obtained. We illustrate the procedure by an example.

Example 9. Consider the event structure £:

S —FH—

where ‘——" denotes causality and ‘—#— denotes conflict. Formally, £ is defined as the
5-tuple (E, <, #, L,), where:

—_— E = {61,62763};

— €1 < é9;

— eg#fes and ezffes;

— L ={a,b};

— {(e1) = aand {(ez) = l(e3) = b.

The configurations of £ are 0, {e1}, {e3}, {e1, e2} and {e1, e3}; they correspond to the pomsets

0, a, b, a — b and b. Thus, we have that Tp,, () is the LTS:

Tree-Functors, Determinacy and Bisimulations

{61,62}

b

a—b {61}

{61,63}

a

{es}
The unfolding of this LTS is the pomset-labeled tree:

N

Now, consider the event structure F:

—_—

L/

Hb

S —F— o

Formally, F is defined as the 5-tuple (F, <', #', L, ¢'), where:

— F={f1,f2, f3, fa; f5}3
— f1 < feand fy < f5;

31

De Nicola, Gorla and Labella 32

— [1# fa, [r# fs, fodE fao fo# fa, fo## [5, fa# fa and f3# f5 (plus their symmetric ver-
sions);

— L={a,b};

— U(f1) =0(fs) =aand l'(f2) = U'(fs) = U'(f5) = b.

The configurations of F are 0, {1}, {fs}, {fa}, {f1, fo}. { /1, f3} and { f4, f5}; they correspond

to the pomsets @, a, b, a — b and Z. We leave to the reader the construction of Tp,,, (€) and just

provide its unfolding, i.e., the tree

Again, its standard strong representative is the tree X.

6. Related works

Let us now compare our approach with other mathematical models for bisimulation. First of
all, we have to say (borrowing the terminology from category theory) that we take a “local”
automata-theoretic approach, by modeling and comparing processes in terms of their the local
behavior: to each ordered pair of states of a given process, we associate the structured set of tran-
sitions leading from the first state to the second one. To the best of our knowledge, all the other
approaches modeling bisimulations consider comparisons between “global” process behaviors:
to each state, it is associated the structured set of possible evolutions into all the other states. An-
other distinguishing feature of our approach is that we aim at classifying bisimulations; hence,
we use different definitions for them on the same model. In all the other approaches, the defini-
tion of bisimulation is the same and the basic model is modified to capture the different kinds of
bisimulation.

For more detailed comparisons, we start by considering the categorical characterization of
bisimulation-based equivalences as open maps (Joyal et al. 1993). In that approach, behaviours
are considered as objects of a given category M, maps are (partial) simulations, and paths within
behaviours are morphisms from objects in a given subcategory P, representing the shape of their
paths. The relation among objects in M is expressed in terms of the existence of a span of maps
between them, open with respect to P: this means that, if a path can be extended in the image
behavior, then it can be extended in the domain in a similar way.

In our approach, the base locally posetal 2-category associated with the free monoid of labels
A (see Remark 1) plays the role of P and local behaviours are canonically defined over it as
symmetric A-categories. Therefore, we cannot define morphisms arbitrarily; they must be A-
functors. As a consequence, our morphisms, or simulations, map a path into one of identical
length. Our notion of path reflection required for Tree-functors led us to prove Lemmata 4, 6
and 8 that amount to requiring a kind of “openness property”; a possible formulation of the latter

Tree-Functors, Determinacy and Bisimulations 33

property (see (Joyal et al. 1993)) requires that, for a given open morphism o : T — T’ between
LTSs, it holds that:

if o(s) % s’ in T" then s —* w in T and o(u) = s’ for some u of 7.

In particular, the second part of our lemmata states that, if the image (through S, B, W) of a
tree X' can perform an action along a path to go into another tree)/, than the original object can
perform the same action and go into a tree Z in the inverse image of).

By changing the model, the openness condition, that indeed captures the intuition underlying
strong bisimulation, is then used to model other equivalences (Cheng and Nielsen 1995). On the
contrary, we model the three kinds of bisimulations by keeping the same model and imposing
further requirements to the path factorization property to be satisfied by the Tree-functors.

Another possible modelization of bisimulations has been proposed by relying on coalgebras
(see, e.g., (Rutten 2000; Roggenbach and Majster-Cederbaum 2000)). Now labeled transition
systems are modeled as coalgebras for a suitable endofunctor. A bisimulation between two given
coalgebras is a subcoalgebra of the product of the two. Hence, using the projections, one can get a
span of coalgebra homomorphisms from the bisimulation into the two given coalgebras. The no-
tion of homomorphism for coalgebra is strictly related to the notion of open map, when the used
simulations are total functions. The relationships between the open maps and the coalgebraic
approach are carefully studied in (Lasota 2002) where it is shown that open maps correspond to
coalgebra morphisms for a suitably chosen endofunctor in a category of many-sorted sets.

In (Pavlovi¢ 1995; Pavlovi¢ 1996) the basic intuitions underlying open maps and coalgebras
are exploited to obtain standard representatives for strong, weak and branching bisimulations.
(Pavlovi¢ 1995) starts from automata (in a global approach), and studies how to forget their “ge-
ometry” to ignore redundant states. A category, isomorphic to a subcategory of transition sys-
tems, is defined, where morphisms are simulations (spans of sober and saturated arrows) between
processes. Two transition systems are (strongly) bisimilar if there exists a span of bisimulation
morphisms between them, where these morphisms are a kind of open maps. Equivalently, the
two systems are bisimilar if there exists a cospan of bisimulation morphisms between them, i.e.,
a common quotient. It is also shown that every automaton has an irredundant quotient and a
couniversal quotient is provided for each process by exploiting coalgebraic methods. Branch-
ing and weak bisimilarity are considered in (Pavlovi¢ 1996). Like for strong bisimilarity, the
functor inducing the quotient is the initial one and enjoys the property of reducing to equality
the relations between objects induced by spans. Standard representatives are obtained for each
class by a coalgebraic definition, either in the original category or in a subcategory obtained by
suitably “repleting” the given transition systems. The former holds for strong bisimulation and
we have that the representatives are the minimal ones; the latter holds for branching and weak
bisimulation, and representatives are not always minimal.

The coalgebraic and the open-maps approaches are based on the fact that, in a cartesian cate-
gory, a relation R — X X Y between two objects of a category C can be represented by a pair
of maps X «— R — Y, i.e. a span, obtained by composing the inclusion morphism with the
projections. However, if the considered category has appropriate properties, one can introduce
an equivalence relation R — C x C and consider the quotient C/R. This was done in (Pavlovi¢
1995; Pavlovi¢ 1996). But one can do even better: if a kind of “homomorphism theorem” holds, it
can be proved that the quotient C /R is induced by an endofunctor identifying equivalent objects.

De Nicola, Gorla and Labella 34

This last intuition is the one underlying our approach. Our maps (Tree-functors F') induce a
quotient over the class of all the objects and produce a cospan of tree morphisms between “re-
lated” trees X — F(X) = F(Y) <). By putting a suitable lifting factorisation condition
on F', we guarantee that this cospan, that locally inherits the suitable lifting factorization prop-
erty, relates equivalent trees. By exhibiting a standard representative for strong, branching and
weak equivalence classes, we can define the corresponding functor and guarantee that a terminal
relation, that quotients as much as possible, does exist for every class. The representatives corre-
sponding to the terminal relation in their class (i.e., the Tree-functors S, B and W) are terminal
among those enjoying the required properties and the standard representatives are the “smallest”
in the three cases. This is possible because we do not need to replete representatives with extra
paths, but have only to select existing ones. Our standard representatives, at least in the case of
strong and branching bisimulation, also enjoy a very nice property: due to the path factorization
lifting property of S and B, they can replace their originals in every universal and couniversal
construction (Kasangian and Labella 2009).

Another feature of our approach is that our trees can be seen as presentations of sheaves;
hence, we are closely related to the (pre)sheaf approach of (Cattani and Winskel 1997). Sheaf
models for processes have also been presented in (Bunge and Fiore 2000), where processes are
seen as categories of states equipped with a control functor on a category of paths, over which the
Unique Factorization Lifting (ULF) property is imposed; they then characterize bisimulations as
open maps. Our trees are categories enriched over a 2-category associated with a semilattice (rep-
resenting elementary paths); for this reason, they can be thought of as a presentation of sheaves
(Walters 1981) and thus are more abstract, but simpler, than sheaves (because they lack restric-
tions). On the other hand, our 7Tree-categories Beh and Beh, enjoy a sort of UFL property,
in the sense that their unique Tree-functor to the terminal Tree-category T enjoys path factor-
ization lifting (see Proposition 4). Actually, UFL holds in the case of Beh, and a more relaxed
variants holds for Beh,.

In our view, the use of the same concept of lifting factorization both for the construction of
models (as in the case of Bunge and Fiore) and for defining equivalences (specific of our case)
opens interesting directions for future work.

7. Conclusions

We have presented a characterization of strong, branching and weak bisimulation on a tree-based
model via enriched functors enjoying a factorized path reflection property. Our machinery is able
to classify bisimulations according to the properties of the functor defining them, for different
kinds of concurrency. This is mainly due to the change of base machinery, a very natural tool to
go from one model to another one, once the local point of view is assumed.

The current work can be seen as the continuation of the line of research started in (De Nicola
and Labella 1998); however, in this paper we have:

— considered infinite (regular) structures;
— provided a functorial characterization also for weak bisimilarity;

— simplified and clarified the characterization of branching bisimilarity.

Tree-Functors, Determinacy and Bisimulations 35

Our results are summarized in the following Table, that for each of the three considered equiv-
alences, lists the properties that have to enjoyed by the functor needed to capture them.

PR FPWR FPR UFL

~g X X X X
~B X X X
aavvd X X

The abbreviations used in the table correspond to the following:

— PR is the path reflection property, requiring that every target path comes from some source
path, and it corresponds to the openness property by (Joyal et al. 1993);

— FPWR is the factorized path weakly reflection property, requiring that, to each factorization
of a target path, there corresponds a factorization of one of the associated source paths;

— FPR is the factorized path reflection property, requiring PR and that all the intermediate states
of each factorization have a corresponding state path in all the associated source paths;

— UFL is the unique factorization lifting property, that corresponds to FPR plus the requirement
that the reflected factorization is unique up-to isomorphism. It is worth noticing that FPR
collapses on UFL when all actions are visible.

The requirement that every possible factorization of a target path is reflected in an appropriate
factorization of its source path corresponds to a Conduché property (Conduché 1972) for en-
riched functors. A very rigid formulation of it has been used in (Lawvere 1986) to characterize
determinacy of physical systems and to explain determinacy on states: in his view, a physical
transformation is deterministic if it can be “controlled” by a Conduché functor“, in the sense that
it is always possible to recover the sequence of states traversed during system evolution.

In ‘ordinary’ (i.e., not enriched) categories, Conduché property characterizes those functors
that have a right adjoint to the inverse image functor associated with them (Conduché 1972). In
our setting, existence of a right adjoint (proved in (Kasangian and Labella 2009)) ensures that
the inverse image functor associated with an equivalence preserves colimits, as well as limits.
Because of this, we could operate on standard representatives and pull the constructions back on
ordinary behaviours while preserving universality.

If we take Lawvere’s standpoint, we can evaluate our functors according to the notion of “state
determinacy preservation”; in this way, we can set up another criterion to assess the three bisim-
ulation equivalences we have considered. Thus, we have that weak bisimilarity partially destroys
the notion of state, because it forgets relevant information about the different states a system has
gone through, while the other two equivalences keep track of them. In fact, we have that weak
bisimilarity only enjoys a weaker form of lifting factorization property, that strong bisimilarity
enjoys uniqueness of lifted factorizations (it faithfully keeps track of every state traversed along
a path), and that branching bisimilarity enjoys a lifting factorization property that permits forget-
ting ‘useless’ states. In some sense, we could say that we have a new mathematical justification
for Milner’s claim (Milner 1989) that weak bisimilarity does not preserve strong determinacy of

I Actually, Lawvere deals with the UFL property, that he names Moebius property.

De Nicola, Gorla and Labella 36

processes, whereas strong bisimilarity does. Moreover, we have also formally detected a close
correspondence between strong and branching bisimilarity in terms of preservation of systems
determinacy.

References

M.A. Arbib and E.G. Manes. Machines in a category: an expository introduction. STAM Review, 16(2):163—
192, 1974.

R. Betti, and S. Kasangian. A quasi-universal realization of automata. Rend. Ist. Mat. Univ. Trieste,
14:41-48, 1982.

M. Bunge and M.P. Fiore. Unique factorization lifting functors and categories of linearly-controlled pro-
cesses. Mathem. Structures in Comp. Sci., 10(2):137-163, 2000.

G.L. Cattani and G. Winskel. Preshaf models for concurrency. Proc. of CSL ‘96, volume 1258 of LNCS,
pages 106—126. Springer, 1997.

A. Cheng and M. Nielsen. Open Maps (at) Work. BRICS Report Series, n. 23, 1995.

F. Conduché. Au sujet de I’existence d’adjoints a droite aux foncteurs “image reciproque” dans la catégorie
des catégories. C.R.Acad. Sci. Paris, 275 (1972), A891-894.

R. De Nicola, U. Montanari and F. Vaandrager. Back and forth bisimulations. In Proc. of CONCUR’90,
volume 458 of LNCS, pages 152—165. Springer, 1990.

R. De Nicola and A. Labella. Tree Morphisms and Bisimulations. In Proc. of MFCS’98 Workshop on
Concurrency, volume 18 of ENTCS. Elsevier, 1998.

R. van Glabbeeck and U. Goltz, Equivalences and refinement. In Semantics of Systems of Concurrent
Processes, volume 469 in LNCS, pages 309-333. Springer, 1990.

R. van Glabbeek and W. Weijland. Branching Time and Abstraction in Bisimulation Semantics. Journal of
the ACM, 43(3):555-600, 1996.

A. Joyal, M. Nielsen and G. Winskel. Bisimulations and Open Maps. In Proc. of LICS, pages 418—427.
IEEE, 1993.

S. Kasangian and A. Labella. Observational trees as models for concurrency. Math. Struct. in Comp. Sci.,
9: 687718, 1999.

S. Kasangian and A. Labella. Conduché property and Tree-based categories. To appear in the Journal of
Pure and Applied Algebra.

G. Kelly. Basic Concepts of Enriched Category Theory. Cambridge University Press, 1982.

S. Lasota. Coalgebra morphisms subsume open maps. Theoretical Computer Science 280(2002) 123-135.

F.W. Lawvere. State categories and response functors. Unpublished manuscript, 1986.

R. Milner. Communication and concurrency. Prentice Hall International, 1989.

D. Park. Concurrency and automata on infinite sequences. In Proc. of Theoretical Computer Science,
volume 104 of LNCS, pages 167-183. Springer, 1981.

D. Pavlovi¢. Convenient Category of Processes and Simulations 1: Modulo Strong Bisimilarity. In Proc.
of Category Theory and Computer Science, publisher = Springer, volume 953 in LNCS, pages 3-23.
Springer, 1995.

D. Pavlovi¢. Convenient categories of asynchronous processes and simulations II, in Theory and Formal
Methods of Computing 96, A. Edalat ed., World Scientific (1996) 156-167.

M. Roggenbach, M. Majster-Cederbaum. Towards a unified view of bisimulation: a comparative study.
Theoretical Computer Science 238 (2000) 81-130.

J. Rutten. Universal coalgebra — a theory of systems. Theoretical Computer Science, 249(1):3-80, 2000.

R. Walters. Sheaves and Cauchy-complete categories. Cahiers de Topologie et Geometrie Diff., 22:283—
286, 1981.

Tree-Functors, Determinacy and Bisimulations 37

G. Winskel An introduction to event structures, In Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, volume 354 of LNCS, pages 364-397. Springer, 1988.

G. Winskel, M. Nielsen. Models for Concurrency. In Handbook of Logic in Computer Science, S. Abramsky,
D. Gabbay, T. S. E. Maibaum editors. Oxford University Press, 1995.

