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Abstract

We develop the semantic theory of a foundational language for modelling applications
over global computers whose interconnection structure can be explicitly manipulated. To-
gether with process distribution, process mobility and remote asynchronous communica-
tion through distributed data repositories, the language has primitives for explicitly mod-
elling inter-node connections and for dynamically activating and deactivating them. For the
proposed language, we define natural notions of extensional observations and study their
closure under operational reductions and/or language contexts to obtain barbed congru-
ence and may testing equivalence. We then focus on barbed congruence and provide an
alternative characterisation in terms of a labelled bisimulation. To test practical usability
of the semantic theory, we model a system of communicating mobile devices and use the
introduced proof techniques to verify one of its key properties.
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observables, bisimulation, may testing

1 Introduction

Programming global computational infrastructures for offering uniform services
over wide area networks has become one of the main issues in Computer Science.
Innovative theories, computational paradigms, linguistic mechanisms and imple-
mentation techniques have been proposed that have to face the challenges posed
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by issues like communication, cooperation, mobility, resource usage, security, fail-
ure handling, etc. . We have thus witnessed to the birth of many calculi and kernel
languages intended to support programming of global systems and to provide for-
mal tools for reasoning over them. These formalisms in general provide constructs
and mechanisms, at different abstraction levels, for describing the execution con-
texts where applications roam and run, for coordinating and monitoring resources
usage, for modelling process communication and mobility, and for specifying and
enforcing security policies.

In the last ten years, much research effort has been addressed to study the impact
of different communication and mobility paradigms, but little attention has been
devoted to modelling the actual network underlying global computers as such: it
usually originates from the linguistic choices concerning the mobility paradigm.
Some of the proposed foundational languages intend migration as the movement
of bare processes; in this case, the network is seen as a fully connected graph of
computing sites where new sites can be dynamically added (see, e.g., Dπ-calculus
[22], KLAIM [13], π1`-calculus [1] or NOMADIC PICT [35]). The remaining lan-
guages intend migration as the movement of entities with executable content (such
as entire sites); in this case, the network is seen as a forest of trees that evolves
by adding/pruning/moving subtrees (see e.g., Ambient [9] and its variants, DJoin
[18], Homer [23], M-calculus [34], Seal [10]). However, global computers (e.g. the
Internet) are generic graphs: their nodes are neither organised according to tree-like
structures nor fully (directly) connected; moreover, connections can unpredictably
break down rendering nodes (at least temporarily) unreachable.

To meet the demands arising from modelling the network topology of global com-
puters and its evolution in time, in [16] we have introduced a new modelling lan-
guage that takes its origin from two formalisms with opposite objectives, namely
the programming language X-KLAIM [4,3] and the π-calculus [26]. The former
one is a full fledged programming language based on KLAIM [13], whereas the
latter one is the generally recognised minimal common denominator of calculi for
mobility. The resulting model has been called TKLAIM (Topological KLAIM); it re-
tains the main features of KLAIM (distribution, remote operations, process mobility
and asynchronous communication through distributed data spaces), but extends it
with new constructs to model the evolving interconnection structure underlying a
network: TKLAIM provides three specific process primitives to activate, accept and
deactivate inter-node connections. Connections become essential to perform remote
operations; these are possible only if their source and target nodes are directly con-
nected.

Here, we develop the semantic theory of TKLAIM and introduce two abstract se-
mantics, barbed congruence and may testing, that are obtained as the closure under
operational reductions and/or language contexts of the extensional equivalences in-
duced by what we consider basic observables for global computers.
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As possible basic observables, we have considered the following ones:

(i) a specific node is up and running (i.e., it provides a datum of any kind),
(ii) a specific information is available in (at least) a node,

(iii) a specific information is present at a specific node.

Other calculi for global computers make use of (barbed) congruences induced by
similar observables; the barbs in Ambient are similar to (i), whereas those in Dπ-
calculus are similar to (iii). Within our framework, it can be proved that, by closing
observations under any TKLAIM context, the three basic observables all yield the
same congruences. This is already an indication of the robustness of the resulting
semantic theories. Moreover, the considered observables are sufficiently powerful
to yield interesting semantic theories also when considering lower-level features,
such as failures [16].

Of course, after defining equivalences as context closures, it is essential to deter-
mine alternative characterisations that permit a better appreciation of their discrimi-
nating power and to devise proof techniques that avoid universal quantification over
contexts, thus simplifying equivalence checking. For more standard process lan-
guages, barbed congruence is characterised via a bisimulation-based equivalence,
whereas may testing is characterised via a trace-based equivalence. In [15], we de-
veloped such characterisations for a simplified version of TKLAIM; however, even
for that simpler language, it turned out that trace equivalence was very complex
and gave (almost) no insight into the discriminating power of may testing. In this
paper, we thus focus on the bisimulation-based characterisation of barbed congru-
ence. More precisely, we study the barbed congruence induced by the basic observ-
able (i) above and define its alternative characterisation in terms of a labelled weak
bisimilarity.

To this aim, we rely on a labelled transition system (LTS) simpler than the one in
[15] and whose distinctive feature is that labels indicate the resources a term of-
fers or requires to the execution context for combined evolution. We then define
weak bisimilarity on top of this LTS and present soundness and completeness re-
sults with respect to barbed congruence. The actual development of the alternative
characterisation, although performed along the lines of similar results for CCS [27]
and π-calculus [32,2], had to face problems induced by process distribution and
mobility, by asynchrony and by the explicit modelling of connections.

To gently introduce the reader to the technicalities of our theory, we start by devel-
oping it for the simplified version of TKLAIM presented in [15], where success of a
connection request does not depend on acceptance by the partner. Then, we move
to a more sophisticated (and realistic) framework where requests for connection
activations must be authorised by the target node. The main difference between the
LTS of the simplified and of the full language is the way in which scope of re-
stricted names is opened. In the simplified language, we work like in π-calculus: if
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the address of a restricted node is transmitted as a datum (the name is extruded),
the scope of such name is opened; thus, from the point of view of a receiving pro-
cess, the node at such address becomes indistinguishable from a free node (the
process can freely connect to the restricted node and access it). For the full lan-
guage, scope handling becomes more critical. Extrusion alone does not suffice to
open the scope of a restricted name: if the node is ‘unreachable’ (i.e., it is not con-
nected with any other node of the net and does not accept/require connections), no
receiving process can have access to it. Thus, extruding a name does not completely
remove the restriction. For this reason, we introduce the notion of half-restrictions
and model opening of the scope in two steps: firstly, a restricted name becomes
half-restricted; then, whenever the half-restricted node exhibits/accepts/requires a
connection with another node of the net, the half-restriction is removed and the
scope is fully opened.

The rest of the paper is organised as follows. In Section 2, we present TKLAIM’s
syntax and reduction-based semantics and, in Section 3, we define barbed congru-
ence and may testing for it. In Section 4, we consider the simplified version of
TKLAIM and develop the alternative characterisation of barbed congruence for it;
in Section 5, we then adapt the theory to the full language. In Section 6, we briefly
present some sound trace-based laws that can be used to establish may testing and
discuss the difficulties of characterising the latter equivalence when considering the
language with connection acceptance. In Section 7, we present an example illustrat-
ing the use of TKLAIM and of its semantic theories to state and prove properties of
global computing applications. In particular, we prove the same equality by using
both bisimulation and trace equivalence to compare the two approaches. Finally, in
Section 8, we draw some conclusions and briefly discuss some related work.

2 The Process Language TKLAIM

In this section, we present the syntax of TKLAIM and its operational semantics
based on a structural congruence and a reduction relation.

TKLAIM [16] adopts a LINDA-like [20] asynchronous communication mechanism:
interaction between (sending and receiving) processes are mediated by network
nodes acting as repositories for anonymous data tuples which are retrieved through
pattern-matching. Here, to mitigate the technicalities, we consider a minor vari-
ant of the language in [16] with only monadic data and with process replication
in place of process definitions. Nevertheless, all the semantic theories we shall de-
velop could be smoothly extended to the original language.

The syntax of TKLAIM is reported in Table 1, where we assume existence of a
countable set of names, ranged over by l, l′, . . . , u, . . . , x, y, . . .. Names provide the
abstract counterpart of the set of communicable objects and can be used as localities
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Nets: N ::= 0
∣∣∣ l :: C

∣∣∣ {l1 ↔ l2}
∣∣∣ N1 ‖ N2

∣∣∣ (νl) N

Components: C ::= 〈l〉
∣∣∣ P

∣∣∣ C1 | C2

Processes: P ::= nil
∣∣∣ a.P

∣∣∣ P1 | P2
∣∣∣ ∗P

Actions: a ::= in(!x)@u
∣∣∣ in(u2)@u1

∣∣∣ out(u2)@u1
∣∣∣ eval(P)@u∣∣∣ new(l)

∣∣∣ conn(u)
∣∣∣ disc(u)

∣∣∣ acpt(!x)
∣∣∣ acpt(u)

Table 1
TKLAIM Syntax

or variables; notationally, we prefer letters l, l′, . . . when we want to stress the use
of a name as a locality and x, y, . . . when we want to stress the use of a name as a
variable. We will use u for variables and localities.

Nets, ranged over by N,M,H,K, . . ., are finite collections of nodes and inter-node
connections. A node is a pair l :: C, where locality l is the address of the node and C
is the (parallel) component located at l. Components, ranged over by C,D, . . ., can
be either processes or data, denoted by 〈l〉. Connections are pairs of node addresses
{l1 ↔ l2} stating that the nodes at address l1 and l2 are directly (and bidirection-
ally 1 ) connected. In (νl) N, name l is private to N; the intended effect is that, if one
considers the term M ‖ (νl) N, then locality l of N cannot be referred from within
M.

Processes, ranged over by P,Q,R, . . ., are the TKLAIM active computational units
and may be executed concurrently either at the same locality or at different local-
ities. They are built from the inert process nil and from the basic actions by using
prefixing, parallel composition and replication. Actions permit removing/adding
data from/to node repositories (actions in and out), sending processes for (pos-
sibly remote) execution (action eval), creating new nodes (action new), and ac-
tivating/deactivating/accepting connections (actions conn, disc and acpt). Notice
that in(l)@l′ differs from in(!x)@l′ in that the former evolves only if datum 〈l〉 is
present at l′, whereas the latter retrieves any datum. Indeed, in(l)@l′ is a form of
name matching operator reminiscent of LINDA’s pattern-matching [20]. A similar
difference holds for action acpt: acpt(l) only accepts connection requests coming
from l, whereas acpt(!x) accepts connections from any node. In Table 1, we have

highlighted the acpt construct to stress that, for the sake of presentation, it is not

part of the simplified variant of the language examined in Section 4.

1 For the sake of simplicity, we assumed bidirectional connections; nevertheless, all the
developed theory could be tailored to the framework where connections are directed.
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Names occurring in TKLAIM processes and nets can be bound. More precisely,
prefixes in(!x)@u.P and acpt(!x).P bind x in P; prefix new(l).P binds l in P and,
similarly, net restriction (νl) N binds l in N. A name that is not bound is called
free. The sets fn(·) and bn(·) of free and bound names of a term, respectively, are
defined accordingly. The set n(·) of names of a term is the union of its free and
bound names. As usual, we say that two terms are alpha-equivalent, written ≡α, if
one can be obtained from the other by renaming bound names. We shall say that a
name u is fresh for a term if u < n( ). In the sequel, we shall work with terms
whose bound names are all distinct and different from the free ones.

Notation 2.1 We write A , W to mean that A is of the form W; this notation is
used to assign a symbolic name A to the term W. We shall use notation ·̃ to de-
note a possibly empty set of objects (e.g. l̃ is a set of names). If x̃ = {x1, . . . , xn}

and ỹ = {y1, . . . , ym}, then (x̃, ỹ) will denote the set of pairwise distinct elements
{x1, . . . , xn, y1, . . . , ym}. We shall sometimes write in()@l, out()@l and 〈〉 to mean
that the argument of the actions or the datum are irrelevant. Finally, we omit trail-
ing occurrences of process nil and write

n
Π
j=1

Wj for the parallel composition of

homologous terms (i.e., components or nets) Wj.

To conclude the presentation of TKLAIM’s syntax, let us discuss on its peculiar
primitives, namely those for handling connections. Firstly, notice that connection
activations must be authorised by a corresponding acpt. We have not introduced an
enabling action for disconnections as these are usually unilateral (asynchronous)
events. Secondly, for action acpt, like for in, we have two variants (assume that
the invoking process is running at l′): acpt(l) means that l′ is ready to activate a
connection with l, whereas acpt(!x) means that l′ is ready to activate a connec-
tion with any node, whose address will replace x in the continuation. acpt(!x) can
be exploited by a server willing to accept connection requests from any, initially
unknown, client. On the other hand, acpt(l) should be used if a process is ready
to activate connections only with a specific partner. One could think of simulat-
ing acpt(l) by accepting connection requests from any process through acpt(!x)
and then, after checking the partner identity, disconnecting the unwanted partners
through disc. But this could expose a node to security risks because the sequence
of actions is not guaranteed to be performed atomically. It is also worth noting that
the form of client-server interaction enabled by acpt(!x) could not be flexibly im-
plemented by resorting to a shared repository storing connection requests, because
a connection between the node hosting the repository and that of a potential client
should be already in place for the client to be able to put its request.

TKLAIM operational semantics relies on a structural congruence and a reduction
relation. The structural congruence, ≡, identifies nets which intuitively represent
the same net. It is defined as the least congruence relation over nets that satisfies
the laws in Table 2. The first eight laws are borrowed from the π-calculus (see, e.g.,
[31]); the rest of the laws have the following meaning. Law (ABS) is the equivalent
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(ALPHA) N ≡ N′ if N ≡α N′ (PZERO) N ‖ 0 ≡ N

(PCOM) N1 ‖ N2 ≡ N2 ‖ N1 (PASS) (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(RCOM) (νl1) (νl2) N ≡ (νl2) (νl1) N (EXT) N1 ‖ (νl) N2 ≡ (νl) (N1 ‖ N2) if l < fn(N1)

(GARB) (νl) 0 ≡ 0 (REPL) l :: ∗P ≡ l :: P | ∗P

(ABS) l :: C ≡ l :: (C|nil) (CLONE) l :: C1|C2 ≡ l :: C1 ‖ l :: C2

(SELF) l :: nil ≡ l :: nil ‖ {l↔ l} (BIDIR) {l1 ↔ l2} ≡ {l2 ↔ l1}

(CONN) {l1 ↔ l2} ≡ l1 :: nil ‖ {l1 ↔ l2}

Table 2
Structural Congruence

of law (PZERO) for ‘|’. Law (CLONE) transforms a parallel between co-located
components into a parallel between nodes (together with laws (PCOM) and (PASS),
it implies that ‘|’ is a commutative and associative operator). Laws (SELF), (BIDIR)
and (CONN) are used to handle connections: the first one states that nodes are self-
connected, the second one states that connections are bidirectional and the third
one states that connections are placed only between existing nodes.

In the sequel, by exploiting Notation 2.1 and law (RCOM), we shall write (ν̃l) N to
denote a net with a (possible empty) set l̃ of restricted localities.

The reduction relation is given in Table 3. We briefly comment on some crucial
points. In (R-OUT) and (R-EVAL), existence of a connection between the nodes
source and target of the action is necessary to place the spawned component. Rules
(R-IN) and (R-MATCH) additionally require existence of a matching datum in the
target node. (R-MATCH) states that action in(l)@l2 consumes exactly the datum 〈l〉
at l2, whereas (R-IN) states that action in(! x)@l2 can consume any 〈l〉 at l2; l will
then replace the free occurrences of x in the continuation of the process performing
the action. Rule (R-NEW) states that execution of action new(l′) creates a new node
at the restricted address l′ and a connection with the creating node l. Rule (R-DISC)
deals with deactivation of connections and checks existence of the connection to be
deactivated in order to execute the action. Finally, rules (R-CONN), (R-CONN1)
and (R-CONN2) deal with activation of connections. The first rule is used when
the acpt construct is not required; in this case, only existence of the nodes that
are being connected is checked. The remaining two rules are used to synchronise a
conn with one of the two variants of acpt.

If N 7−→ N′, we shall say that N can perform a reduction step and that N′ is a reduct

7



(R-OUT) l1 :: out(l)@l2.P ‖ {l1 ↔ l2} 7−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉

(R-EVAL) l1 :: eval(P2)@l2.P1 ‖ {l1 ↔ l2} 7−→ l1 :: P1 ‖ {l1 ↔ l2} ‖ l2 :: P2

(R-IN) l1 :: in(!x)@l2.P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 7−→ l1 :: P[l/x] ‖ {l1 ↔ l2}

(R-MATCH) l1 :: in(l)@l2.P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 7−→ l1 :: P ‖ {l1 ↔ l2}

(R-NEW) l :: new(l′).P 7−→ (νl′) (l :: P ‖ {l↔ l′})

(R-DISC) l1 :: disc(l2).P ‖ {l1 ↔ l2} 7−→ l1 :: P ‖ l2 :: nil

(R-PAR)

N1 7−→ N′1

N1 ‖ N2 7−→ N′1 ‖ N2

(R-RES)

N 7−→ N′

(νl) N 7−→ (νl) N′

(R-STRUCT)

N ≡ M 7−→ M′ ≡ N′

N 7−→ N′

TKLAIM without the acpt :

(R-CONN) l1 :: conn(l2).P ‖ l2 :: nil 7−→ l1 :: P ‖ {l1 ↔ l2}

Full TKLAIM (with the acpt) :

(R-CONN1) l1 :: conn(l2).P ‖ l2 :: acpt(l1).Q 7−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: Q

(R-CONN2) l1 :: conn(l2).P ‖ l2 :: acpt(!x).Q 7−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: Q[l1/x]

Table 3
TKLAIM Operational Semantics

of N. We shall use |=⇒ to denote the reflexive and transitive closure of 7−→.

3 Observables, Closures and Equivalences

In this section, we introduce both a linear time and a branching time equivalence
that yield sensible semantic theories for TKLAIM. The approach we follow relies on
the definition of an observable (also called barb), namely a predicate that highlights
the interaction capabilities of a net.

Definition 3.1 (Observables or barbs)
• N ↓ l holds if N ≡ (ν̃l) (N′ ‖ l :: 〈l′〉), for some l̃, N′ and l′ such that l < l̃.
• N ⇓ l holds if N |=⇒ N′, for some N′ such that N′ ↓ l.

The first observable above corresponds to that labelled (i) in the Introduction and
is to some extent inspired from that of the asynchronous π-calculus [2]. One may
wonder if our choice is “correct” and argue that there are other alternative notions
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of basic observables that seem quite natural. We have already proposed a few alter-
native observables in the Introduction; later on, we shall prove that the congruences
induced by such observables do coincide. This means that our results are quite in-
dependent from the observable chosen.

We use observables to define equivalence relations that identify those nets that can-
not be taken apart by any basic observation in any execution context.

Definition 3.2 (Contexts) A context C [·] is a TKLAIM net with a hole [·] to be
filled with any net. Formally,

C [·] ::= [·]
∣∣∣ N ‖ C [·]

∣∣∣ (νl) C [·]

By relying on laws (EXT) and (RCOM), every context can be put in a syntactic
form with all the restrictions at top-level. Thus, when convenient, we shall use the
context (ν̃l) ([·] ‖ K) – for any net K without restriction – to identify all those
contexts that are structurally equivalent to it.

Definition 3.3 A binary relation < between nets is
• barb preserving, if N<M and N ⇓ l imply M ⇓ l;
• reduction closed, if N < M and N 7−→ N′ imply M |=⇒ M′ and N′ < M′, for

some M′;
• context closed, if N < M implies C [N]< C [M], for every context C [·].

Any reasonable equivalence should of course be barb preserving. However, an
equivalence defined only in terms of this property would be too weak: indeed, the
set of barbs of a net may change during computations or when interacting with
the external environment. Moreover, for the sake of compositionality, our touch-
stone equivalences should also be congruences. These requirements lead us to the
following definitions.

Definition 3.4 (May testing) ' is the largest symmetric, barb preserving and con-
text closed relation between nets.

Definition 3.5 (Barbed congruence) � is the largest symmetric, barb preserving,
reduction and context closed relation between nets.

From their definitions, it trivially follows that � is contained in '. The inclusion
is strict because the latter equivalence abstracts from the branching structure of the
equated nets, whereas the former one does not (because of reduction closure). Thus,
it is easy to prove the following result.

Proposition 3.6 � ⊂ '.

The above definition of (reduction) barbed congruence is the standard one [24];
may testing is, instead, usually defined in terms of observers, computations and
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success of a computation [17]. In Section 6 we prove that such an alternative char-
acterisation can be given for '.

The problem with the definitions of barbed congruence and may testing is that
context closure makes it difficult to prove equivalences due to the universal quan-
tification over contexts. In the following sections, we shall provide an alternative
characterisation of � as a bisimulation-based equivalence, both for the simpli-
fied and for the full version of TKLAIM; moreover, we shall also present a sound
trace-based proof-technique for may testing.

Before doing this, we show that we can change the basic observables without
changing the congruences they induce; this proves the robustness of our touch-
stone equivalences and supports our choice. Recalling from the Introduction, other
two reasonable observables in our framework are existence of a specific (visible)
datum at some node of a net and existence of a specific datum at a specific node of
a net.

Proposition 3.7 (Alternative Touchstone Equivalences) Let �1, �2, '1 and '2 be
the barbed congruences and the may testing equivalences obtained by replacing the
observable of Definition 3.1, respectively, with the following ones:

(1) N ↓ 〈l〉 if N ≡ (ν̃l) (N′ ‖ l′ :: 〈l〉) for some N′, l′ and l̃ such that {l, l′} ∩ l̃ = ∅

(2) N ↓l 〈l′〉 if N ≡ (ν̃l) (N′ ‖ l :: 〈l′〉) for some N′ and l̃ such that {l, l′} ∩ l̃ = ∅

Then, �1 = �2 = � and '1 = '2 = '.

Proof: Notice that we only need to consider barb preservation. Indeed, context
and reduction closure (the latter one only in the case of barbed congruences) are
ensured by definition. We explicitly present the case for barbed congruences; the
proofs for may testing can then be rephrased straightforwardly.

�2 ⊆ �1. Let N �2 M. Suppose that N ⇓ 〈l′〉. This implies that ∃ l : N ⇓l 〈l′〉.
Hence, by hypothesis, M ⇓l 〈l′〉 that, by definition, implies M ⇓ 〈l′〉.

�1 ⊆ �. Let N �1 M and N ⇓ l, i.e. N |=⇒ (ν̃l) (N′ ‖ l :: 〈l′〉). Then M ⇓ l, otherwise
the context [·] ‖ l′′ :: in(!x)@l.out(l′′)@l′′ ‖ {l ↔ l′′}, for l′′ fresh, would break
�1.

� ⊆ �2. Let N � M and N ⇓l 〈l′〉, i.e. N |=⇒ (ν̃l) (N′ ‖ l :: 〈l′〉). Then M ⇓l 〈l′〉,
otherwise the context [·] ‖ l′′ :: in(l′)@l.out(l′′)@l′′ ‖ {l ↔ l′′}, for l′′ fresh,
would break �.

4 Bisimulation Equivalence for TKLAIM without ‘acpt’

In this section, we provide a more tractable characterisation of barbed congruence
by means of a labelled bisimulation for TKLAIM without the acpt primitive. To
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this aim, we start by presenting an alternative semantics (still equivalent to the one
induced by the reductions of Table 3) by means of a labelled transition system.
We then present the bisimulation-based characterisation of barbed congruence and
prove that the two equivalences do coincide.

4.1 A Labelled Transition System

The labelled transition system (LTS) makes apparent the possible contributions that
a net offers/requires in a computation. The labelled transition relation,

α
−→ , is

defined as the least relation over nets induced by the inference rules in Table 4.
Labels take the form

α ::= τ
∣∣∣ β ∣∣∣ ∃?β

∣∣∣ (νl) 〈l〉@ l1 : l2 where β ::= l1 y l2

∣∣∣ 〈l〉@ l1 : l2

In the sequel, we shall write (ν̃l) 〈l〉@ l1 : l2 to denote 〈l〉@ l1 : l2 , if l̃ = ∅,
and (νl) 〈l〉@ l1 : l2 , otherwise (i.e., if l̃ = {l}). Moreover, we let bn(α) be {l}, if
α = (νl) 〈l〉@ l1 : l2 , and be ∅ , otherwise; fn(α) and n(α) are defined accordingly.

Let us now explain the intuition behind the labels of the LTS and some key rules;
label α in N

α
−→ N′ can be

τ : N may perform a reduction step to become N′ (see Proposition 4.2).
l1 y l2 : a direct connection between nodes l1 and l2 is available (see

(LTS-LINK)).
(ν̃l) 〈l〉@ l1 : l2 : a datum 〈l〉 located at l1 is offered to processes located at l2 (see

(LTS-DATUM) and (LTS-OFFER)). Moreover, according to whether l̃ = {l} or
l̃ = ∅, l is restricted in the offering net or not (see (LTS-OPEN)).

∃?l1 y l2: there is a process located at l1 that needs a connection with l2 (see rules
(LTS-DISC), (LTS-OUT) and (LTS-EVAL)). In case l1 = l2, the sole existence
of node l2 is required (see rule (LTS-CONN) and the structural rule (SELF)). In
both cases, such requirement is fulfilled by a ‘complementary’ label l1 y l2 (see
rule (LTS-COMPL)).

∃? 〈l〉@ l2 : l1 : there is a process located at l1 that needs to retrieve the datum 〈l〉
from l2 (see (LTS-IN) and (LTS-MATCH)). For the retrieval to succeed, such a
requirement must be satisfied by label 〈l〉@ l2 : l1 (see (LTS-COMPL)).

To briefly sum up, labels of the form l1 y l2 and (ν̃l) 〈l〉@ l1 : l2 provide in-
formation about the structure of a net and about the resources (connections and
data) the net can ‘offer’ to the execution context for combined evolution. On the
other hand, labels of the form ∃?β indicate the resources a net ‘demands’ to the
execution context for combined evolution. Thus, (LTS-OUT) should be read as:
“process out(l)@l2.P running at l1 is willing to send a component at l2; when such
an intention is concretised, l1 will be left with process P, l2 will receive the da-
tum 〈l〉, and the connection {l1 ↔ l2}, provided by the execution context, will be
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(LTS-LINK)

{l1 ↔ l2}
l1yl2
−−−−→ l1 :: nil ‖ l2 :: nil

(LTS-DATUM)

l1 :: 〈l〉
〈l〉@ l1: l1
−−−−−−−−→ l1 :: nil

(LTS-CONN)
l1 :: conn(l2).P

∃?l2yl2
−−−−−→ l1 :: P ‖ {l1 ↔ l2}

(LTS-DISC)
l1 :: disc(l2).P

∃?l1yl2
−−−−−→ l1 :: P ‖ l2 :: nil

(LTS-EVAL)
l1 :: eval(P2)@l2.P1

∃?l1yl2
−−−−−→ l1 :: P1 ‖ {l1 ↔ l2} ‖ l2 :: P2

(LTS-OUT)
l1 :: out(l)@l2.P

∃?l1yl2
−−−−−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉

(LTS-IN)
l1 :: in(! x)@l2.P

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ l1 :: P[l/x] ‖ {l1 ↔ l2}

(LTS-MATCH)
l1 :: in(l)@l2.P

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ l1 :: P ‖ {l1 ↔ l2}

(LTS-NEW)
l :: new(l′).P

τ
−→ (νl′) (l :: P ‖ {l↔ l′})

(LTS-OFFER)

N1
〈l〉@ l2: l2
−−−−−−−−→ N′1 N2

l1yl2
−−−−→ N′2

N1 ‖ N2
〈l〉@ l2: l1
−−−−−−−−→ N′1 ‖ N′2

(LTS-OPEN)

N
〈l〉@ l2: l1
−−−−−−−−→ N′ l < {l1, l2}

(νl) N
(νl) 〈l〉@ l2: l1
−−−−−−−−−−−→ N′

(LTS-COMPL)

N1
∃?β
−−→ N′1 N2

β
−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-RES)

N
α
−→ N′ l < n(α)

(νl) N
α
−→ (νl) N′

(LTS-PAR)

N1
α
−→ N2 bn(α) ∩ fn(N) = ∅

N1 ‖ N
α
−→ N2 ‖ N

(LTS-STRUCT)

N ≡ N1 N1
α
−→ N2 N2 ≡ N′

N
α
−→ N′

Table 4
A Labelled Transition System for TKLAIM without ‘acpt’

left for future use”. Indeed, since label ∃?l1 y l2 requires existence of the con-
nection {l1 ↔ l2}, every execution context satisfying this requirement allows the
sending net to place the datum at the target node and to assume existence of the
connection needed. Rules (LTS-EVAL), (LTS-IN), (LTS-MATCH), (LTS-CONN)
and (LTS-DISC) should be interpreted similarly.
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Notably, pointing out what the context should provide for an action to be performed,
rather than the action itself, permits using the same label for all those actions with
similar requirements (viz. out, eval, disc and conn), instead of having a different
label for each possible action. This permits simplifying all the proofs that proceed
by case analysis on the labels of the LTS.

Rule (LTS-OPEN) signals extrusion of bound names; as in some presentation of the
π-calculus (see, e.g., [31]), this rule is used to investigate the capability of processes
to export bound names, rather than to actually extend the scope of bound names.
This is instead achieved through the structural law (EXT); in fact, in (LTS-COMPL)
labels do not carry any restriction on names, whose scope must have been previ-
ously extended. (LTS-RES), (LTS-PAR) and (LTS-STRUCT) are standard.

Notation 4.1 We shall write N
α
−→ to mean that there exists a net N′ such that

N
α
−→ N′; alternatively, we say that N can perform a α-step. Moreover, we shall

usually denote relation composition by juxtaposition; thus, e.g., N
α
−→

α′

−→ M means

that there exists a net N′ such that N
α
−→ N′

α′

−→ M. As usual, we let =⇒ stand for
τ
−→∗ and

α
=⇒ to stand for =⇒

α
−→ =⇒ ; finally,

α̂
=⇒ denotes =⇒ , if α = τ, and

α
=⇒ ,

otherwise.

We conclude the presentation of the LTS by presenting some of its properties. First,
we show that the LTS is ‘correct’ w.r.t. the operational semantics of TKLAIM based
on 7−→. Then, we connect transitions offering resources with the syntactical form
of the net performing them. Finally, we characterise all the possible combined ex-
ecutions of a net N within a context (ν̃l) ([·] ‖ K) in terms of the evolutions of the
net and of the context separately.

Proposition 4.2 N 7−→ M if and only if N
τ
−→ M.

Proof: Both directions are proved by an easy induction on the shortest inference
of the judgements.

Proposition 4.3 The following facts hold:

(1) if N
l1yl2
−−−→ N′, then N ≡ N′ ‖ {l1 ↔ l2};

(2) if N
〈l〉@ l1: l2
−−−−−−−→ N′, then N ≡ N′ ‖ l1 :: 〈l〉 ‖ {l1 ↔ l2};

(3) if N
(νl) 〈l〉@ l1: l2
−−−−−−−−−−→ N′, then N ≡ (νl) (N′ ‖ l1 :: 〈l〉 ‖ {l1 ↔ l2}) and l < {l1, l2}.

Proof: By definition of the LTS and a straightforward induction on the depth of
the shortest inference for the judgement in the hypothesis.

Proposition 4.4 (ν̃l) (N ‖ K)
α
−→ N̄ if and only if one of the following conditions

holds, possibly exchanging K and N:

(1) (ν̃l) N
α
−→ (νl̃′) N′ and N̄ ≡ (νl̃′) (N′ ‖ K).
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(2) N
(νl̃′) 〈l〉@ l1: l1
−−−−−−−−−−→ N′, K

l1yl2
−−−→ K′ and N̄ ≡ (νl̃′′) (N′ ‖ K′), where α =

(νl) 〈l〉@ l1 : l2 and l̃′′ = l̃−{l}, if l̃′ = ∅ and l ∈ l̃, whereas α = (νl̃′) 〈l〉@ l1 :
l2 and l̃′′ = l̃, otherwise.

(3) N
∃?l1yl2
−−−−−→ N′, K

l1yl2
−−−→ K′, N̄ ≡ (ν̃l) (N′ ‖ K′) and α = τ.

(4) N
∃? 〈l〉@ l2: l1
−−−−−−−−−→ N′, K

(νl̃′) 〈l〉@ l2: l1
−−−−−−−−−−→ K′, l̃′ ∩ fn(N) = ∅, N̄ ≡ (ν̃l, l̃′) (N′ ‖ K′) and

α = τ.

(5) N
l2yl1
−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ N′, K

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→ K′, l̃′ ∩ fn(N) = ∅, N̄ ≡ (ν̃l, l̃′) (N′ ‖ K′)

and α = τ.

(6) N
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ N′, K

l2yl1
−−−→ K′, l̃′ ∩ fn(K) = ∅, N̄ ≡ (ν̃l, l̃′) (N′ ‖ K′)

and α = τ.

Proof: The “if” part is trivial, by using the LTS of Table 4. The “only if” part
would have been easily proved by induction on the shortest inference of

α
−→ if

rule (LTS-STRUCT) was not present. To properly handle such a rule, we con-
sider a slightly different (but still equivalent) LTS where rule (LTS-STRUCT) is
restricted in such a way that N ≡ N1 can only be derived by using just a single
axiom (or its symmetric version) from Table 2. In this proof, (LTS-STRUCT) al-
ways refers to this revised rule. Notice that transitivity of ≡ may require repeated
applications of (LTS-STRUCT), whereas closure under language contexts can be
mimicked by properly interleaving the application of (LTS-STRUCT), (LTS-RES)
and (LTS-PAR). For the details, see Appendix 8.

4.2 A Bisimulation-based Characterisation of Barbed Congruence

We can now introduce the alternative characterisation of � in terms of a labelled
bisimilarity. To this aim, we first define the ‘minimal’ net NET(β) enabling the
evolution of a net performing a label of the form ∃?β; formally,

NET(β) ,

 {l1 ↔ l2} if β = l1 y l2

{l1 ↔ l2} ‖ l2 :: 〈l〉 if β = 〈l〉@ l2 : l1

Definition 4.5 (Bisimilarity) A symmetric relation< between TKLAIM nets is a
(weak) bisimulation if, for each N < M and N

α
−→ N′, it holds that:

(1) if α ∈ {τ, l1 y l2, (ν̃l) 〈l〉@ l1 : l1 }, then M
α̂
=⇒ M′ and N′ < M′, for some

M′;
(2) if α = ∃?β, then M ‖ NET(β) =⇒ M′ and N′ < M′, for some M′.

Bisimilarity, ≈, is the largest bisimulation.

Bisimilarity requires that labels of the form l1 y l2 and (ν̃l) 〈l〉@ l1 : l1 must
be matched by with the same label (possibly with some additional τ-step). This is
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necessary because such labels describe the structure of the net (its data and con-
nections) and, to be equivalent, two nets must have at least the same structure.
However, labels of the form (ν̃l) 〈l〉@ l1 : l2 for l1 , l2 can be ignored because
they result from the combination of labels {l1 ↔ l2} and (ν̃l) 〈l〉@ l1 : l1 , see rule
(LTS-OFFER).

Labels of the form ∃?β are ‘requirements’ to the execution context; thus, they are
handled differently. For example, requiring existence of a connection (e.g., to send

a component) expressed by N
∃?l1yl2
−−−−−→ N′ can be simulated by a net M in a context

where l1 and l2 are connected through the execution of τ-steps that lead to some
M′ equivalent to N′. Indeed, since we want our bisimulation to be a congruence, a
context that provides a connection between the source and the target nodes of the
sending action must not tell N and M apart.

The crucial step to prove that bisimilarity is a sound proof-technique for barbed
congruence is Lemma 4.7. To prove this result, we introduce the notion of bisim-
ulation up-to structural congruence: it is defined as a labelled bisimulation except
for the fact that the< in the consequents of Definition 4.5 is replaced by the (com-
pound) relation ≡ < ≡. Lemma 4.6 shows that a bisimulation up-to ≡ can be used
as a sound proof-technique for labelled bisimulation.

Lemma 4.6 Let< be a bisimulation up-to ≡; then,< ⊆ ≈.

Proof: We first prove that ≡ < ≡ is a bisimulation; this is an easy task, by using
law (LTS-STRUCT). Then, if N<M, by reflexivity of ≡, we have that N ≡ < ≡ M;
since ≡ < ≡ is a bisimulation, we have that N ≈ M.

Lemma 4.7 ≈ is context closed.

Proof: By the previous lemma, it suffices to prove that the relation

< , { ( (ν̃l) (N ‖ K), (ν̃l) (M ‖ K) ) : N ≈ M and K restriction free}

is a bisimulation up-to ≡ (recall that, by (LTS-STRUCT), any context C [·] is struc-
turally equivalent to (ν̃l) ( [·] ‖ K), for a proper l̃ that makes K restriction free).
We must show that every transition from (ν̃l) (N ‖ K) can be ‘matched’ (according
to Definition 4.5) by a transition from (ν̃l) (M ‖ K) and that the resulting nets are
still in<. According to Proposition 4.4, we have twelve possible cases for the first
transition; this case analysis is omitted, as it can be inferred from the proof of (the
similar, but more complicated) Lemma 5.7.

Theorem 4.8 (Soundness of ≈ w.r.t. �) If N ≈ M then N � M.

Proof: By Lemma 4.7, we know that ≈ is context closed. Thus, we only need
to prove that ≈ is barb preserving and reduction closed. To prove that ≈ is barb
preserving, let N ⇓ l; by Definition 3.1 and construction of the LTS, this means that

15



N
(ν̃l) 〈l′〉@ l: l
==========⇒, for some l′ and l̃. By hypothesis, we get that M

(ν̃l) 〈l′〉@ l: l
==========⇒ ; thus,

by Proposition 4.3(1), M ⇓ l. To prove that ≈ is reduction closed, let N 7−→ N′;
by Proposition 4.2, this implies that N

τ
−→ N′. By hypothesis, we can find a M′ such

that N′ ≈ M′ and M =⇒ M′; again by Proposition 4.2, M |=⇒ M′.

We now want to prove the converse, namely that all barbed congruent nets are
bisimilar. To this aim, we need some preliminary technicalities.

Notation 4.9 We write
GO l DO a THEN P

to denote a process that migrates at l to perform action a and then comes back to
its starting location to execute P. Formally, GO l DO a THEN P running at l′ is a
shortcut for

conn(l).eval(a.eval(disc(l).P)@l′)@l

We define the standard internal choice operator, to non-deterministically select for
execution exactly one between two processes, as follows:

P ⊕ Q , new(l).out(l)@l.( in(l)@l.P | in(l)@l.Q )

It is easy to see that l′ :: P ⊕ Q behaves as either l′ :: P or l′ :: Q and these
possibilities are mutually exclusive.

The following key Lemma states that we can throw away a fresh locality hosting a
restricted datum from two barbed congruent nets and the resulting nets, deprived of
the restriction, are bisimilar.

Lemma 4.10 Let (νl) (N ‖ l f :: 〈l〉) � (νl) (M ‖ l f :: 〈l〉) and l f be fresh for N, M
and l; then, N ≈ M.

Proof: By Lemma 4.6, it suffices to prove that

< , { (N,M) : (νl) (N ‖ l f :: 〈l〉) � (νl) (M ‖ l f :: 〈l〉) and l f < n(N,M, l) }

is a bisimulation up-to ≡. We omit the details of the proof because it proceeds as
the (more complicated) proof of Lemma 5.8.

Theorem 4.11 (Completeness of ≈ w.r.t. �) If N � M then N ≈ M.

Proof: By Lemma 4.6, it suffices to prove that � ∪ ≈ is a bisimulation up-to ≡.
Take N � M and a transition N

α
−→ N′; we then reason by case analysis on α.

α = τ. By Proposition 4.2, the thesis follows from reduction closure.
α = 〈l〉@ l1 : l1 . We consider the context

C [·] , (νl′) ([·] ‖ {l f ↔ l1} ‖ l f :: in(l)@l1.disc(l1).(out(l′)@l f ⊕ nil))
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for l′ and l f fresh, and the reduction C [N] |=⇒ D [N′] , N̄, where

D [·] , (νl′) ([ · ] ‖ l f :: out(l′)@l f ⊕ nil)

By context and reduction closure, C [M] |=⇒ M̄ and N̄ � M̄. This fact implies

that M
〈l〉@ l1: l1

========⇒ M′, for some M′, otherwise M̄ would not be able to exhibit a
barb at l f (whereas N̄ can). Now consider the reduction N̄ |=⇒ D′ [N′] , N̄′, with

D′ [·] , (νl′) ([ · ] ‖ l f : 〈l′〉) ‖ (νl′′) ({l f ↔ l′′} ‖ l f :: in(l′′)@l′′.nil),

which is obtained by exploiting the definition of ⊕ and resolving the choice in
favour of the left hand side (l′′ is the locality created to implement ‘⊕’). By
reduction closure, it must be that M̄ |=⇒ M̄′ and N̄′ � M̄′; because of freshness
of l f , this implies that M̄′ ≡ D′ [M′′], for some M′′ such that M′ =⇒ M′′. Now,
it is easy to prove that D′ [N′] ≈ (νl′) (N′ ‖ l f : 〈l′〉) (and similarly for M′′).
Moreover, by using Theorem 4.8, we can replace ≈ with �; thus, (νl′) (N′ ‖ l f :
〈l′〉) � D′ [N′] , N̄′ � M̄′ ≡ D′ [M′′] � (νl′) (M′′ ‖ l f : 〈l′〉). Since ≡⊆� and
since � is transitive, by Lemma 4.10, we get N′ ≈ M′′; this suffices to conclude.

α = (νl) 〈l〉@ l1 : l1 . We consider the context

C [·] , [·] ‖ {l f ↔ l1} ‖ l f :: in(!x)@l1.disc(l1).(out(x)@l f ⊕ nil)

for l f fresh, and proceed as in the previous case. Notice that M must eventually
exhibit a restricted datum at l1. Indeed, the presence of any datum at l1 is as-
certained by action in(!x)@l1. Moreover, at least one restricted datum must be
present at l1, otherwise l f would exhibit only free data in any evolution of C [M],
whereas l f exhibits a restricted datum in the chosen evolution of C [N]. 2 Such
a restricted datum can be then alpha-converted to l to obtain that M

α
=⇒ M′′ and

N′ ≈ M′′, for some M′′.
α = l1 y l2. Consider the context

C [·] , (νl) ([·] ‖ l f :: GO l1 DO disc(l2) THEN (out(l)@l f ⊕ nil))

and proceed like before.
α = ∃?β. We consider the context C [·] , [·] ‖ NET(β) and the reduction C [N] 7−→

N′. Then, by context and reduction closure, C [M] |=⇒ M′ and N′ � M′, for some
M′. This suffices to conclude (see Definition 4.5(2)).

2 To see that there must be an evolution of C [M] producing a restricted datum at l1 (and,
therefore, at l f ), consider the following context

[·] ‖ {l f ↔ l′f } ‖ Π
l′ ∈ fn(M)

l′f :: in(l′)@l f .out()@l′f

where l′f is a fresh locality. The chosen evolution of C [N] will never enable the production
of a datum at l′f because we assumed that bound names are different from the free ones;
thus, M cannot produce only free data at l1, otherwise it would not be equivalent to N.
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From Theorems 4.8 and 4.11 we get the wanted result.

Corollary 4.12 (Alternative Characterisation of Barbed Congruence) ≈ = � .

5 Bisimulation Equivalence for TKLAIM

In this section, we develop a bisimulation-based characterisation of barbed con-
gruence for TKLAIM, i.e. for the language where a handshake between the nodes
involved is necessary to activate a connection. We first reformulate the LTS pre-
sented in Section 4.1 to deal with the finer scenario we are investigating now; then,
we move to the alternative characterisation of barbed congruence, by smoothly
adapting Definition 4.5.

5.1 A Revised Labelled Transition System

The LTS of Section 4.1 must be now extended with two new, complementary, la-
bels: one for action conn and one for acpt. Thus, the syntax of labels becomes as
follows:

α ::= . . .
∣∣∣ (ν̃l) l1 : ?l2

∣∣∣ l1 : !l2

Intuitively, (ν̃l) l1 : ?l2 results from enriching label ∃?l2 y l2 (that in the
LTS of Section 4.1 labels transitions due to action conn(l2)) with the node ad-
dress l1 (that can also be restricted) where the action takes place; of course,
bn( (ν̃l) l1 : ?l2 ) , l̃. Label l1 : !l2 instead indicates execution at l1 of an action
acpt accepting a connection request from l2. These new labels are generated by
rules (LTS-CONN), (LTS-ACC1) and (LTS-ACC2) in Table 6; they are synchro-
nised via rule (LTS-EST), which establishes a new connection as a consequence
of a synchronisation between a connection request and an acceptance. Like for
(LTS-COMPL), no scope extension is carried out by (LTS-EST): the scope must
have been extended previously through (LTS-STRUCT) (this also ensures the fresh-
ness of the node performing the conn for the net where the acpt is performed).

The new version of rule (LTS-OPEN) in Table 6 allows restricted nodes to perform
action conn; however, it does not admit labels of the form 〈l′〉@ l′ : l . Indeed, in
the new framework, exporting a bound name via a communication does not ‘fully
open’ its scope. Consider, for example, the net

(νl′) (l :: 〈l′〉 ‖ l′ :: C)

It would be too informative to state that (νl′) (l :: 〈l′〉 ‖ l′ :: C)
(νl′) 〈l′〉@ l: l
−−−−−−−−−→ l ::

nil ‖ l′ :: C. Indeed, if C , 〈〉, no context can observe the datum at l′, because
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(HCOM) (l1) (l2) N ≡ (l2) (l1) N (RHCOM) (l1) (νl2) N ≡ (νl2) (l1) N

(HGARB) (l) 0 ≡ 0 (HEXT) N ‖ (l) M ≡ (l) (N ‖ M) if l < fa(N)

Table 5
Additional Structural Congruence Laws

l′ is “unreachable” (i.e., it is not connected with any other node of the net, nor it
requires/accepts any connection). Hence, the nets

(νl′) (l :: 〈l′〉 ‖ l′ :: 〈〉) and (νl′) (l :: 〈l′〉 ‖ l′ :: nil)

are barbed congruent. However, by fully opening the scope of l′, the bisimilarity
would be able to distinguish these two nets. Thus, the latter equivalence would have
an observational power that no language context actually has; this would mean that
barbed congruence does not imply bisimilarity, that would invalidate completeness.

To properly tackle these situations, we say that the scope of an extruded name is
only half-opened by a label of the form (νl′) 〈l′〉@ l : l and introduce the no-
tion of extended nets, that are nets that may possibly contain half-restricted names.
Extended nets are ranged over by N, M, K, ... (and their decorated versions) and are
formally defined as follows:

N ::= N
∣∣∣ (l) N

∣∣∣ (νl) N
∣∣∣ N1 ‖ N2

Intuitively, half-restricted names correspond to addresses of nodes whose scope has
been extended but whose reachability is still unknown. Thus, the half-restriction
operator (l) is not a binder for l since l is known to the environment (that has
previously received the name via an action generating label (νl) 〈l〉@ l1 : l2 );
thus, fn((l) N) , {l} ∪ fn(N) and, in (l) N, l cannot be alpha-converted.

To cope with half-restrictions, the structural congruence ≡ defined through the laws
in Table 2 is extended with the laws in Table 5. In (HEXT), we write l ∈ fa(N) if
N ≡ N ‖ l :: nil, i.e. l is the address of a non-restricted node in N (we shall
sometimes say that l is a free address of N, and this motivates the notation). The
last rule is justified by the fact that, since l is half-restricted, it has been previously
exported via a bound output; thus, it can occur as a free name in N (maybe, in the
receiving process), but it cannot be a free address of N because it is still (potentially)
unreachable in M.

Now, a transition with label (νl) 〈l〉@ l1 : l2 is performed when a restriction
on l is turned to a half-restriction, see rule (LTS-HALFOPEN) in Table 6. Half-
restrictions are removed only when the node corresponding to a half-restricted
name becomes ‘reachable’, i.e. whenever it performs a conn/acpt or whenever it
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(LTS-ACC1) (LTS-ACC2)

l1 :: acpt(l2).P
l1: !l2
−−−−→ l1 :: P l1 :: acpt(!x).P

l1: !l2
−−−−→ l1 :: P[l2/x]

(LTS-CONN) (LTS-EST)

l1 :: conn(l2).P
l1: ?l2
−−−−−→ l1 :: P N1

l1: ?l2
−−−−−→ N′1 N2

l2: !l1
−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N

′
2 ‖ {l1 ↔ l2}

(LTS-OPEN)

N
l: ?l′
−−−−→ N′ l′ , l

(νl) N
(νl) l: ?l′
−−−−−−→ N′

(LTS-HALFOPEN)

N
〈l〉@ l1: l2
−−−−−−−−→ N′ l < {l1, l2}

(νl) N
(νl) 〈l〉@ l1: l2
−−−−−−−−−−−→ (l) N′

(LTS-FULLOPEN)

N
α
−→ N′ α ∈ {ly l′, l : ?l′ , l : !l′ } l′ , l

(l) N
α
−→ N′

(LTS-HALFRES1)

N
α
−→ N′ l < n(α)

(l) N
α
−→ (l) N′

(LTS-HALFRES2)

N
α
−→ N′ α ∈ { 〈l〉@ l1 : l2 ,∃? 〈l〉@ l1 : l2 } l < {l1, l2}

(l) N
α
−→ (l) N′

plus all rules from Table 4, but (LTS-CONN) and (LTS-OPEN), with N in place of N

everywhere and with the extended ≡.

Table 6
The Revised Labelled Transition System for full TKLAIM

exhibits a connection with another node of the net (see rule (LTS-FULLOPEN)).
Until such a moment, actions involving a half-restricted name l are regulated
by rules (LTS-HALFRES1), that permits all those actions not involving l, and
(LTS-HALFRES2), that permits output and input of l. This should motivate the
term half-restriction: a half-restricted name is not either really restricted nor free
because only some actions involving it are forbidden.

Summarising, the revised labelled transition relation (between extended nets) is
presented in Table 6. Notably, its τ-steps still coincide with the reductions of the
extended language. That is, the following analogous of Propositions 4.2 holds.
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Proposition 5.1 N 7−→ M if and only if N
τ
−→ M.

Also, an analogous of Proposition 4.3 holds.

Proposition 5.2 The following facts hold:

(1) if N
l1yl2
−−−→ N′, then N ≡ N′ ‖ {l1 ↔ l2};

(2) if N
〈l〉@ l1: l2
−−−−−−−→ N′, then N ≡ N′ ‖ l1 :: 〈l〉 ‖ {l1 ↔ l2};

(3) if N
(νl) 〈l〉@ l1: l2
−−−−−−−−−−→ N′, then N ≡ (νl) (N′ ‖ l1 :: 〈l〉 ‖ {l1 ↔ l2}) and l < {l1, l2}.

Finally, Proposition 4.4 becomes as follows (in particular, cases 2., 3. and 6. are
similar to the corresponding cases); we omit the proof because it is similar to that
of Proposition 4.4.

Proposition 5.3 Let l̃1 ∩ l̃2 = ∅; then, (νl̃1)(l̃2)(N ‖ K)
α
−→ N̄ if and only if one of the

following conditions holds, possibly exchanging K and N:

(1) (νl̃1)(l̃2)N
α
−→ (νl̃′1)(l̃′2)N′ and N̄ ≡ (νl̃′1)(l̃′2)(N′ ‖ K). In particular

(a) n(α) ∩ {l̃1, l̃2} = ∅ implies that N
α
−→ N′, l̃′1 = l̃1 and l̃′2 = l̃2;

(b) α = (νl)α′, α′ = 〈l〉@ l1 : l2 , l ∈ l̃1 and {l1, l2} ∩ {l̃1, l̃2} = ∅ imply that

N
α′

−→ N′, l̃′1 = l̃1 − {l} and l̃′2 = l̃2 ∪ {l};
(c) α ∈ { 〈l〉@ l1 : l2 , ∃? 〈l〉@ l1 : l2 }, l ∈ l̃2 and {l1, l2} ∩ {l̃1, l̃2} = ∅ imply

that N
α
−→ N′, l̃′1 = l̃1 and l̃′2 = l̃2;

(d) α = (νl)α′, α′ = l : ?l′ , l ∈ l̃1 and l′ < {l̃1, l̃2} imply that N
α′

−→ N′,
l̃′1 = l̃1 − {l} and l̃′2 = l̃2;

(e) α ∈ {ly l′, l : ?l′ , l : !l′ }, l ∈ l̃2 and l′ < {l̃1, l̃2} imply that N
α
−→ N′, l̃′1 = l̃1

and l̃′2 = l̃2 − {l}.

(2) N
(ν̃l) 〈l〉@ l1: l1
−−−−−−−−−−→ N′, K

l1yl2
−−−→ K′ and N̄ ≡ (νl̃′1)(l̃′2)(N′ ‖ K′), where

• α = (νl) 〈l〉@ l1 : l2 , l̃′1 = l̃1 − {l} and l̃′2 = l̃2 ∪ {l}, if l̃ = ∅ and l ∈ l̃1

• α = (ν̃l) 〈l〉@ l1 : l2 , l̃′1 = l̃1 and l̃′2 = l̃2, otherwise.

(3) N
∃?l1yl2
−−−−−→ N′, K

l1yl2
−−−→ K′, N̄ ≡ (νl̃1)(l̃2)(N′ ‖ K′) and α = τ.

(4) (a) N
∃? 〈l〉@ l2: l1
−−−−−−−−−→ N′, K

(ν̃l) 〈l〉@ l2: l1
−−−−−−−−−−→ (̃l)K′, l̃ ∩ fn(N) = ∅, N̄ ≡ (ν̃l, l̃1) (l̃2)(N′ ‖ K′)

and α = τ.
(b) N

∃? 〈l〉@ l2: l1
−−−−−−−−−→ N′, K ≡ (l) K′, K′

〈l〉@ l2: l1
−−−−−−−→ K′′, l < fa(N), N̄ ≡ (νl̃1) (l, l̃2) (N′ ‖

K′′) and α = τ.

(5) (a) N
l1yl2
−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ N′, K

(ν̃l) 〈l〉@ l2: l2
−−−−−−−−−−→ (̃l)K′, l̃∩fn(N) = ∅, N̄ ≡ (ν̃l, l̃1) (l̃2)(N′ ‖

K′) and α = τ.

(b) N
l1yl2
−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ N′, K ≡ (l) K′, K′

〈l〉@ l2: l2
−−−−−−−→ K′′, l < fa(N), N̄ ≡

(νl̃1) (l, l̃2) (N′ ‖ K′′) and α = τ.

(6) N
(ν̃l) 〈l〉@ l2: l2
−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ N′, K

l2yl1
−−−→ K′, l̃ ∩ fn(K) = ∅, N̄ ≡ (ν̃l, l̃1) (l̃2)(N′ ‖ K′)

and α = τ.
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(7) N
(ν̃l) l1: ?l2
−−−−−−−→ N′, K

l2: !l1
−−−−→ K′, l̃∩ fn(K) = ∅, N̄ ≡ (ν̃l, l̃1) (l̃2)(N′ ‖ K′ ‖ {l1 ↔ l2}) and

α = τ.

Finally, we present a result that describes how the free addresses of a net change
upon execution of a transition; the proof straightforwardly follows from the defi-
nition of the LTS. In particular, notice that half-restricted names are not free ad-
dresses, because of the side condition of rule (HEXT).

Proposition 5.4 Let N
α
−→ N′; then

• if α ∈ { τ , (ν̃l) 〈l〉@ l1 : l2 } then fa(N′) = fa(N);
• if α ∈ { ly l′, (ν̃l) l : ?l′ , l : !l′ } then fa(N′) = fa(N) ∪ {l}, if l is half-restricted

in N, and fa(N′) = fa(N) ∪ l̃, otherwise;
• if α ∈ { ∃?l1 y l2, ∃? 〈l〉@ l2 : l1 } then fa(N′) = fa(N) ∪ {l2}.

Proof: The proof can be done by an easy induction on the depth of the shortest
inference for the judgement N

α
−→ N′.

5.2 A Bisimulation-based Characterisation of Barbed Congruence

We can smoothly adapt Definition 4.5 to characterise barbed congruence also in the
richer language. Notably, actions conn and acpt correspond quite closely to out-
put/input prefixes of the synchronous π-calculus [26] and, thus, are handled simi-
larly (see point 1. of Definition 5.5).

Definition 5.5 (Bisimilarity) A symmetric relation< between TKLAIM nets is a
bisimulation if, for each N < M and N

α
−→ N′, it holds that:

(1) α ∈ {τ, l1 y l2, (ν̃l) 〈l〉@ l1 : l1 , (ν̃l) l1 : ?l2 , l1 : !l2 } implies that M
α̂
=⇒ M′

and N′ < M′, for some M′;
(2) α = ∃?β implies that M ‖ NET(β) =⇒ M′ and N′ < M′, for some M′.

Bisimilarity, ≈, is the largest bisimulation.

We now prove that this new version of the bisimilarity still exactly captures barbed
congruence. We follow the path of Section 4.2 to prove the main result of this
section, as reported by the following theorem.

Theorem 5.6 (Alternative Characterisation of Barbed Congruence) ≈ = � .

The inclusion “⊆ ” trivially follows from the fact that ≈ is context closed. The inclu-
sion “⊇ ” follows from the fact that � is a bisimulation; thanks to context closure,
this can be proved by building, for any possible action, a context forcing two barbed
congruent nets to behave as required by Definition 5.5. In the remainder of this sec-
tion, we give full details of these key steps.
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Lemma 5.7 ≈ is context closed.

Proof: We shall prove that the relation

< , { ( (νl̃1)(l̃2)(N ‖ K) , (νl̃1)(l̃2)(M ‖ K) ) : (̃l)N ≈ (̃l)M, l̃ ⊆ (l̃1, l̃2), l̃ ∩ fa(K) = ∅,

K is restriction and half-restriction free }

is a bisimulation up-to ≡; by taking l̃ = ∅, we obtain the thesis. Consider (νl̃1)(l̃2)(N ‖
K)

α
−→ N̄; by Proposition 5.3, we have sixteen cases. Indeed, since K is restriction

and half-restriction free, cases 4(b) and 5(b) do not occur; moreover, there is no
restriction in the label of the transition from K in cases 4(a) and 5(a) and in the
symmetric of cases 2, 6 and 7. All the details are in Appendix 8.

We now consider the completeness part that can be easily proved, as before, once
we prove the following Lemma (that generalises Lemma 4.10).

Lemma 5.8
(1) Let (νl) (N ‖ l f :: 〈l〉) � (νl) (M ‖ l f :: 〈l〉) and l f be fresh for N, M and l; then,

(l) N ≈ (l) M.
(2) Let (νl) (N ‖ {l ↔ l f } ‖ l f :: 〈l〉) � (νl) (M ‖ {l ↔ l f } ‖ l f :: 〈l〉), l f be fresh for

N, M and l, and l ∈ fa(N) ∩ fa(M); then, N ≈ M.

Proof: We shall prove the two claims at once. To this aim, let l̃1 , {l1, . . . , lk}

and l̃2 , {l′1, . . . , l
′
h} such that h, k ≥ 0 and l̃1 ∩ l̃2 = ∅. Let f̃1 , { f1, . . . , fk} and

f̃2 , { f ′1 , . . . , f ′h} be distinct, fresh and reserved names. Finally, let

[[N, l̃1, f̃1, l̃2, f̃2]] , (νl̃1, l̃2)(N ‖
k
Π
i=1

fi :: 〈li〉 ‖
h
Π
j=1

( f ′j :: 〈l′j〉 ‖ { f
′
j ↔ l′j}))

Intuitively, nodes in l̃1 are those whose scope must be captured by a half-restriction
(see claim 1. of this Lemma), whereas nodes in l̃2 are those whose scope must be
fully opened (see claim 2. of this Lemma). It suffices to prove that the relation

< , {( (l̃1)N , (l̃1)M ) : [[N, l̃1, f̃1, l̃2, f̃2]] � [[M, l̃1, f̃1, l̃2, f̃2]] ∧ ( f̃1, f̃2) , ∅

( f̃1, f̃2) ∩ fn(N,M, l) = ∅ ∧ l̃2 ⊆ fa(N) ∩ fa(M)}

is a bisimulation up-to ≡. Indeed, by taking l̃1 = {l} and l̃2 = ∅, we prove the first
claim; vice versa, by taking l̃2 = {l} and l̃1 = ∅, we prove the second claim. All the
remaining details are in Appendix 8.

Theorem 5.9 (Completeness) If N � M then N ≈ M.

Proof: We shall prove that the relation � ∪ ≈ is a bisimulation up-to ≡. Let
N

α
−→ N and reason by case analysis on α. Since the proof proceeds as in Theo-
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rem 4.11, we shall only give the contexts used to force M to properly reply to α.

(1) α = τ: the thesis easily follows from reduction closure.
(2) α = 〈l〉@ l1 : l1 : then N , N′, for N

α
−→ N′. By using the context exhibited

in the corresponding case of Theorem 4.11, we get that M
α
=⇒ M′ and, by

Lemma 5.8(1), (l′) N′ ≈ (l′) M′; by (HEXT), (HGARB) and (PZERO), this
yields N′ ≈ M′, as required.

(3) α = (νl) 〈l〉@ l1 : l1 : then, N ≡ (l) N′, for N ≡ (νl) N′′ and N′′
〈l〉@ l1: l1
−−−−−−−→ N′.

Hence, we can proceed as in the corresponding case of Theorem 4.11 and
obtain that M

α
=⇒ (l) M′ and (l) N′ ≈ (l) M′, as required.

(4) α = l1 y l2: then N , N′, for N
α
−→ N′. Let l and l f be reserved and fresh

names; now, consider the context

C [·] , (νl) ([·] ‖ l1 :: acpt(l f ) ‖ l f :: GO l1 DO disc(l2) THEN (out(l)@l f⊕nil))

Like in case 2., we obtain M
α
=⇒ M′ and N′ ≈ M′, as required.

(5) α = ∃?β: the thesis easily follows by exploiting the context C [·] , [ · ] ‖
NET(β).

(6) α = l2 : !l1 : consider the context

C [·] , (νl) ([·] ‖ l1 :: acpt(l f ) ‖ l f :: GO l1 DO conn(l2).disc(l2) THEN

out(l)@l f ⊕ nil)

for l and l f fresh, and proceed like in case 2.
(7) α = l2 : ?l1 : like case 6., with acpt in place of conn.

(8) α = (νl2) l2 : ?l1 : then N , N′, for N ≡ (νl2) N′′ and N′′
l2: ?l1
−−−−→ N′. Let l f be a

reserved and fresh name; now, consider the context

C [·] , [ · ] ‖ l1 :: acpt(l f ) ‖ l f :: GO l1 DO acpt(!x).eval(acpt(l f ))@x.disc(x)

THEN conn(x).(out(x)@l f ⊕ nil)

where, with abuse of notation, we use process GO l DO THEN P introduced
in Section 4.2 also when is a sequence of actions. Like before, we obtain
that M

α
=⇒ M′; moreover, like in case 3., the node performing the conn must

be bound also in M. Thus, by definition of the LTS, both N′ and M′ contain
a free node with address l2 because they both have performed a transition
labelled with (νl2) l2 : ?l1 . By Lemma 5.8(2), this implies that N′ ≈ M′, as
required.
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6 Trace Equivalence for TKLAIM

In this section, we shall present a trace-based proof-technique for may testing. We
start by recasting may testing ' in a more standard formulation in terms of ob-
servers, computations and success of a computation [17], which justifies the name
of the equivalence. Intuitively, two nets are may testing equivalent if they cannot
be distinguished by any external observer taking note of the data offered by the
observed nets.

Definition 6.1 (Observers) Observers, ranged over by O, O′, O1, . . . , are nets
whose processes and nodes can use the distinct and reserved locality name test
as address of a node or as target of operations.

Definition 6.2 (Computations) Computations from N ‖ O are (possibly infinite)
sequences of reductions of the form N ‖ O (≡ (νl̃0) (N0 ‖ O0)) 7−→ (νl̃1) (N1 ‖

O1) 7−→ · · · . Such a computation is successful if there is some i ≥ 0 such that
Oi ≡ O′ ‖ test :: 〈〉 and test < l̃i. We write N MAY O whenever there exists a
successful computation from N ‖ O.

Definition 6.3 N '′ M if, for every observer O, it holds that N MAY O if and only
if M MAY O.

Proposition 6.4 ' = '′.

Proof: We start proving that ' ⊆ '′ . Let N ' M and take an observer O such that
N MAY O. Then, by context closure, N ‖ O ' M ‖ O and, by barb preservation,
N ‖ O ⇓ test (that comes from N MAY O) implies that M ‖ O ⇓ test, i.e.
M MAY O, as required.

Vice versa, to prove that '′ ⊆ ' , it suffices to prove that '′ is barb preserving and
context closed. Let N '′ M. For barb preservation, let N ⇓ l and consider O ,
test :: in(!x)@l.out()@test ‖ {test↔ l}. Then, N MAY O that, by hypothesis,
implies M MAY O. Now, because of freshness of test, this is possible only if
M ⇓ l. For context closure, the proof is by induction on the structure of the context
C [·]. The base case is trivial. For the inductive case, we have two possibilities:

• C [·] , D [·] ‖ H. By induction, we may assume that D [N] '′ D [M]. Let O
be an observer such that C [N] MAY O. We now consider the observer H ‖ O;
by Definition 6.3, by induction and by the fact that D [N] MAY H ‖ O, we
have that D [M] MAY H ‖ O. By rule (PASS) and because ≡ ⊆ '′, this implies
C [M] MAY O.

• C [·] , (νl) D [·]. Since l is bound, we can assume, up-to alpha-equivalence, that
l < n(O) for any observer O. Now, C [N] MAY O if and only if D [N] MAY O
(and similarly when replacing N with M). By induction, D [N] '′ D [M]; this
suffices to conclude.
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For some well-known process calculi, may testing coincides with trace equivalence
[17,5,6]. Traditionally, trace equivalence relates N and M if and only if the sets
of their traces coincide; put in another form, if N exhibits a sequence of visible
actions σ (i.e., a sequence of actions different from τ), then M must exhibit σ as
well, and vice versa. In an asynchronous setting [6,11], this requirement must be
properly weakened because the discriminating power of asynchronous contexts is
weaker: for example, the traditional formulation of trace equivalence would distin-
guish the TKLAIM nets l :: in(!x)@l1.in(!y)@l2 and l :: in(!y)@l2.in(!x)@l1, which
are indeed may testing equivalent.

By following the approach put forward in [6], a weaker trace-based equivalence
can be defined by relying on a pre-order � on traces (rather than using identity).
Differently from [15], we discuss here only the adaption to TKLAIM of the laws
borrowed from the asynchronous π-calculus [6]; indeed, in [15] we aimed at a
complete characterisation of may testing in the simplified setting without the acpt
primitive, whereas here the corresponding completeness result seems hard to ob-
tain. The problem lies in the discriminating power of language contexts: to enable
observations, it is usually necessary to make the observed nodes accepting connec-
tion requests originating from the context. This task can be easily accomplished
for free addresses (by possibly exploiting process mobility), but not for restricted
addresses; the latter ones cannot be forced to accept connection requests. A way to
go around this problem and achieve completeness could be the definition of differ-
ent operators than standard parallel composition to put together observers and ob-
served nets. Such operators would enable the observation of restricted nodes and,
thus, would make observers stronger than normal parallel components. We leave
the formal development of this solution (and possibly different ones) for future re-
search. However, it has to be said that using different operators would not respect
the original approach of testing equivalences [17].

To define trace equivalence, we slightly modify the LTS of Section 5.1 by adding
bound input and bound acceptance labels; they take the form ∃?(νl) 〈l〉@ l1 : l2

and l1 : !(νl2) l2, respectively, and are introduced to define a complementation
function over labels:

(ν̃l) 〈l〉@ l1 : l2 , ∃?(ν̃l) 〈l〉@ l1 : l2 ∃?(ν̃l) 〈l〉@ l1 : l2 , (ν̃l) 〈l〉@ l1 : l2

l1 y l2 , ∃?l1 y l2 ∃?l1 y l2 , l1 y l2

(ν̃l) l1 : ?l2 , l2 : !(ν̃l) l1 l2 : !(ν̃l) l1 , (ν̃l) l1 : ?l2

Of course, bn(α) is extended by letting bn(∃?(νl) 〈l〉@ l1 : l2) = bn( l′ : !(νl) l ) =

{l}, whereas fn(α) and n(α) are defined accordingly. Labels ∃?(νl) 〈l〉@ l1 : l2 and
l′ : !(νl) l are generated whenever a net N can perform ∃? 〈l〉@ l1 : l2 and l′ : !l ,
respectively, for l < fn(N).
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Notation 6.5 As a matter of notation, we shall use φ to range over visible labels (i.e.
labels different from τ) and σ to range over (possibly empty) sequences of visible

labels. As usual, N
ε
=⇒ denotes N =⇒ and N

φ·σ
==⇒ denotes N

φ
=⇒

σ
=⇒ .

Then, we introduce a pre-order � over traces. The intuition behind σ′ � σ is that,
if a context can interact with a net that exhibits σ, then the context can interact with
any net that exhibits σ′ as well (see Lemma 6.8). Formally, � is obtained as the
least reflexive and transitive relation defined by the following laws, all inspired by
[6]:

(L1) σ · (σ′)\̃l � σ · (∃?β · σ′)\̃l if (σ′)\̃l , ⊥

(L2) σ · (φ · ∃?β · σ′)\̃l � σ · (∃?β · φ · σ′)\̃l if (φ · ∃?β · σ′)\̃l , ⊥

(L3) σ · (σ′)\̃l � σ · (∃?β · β · σ′)\̃l if (σ′)\̃l , ⊥

Intuitively, law (L1) states that labels representing ‘requirements’ cannot be di-
rectly observed. Law (L2) states that the execution of a ‘requirement’ action can
be delayed along computations without being noticed by any observer. Finally, law
(L3) states that two adjacent ‘complementary’ actions can be deleted. However,
when moving/removing a label of the form ∃?(νl) 〈l〉@ l1 : l2 , we must keep the
information that l is a fresh received name. To this aim, we exploit the function
(σ)\̃l whose formal definition is:

(σ)\̃l , σ if l̃ ∩ fn(σ) = ∅

(φ · σ)\l ,


∃?(νl) 〈l〉@ l1 : l2 · σ

φ · (σ)\l

⊥

if φ = ∃? 〈l〉@ l2 : l1 and l < {l1, l2}

if l < n(φ) and (σ)\l , ⊥

otherwise

To better understand the motivations underlying this definition, consider the fol-
lowing example that justifies the side condition of law (L1) (similar arguments also
hold for laws (L2) and (L3)). In the trace ∃?(νl) 〈l〉@ l2 : l1 · 〈l〉@ l3 : l4 per-
formed by N, the input action cannot be erased. Indeed, since l is fresh, N cannot
get knowledge of l without performing the input and, consequently, cannot perform
the action 〈l〉@ l3 : l4 . On the other hand, if N can receive l via an additional
communication between another pair of nodes, say l5 and l6 (thus, it can perform
action ∃? 〈l〉@ l6 : l5 just after ∃?(νl) 〈l〉@ l2 : l1), then the first input action can
be erased and the trace ∃?(νl) 〈l〉@ l6 : l5 · 〈l〉@ l3 : l4 is smaller (w.r.t. �) than
∃?(νl) 〈l〉@ l2 : l1 · ∃? 〈l〉@ l6 : l5 · 〈l〉@ l3 : l4 .

Finally, we are ready to define trace equivalence.

Definition 6.6 (Trace Equivalence) � is the largest symmetric relation between
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TKLAIM nets such that, whenever N � M, it holds that N
σ
=⇒ implies M

σ′

==⇒ , for
some σ′ � σ.

We now prove that � is a sound proof-technique for ' . More precisely, we shall
prove that trace equivalent nets are also may testing equivalent, in the sense of
Definition 6.3; because of Proposition 6.4 this suffices to conclude. Thus, we use
observers O and denote OK the label 〈〉@ test : test , i.e., the action that must
be exhibited in any successful computation.

To prove soundness, we need two auxiliary lemmata. The first one states that a net
can report success when run in parallel with an observer if and only if they execute
complementary traces (where the complementation function is pointwise extended
to sequences of actions as expected). The second one states that the laws defining

� are ‘sound’, in the sense that, whenever σ′ � σ and N
σ′

==⇒ , any observer able to
perform σ may report success when run in parallel with N.

Lemma 6.7 N ‖ O
OK
==⇒ if and only if N

σ
=⇒ and O

σ · OK
====⇒ .

Proof: The “if” part is proved by induction on the length of σ. For the “only if”
part, it must be that N ‖ O (

τ
−→ )nH

OK
−→ ; the proof is by induction on n and exploits

Proposition 5.3 to examine all the possible interactions among N and O.

Lemma 6.8 Let σ′ � σ, N
σ′

==⇒ and O
σ·OK
===⇒; then, N ‖ O

OK
==⇒ .

Proof: By induction on the number of laws used to derive σ′ � σ, we prove that

O
σ′·OK
====⇒ ; by Lemma 6.7, this suffices to conclude.

Theorem 6.9 (Soundness of � w.r.t. ') If N � M then N ' M.

Proof: Let O be an observer such that N ‖ O
OK
==⇒ . By Lemma 6.7, there exists

σ such that N
σ
=⇒ and O

σ · OK
====⇒ . By Definition 6.6, there exists σ′ � σ such that

M
σ′

==⇒ ; by Lemma 6.8, it holds that M ‖ O
OK
==⇒ , as required by Definition 6.3.

7 An Example: Dynamic Connections in a Cellular Net

In this section we model a scenario for communications between mobile devices
and use the introduced proof techniques to verify a relevant property. The sce-
nario we consider is inspired by the handover protocol, proposed by the European
Telecommunication Standards Institute for the GSM Public Land Mobile Network
(PLMN). A formal specification and verification of the protocol by using the π-
calculus can be found in [29].
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The PLMN is a cellular system which consists of Mobile Stations (MSs), Base
Stations (BSs) and Mobile Switching Centres (MSCs). MSs are mobile devices
that provide services to end users. BSs manage the interface between the MSs and
a stationary net; they control the communications within a geographical area (a
cell). Any MSC handles a set of BSs; it communicates with them and with other
MSCs using a stationary net. A handover occurs whenever the BS responsible for
a MS should be changed during the computation (e.g., because the MS exits from
the area associated to the BS and enters in the area associated to a different BS).

We now model the handover of a PLMN in TKLAIM. For the sake of simplicity,
we focus here on the aspects more closely related to connection handling; for more
details, see [16]. We shall exploit polyadic communications: thus, tuples of names
will be used as basic data. Data will be retrieved by using pattern matching. A
pattern is a sequence of names u and bound names !x. A pattern matches against
a tuple if both have the same number of fields and corresponding fields match
(i.e. two names match if they are identical, whereas a bound name matches any
name). The pattern matching function, in case of successful matching, returns a
substitution used to replace the bound names of the pattern with the corresponding
names of the tuple in the continuation process. All the theory we have developed
in this paper for the monadic version of TKLAIM can be adapted to its polyadic
version; the price to be paid is a heavier notation in the proofs (see, e.g., [21]).

In our implementation, MSs, BSs and MSCs are modelled as nodes. We consider a
simple PLMN, with one MSC (whose address is msc), n BSs (whose addresses are
bs1, . . . , bsn, resp.) and just one MS (whose address is l). We assume a private data
repository of msc, located at the reserved node table and used to store two kinds
of information: the address of the BSs (this is a permanent information) and the
current MS-to-BS associations (that can change upon handovers). The handover
for l is handled by the MSC via the following process:

HNDVR , in(l, !x)@table.in(!y)@table.out(y)@table.

evalx( evall(acpt(y)).disc(l).evalmsc,y( conn(l).evalmsc(out(l, y)@table) ) )

where evalu(P) is a more readable way of writing process eval(P)@u; similarly,
evalu,v(P) stands for eval(eval(P)@v)@u. Process HNDVR first selects a MS-to-
BS association to be changed (the reason why this is needed is not modelled here);
then, it chooses a new BS, properly changes the connections between the MS and
the BSs, and updates the repository table. By assuming that l is handled by the BS
bsi, the resulting system is

SYSi , (ν table, bs1, . . . , bsn)(msc :: ∗HNDVR ‖ {msc↔ table} ‖
n
Π
j=1

(table :: 〈bs j〉 ‖ {msc↔ bs j}) ‖ table :: 〈l, bsi〉 ‖ {bsi ↔ l} )
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The main property we want to ensure in this scenario is that the MS at l remains
connected to the PLMN upon handovers. To formalise this requirement, we con-
sider the following process:

CONN , in(l, !x)@table.evalx( out(“conn”, l,msc)@l.evalmsc(out(l, x)@table) )

Intuitively, this process aims at delivering to l a message stating that l is connected
to the net governed by msc. Now, consider the following minor variation of SYSi:

SYS′i , (ν table, bs1, . . . , bsn)(msc :: ∗HNDVR | ∗ CONN ‖ {msc↔ table} ‖
n
Π
j=1

(table :: 〈bs j〉 ‖ {msc↔ bs j}) ‖ table :: 〈l, bsi〉 ‖ {bsi ↔ l} )

Soundness of the protocol can be established by proving that SYS′i is behaviourally
equivalent to SPEC, where

SPEC , msc :: nil ‖ l :: ∗out(“conn”, l,msc)@l

Intuitively, such an equivalence holds if (and only if) l is permanently connected
to the net governed by msc; indeed, in SPEC we can produce at l as many data
of the form 〈“conn”, l,msc〉 as wanted, whereas in SYS′i this can be done only if
there is always a connection between l and some BS. Thus, SPEC can be seen as a
specification of the desired behaviour of any implementation of the system.

We shall give both a bisimulation-based and a trace-based proof of the soundness
condition just described. To this aim, we define the following nets:

PLMN , msc :: ∗HNDVR | ∗ CONN ‖ {msc↔ table}

‖
n
Π
j=1

(table :: 〈bs j〉 ‖ {msc↔ bs j})

PLMN−i , msc :: ∗HNDVR | ∗ CONN ‖ {msc↔ table}

‖
1..n
Π
j,i

table :: 〈bs j〉 ‖
n
Π
j=1
{msc↔ bs j}

Intuitively, PLMN is the ‘static’ part of the net, i.e. the part (almost) always present
in it; PLMN−i is a transient state of PLMN where the datum 〈bsi〉 has been tem-
porarily removed from table. If we let l̃ , table, bs1, . . . , bsn, then we get that

SYS′i = (ν̃l) (PLMN ‖ table :: 〈l, bsi〉 ‖ {bsi ↔ l} )

Now, let
k

l :: (〈“conn”, l,msc〉)k ,

 l ::
︷                                             ︸︸                                             ︷
〈“conn”, l,msc〉 | · · · | 〈“conn”, l,msc〉 if k > 0

l :: nil if k = 0
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Moreover, define also the following generalisations of SYS′i and SPEC:

SYS′i,k , (ν̃l) (PLMN ‖ table :: 〈l, bsi〉 ‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉)k

SPECk , SPEC ‖ l :: (〈“conn”, l,msc〉)k

The following nets describe the evolutions of SYS′i,k arising from the execution of
one copy of process CONN:

N0
i,k , (ν̃l) (PLMN ‖ msc :: evalbsi( out(“conn”, l,msc)@l.evalmsc(out(l, bsi)@table) )

‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉)k

N1
i,k , (ν̃l) (PLMN ‖ bsi :: out(“conn”, l,msc)@l.evalmsc(out(l, bsi)@table) ‖ {bsi ↔ l})

‖ l :: (〈“conn”, l,msc〉)k

N2
i,k , (ν̃l) (PLMN ‖ bsi :: evalmsc(out(l, bsi)@table) ‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉)k+1

N3
i,k , (ν̃l) (PLMN ‖ msc :: out(l, bsi)@table ‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉)k+1

Similarly, the following nets describe the evolutions of SYS′i,k arising from the exe-
cution of one copy of process HNDVR:

M0
i, j,k , (ν̃l) (PLMN ‖ msc :: in(!y)@table. · · · ‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉)k

M1
i, j,k , (ν̃l) (PLMN− j ‖ msc :: out(bs j)@table. · · · ‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉)k

M2
i, j,k , (ν̃l) (PLMN ‖ msc :: evalbsi(evall(acpt(bs j)). · · · ) ‖ {bsi ↔ l})

‖ l :: (〈“conn”, l,msc〉)k

M3
i, j,k , (ν̃l) (PLMN ‖ bsi :: evall(acpt(bs j)). · · · ‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉)k

M4
i, j,k , (ν̃l) (PLMN ‖ bsi :: disc(l). · · · ‖ {bsi ↔ l} ‖ l :: (〈“conn”, l,msc〉)k | acpt(bs j))

M5
i, j,k , (ν̃l) (PLMN ‖ bsi :: evalmsc,bs j(conn(l). · · · ) ‖ l :: (〈“conn”, l,msc〉)k | acpt(bs j))

M6
i, j,k , (ν̃l) (PLMN ‖ msc :: evalbs j(conn(l). · · · ) ‖ l :: (〈“conn”, l,msc〉)k | acpt(bs j))

M7
i, j,k , (ν̃l) (PLMN ‖ bs j :: conn(l).evalmsc(· · · ) ‖ l :: (〈“conn”, l,msc〉)k | acpt(bs j))

M8
i, j,k , (ν̃l) (PLMN ‖ bs j :: evalmsc( out(l, bs j)@table ) ‖ {bs j ↔ l})

‖ l :: (〈“conn”, l,msc〉)k

M9
i, j,k , (ν̃l) (PLMN ‖ msc :: out(l, bs j)@table ‖ {bs j ↔ l}) ‖ l :: (〈“conn”, l,msc〉)k

We then consider the possible evolutions of nets SYS′i,k, SPECk, Nh
i,k and Mh

i, j,k.
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SYS′i,k
mscymsc
−−−−−−→ SYS′i,k (1)

lyl
−−→ SYS′i,k (2)

〈“conn”,l,msc〉@ l: l
−−−−−−−−−−−−−−→ SYS′i,k−1 for k > 0 (3)

τ
−→ N0

i,k (4)
τ
−→ M0

i, j,k (5)

SPECk
mscymsc
−−−−−−→ SPECk (6)

lyl
−−→ SPECk (7)

〈“conn”,l,msc〉@ l: l
−−−−−−−−−−−−−−→ SPECk−1 for k > 0 (8)

∃?lyl
−−−→ SPECk+1 (9)

τ
−→ SPECk+1 (10)

Nh
i,k

mscymsc
−−−−−−→ Nh

i,k (11)
lyl
−−→ Nh

i,k (12)
〈“conn”,l,msc〉@ l: l
−−−−−−−−−−−−−−→ Nh

i,k−1 for k > 0 (13)
τ
−→ Nh+1

i,k for h = 0, 2 (14)
τ
−→ N2

i,k+1 for h = 1 (15)
τ
−→ SYS′i,k for h = 3 (16)

Mh
i, j,k

mscymsc
−−−−−−→ Mh

i, j,k (17)
lyl
−−→ Mh

i, j,k (18)
〈“conn”,l,msc〉@ l: l
−−−−−−−−−−−−−−→ Mh

i, j,k−1 for k > 0 (19)
τ
−→ Mh+1

i, j,k for h < 9 (20)
τ
−→ SYS′j,k for h = 9 (21)

A bisimulation-based proof of equivalence We must exhibit a bisimulation con-
taining the pair (SYS′i , SPEC). Our candidate relation is

< ,
⋃
k≥ 0

i = 1..n

{(SYS′i,k , SPECk)} ∪
⋃
k≥ 0

i = 1..n
h = 0..3

{(Nh
i,k , SPECk)} ∪

⋃
k≥ 0

i, j ∈ {1..n}
h = 0..9

{(Mh
i, j,k , SPECk)}

Indeed, < contains (SYS′i , SPEC) up-to ≡, because SYS′i ≡ SYS′i,0 and SPEC ≡
SPEC0.

We now prove that < is a bisimulation. Consider the pair (SYS′i,k , SPECk). The
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transitions (1), (2) and (3) are replied to by the transitions (6), (7) and (8) re-
spectively, and vice versa; the transitions (4) and (5) are replied to by the empty
sequence of τ actions; the transitions (9) and (10) are replied to by the sequence
of τ actions (4), (14) and (15) leading SYS′i,k to N2

i,k+1. Then, consider the pair
(Nh

i,k , SPECk). The transitions (11), (12) and (13) are replied to by the transitions
(6), (7) and (8) respectively, and vice versa; the transitions (14) and (16) are replied
to by the empty sequence of τ actions; the transition (14) is replied to by the tran-
sition (10); the transitions (9) and (10) are replied to by the sequence of τ actions
leading to N2

i,k+1, if h = 0, 1, or by the sequence of τ actions Nh
i,k =⇒ SYS′i,k =⇒ N2

i,k+1,
if h = 2, 3. Finally, consider the pair (Mh

i, j,k , SPECk). The transitions (17), (18)
and (19) are replied to by the transitions (6), (7) and (8) respectively, and vice
versa; the transitions (20) and (21) are replied to by the empty sequence of τ
actions; the transitions (9) and (10) are replied to by the sequence of τ actions
Mh

i, j,k =⇒ SYS′j,k =⇒ N2
j,k+1.

A trace-based proof of equivalence We must prove that any trace of SYS′i can be
replied to by a proper trace of SPEC, and vice versa. We start with the easier task,

i.e. that SPECk
σ
=⇒ implies that SYS′i,k

σ′

==⇒ , for σ′ � σ. The proof is by induction
on the length of σ; the base step is trivial. For the inductive step, let σ , φ · σ1,

i.e. SPECk
φ
=⇒ SPECk′

σ1
==⇒ . According to transitions (6)/.../(10), we have only four

possibilities for the visible action φ:

φ = mscy msc: then k′ ≥ k, as τ-actions can only expand the TS located at
l in SPECk (see transition (10)). By transitions (1), (4), (14), (15) and (16),
SYS′i,k

mscymsc
=======⇒ SYS′i,k′ and, by induction, there exists a σ2 � σ1 such that

SYS′i,k′
σ2
==⇒ . We can conclude, by letting σ′ be mscy msc · σ2.

φ = ly l: similar to the previous case.

φ = 〈“conn”, l,msc〉@ l : l : then k′ ≥ k − 1 and the proof proceeds like before.

∃?ly l: then k′ > k. Thus, by transitions (4), (14), (15) and (16), we get
SYS′i,k =⇒ SYS′i,k′ . By induction, there exists a σ2 � σ1 such that SYS′i,k′

σ2
==⇒ .

We can conclude, by letting σ′ be σ2; indeed, by using law (L1), we have that
σ′ , σ2 � σ1 � φ · σ1 , σ.

We now consider the converse. Actually, we prove a stronger result, i.e. that
SYS′i,k

σ
=⇒ implies SPECk

σ
=⇒ . The proof is by induction on the length of σ; the base

case is trivial. For the inductive case, let σ , φ · σ′, i.e. SYS′i,k =⇒ K
φ
−→ K′

σ′

==⇒ . If
K′ , SYS′i′,k′ , for some i′ and k′, the thesis follows by an easy induction. Otherwise,
we have two possible sub-cases:

K′ , Mh
i′, j,k′: to apply induction, we need to let K′ produce σ′ through a net
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of the form SYS′i′,k′ . Therefore, we consider the following alternative way 3

to produce σ′: K′ =⇒ SYS′j,k′ =⇒ M0
j,i′,k′ =⇒ SYS′i′,k′ =⇒ Mh

i′, j,k′
σ′

==⇒ . Now,

SPECk =⇒ SPECk′′
φ
−→ SPECk′ , for k′′ = k′, if transitions (17) or (18) have been

used to derive K′ from K, and k′′ = k′ + 1, if (19) has been used. By induction,

SPECk′
σ′

==⇒ ; this suffices to conclude.

K′ , Nh
i′,k′: consider K′ =⇒ SYS′i′,k′′ =⇒ Nh

i′,k′+1

σ′

==⇒ , where k′′ = k′, if h = 2, 3,

and k′′ = k′ + 1, if h = 0, 1. Again, take SPECk =⇒ SPECk′′′
φ
−→ SPECk′+1, for

k′′′ = k′ + 1, if transitions (11) or (12) have been used to derive K′ from K, and

k′′′ = k′ + 2, if (13) has been used. By induction, SPECk′+1
σ′

==⇒ ; this suffices to
conclude.

8 Conclusions and Related Work

We have presented operational and observational semantics for TKLAIM, a process
calculus equipped with primitives for process distribution and mobility, remote and
asynchronous communication through distributed data repositories, and dynamic
activation/deactivation of inter-node connections. The semantic theories we intro-
duced in this paper have been defined in a uniform fashion [7]: first, we defined
some basic observables for a global computing setting; then, we closed them under
all possible contexts and/or reductions, to obtain barbed congruence and may test-
ing; finally, we gave a more tractable characterisation of the former equivalence by
means of a labelled bisimulation.

The language proposed and its semantic theories have proved suitable to program
and verify a non-trivial example, inspired by the handover protocol. This example
shows that working with bisimilarity is easier than working with trace equivalence.
To establish bisimilarity, we had only to find, for every action of one net, a proper
reply of the other net. To establish trace equivalence, a more sophisticated inductive
reasoning was needed.

We believe that, although TKLAIM can be somehow encoded in the π-calculus, the
introduction of the former is justified by at least two reasons.

(1) TKLAIM permits a direct description of key features of global computers such
as process distribution and mobility, and inter-node connections. An encoding
of such features in π-calculus although possible would hide them within com-
plex process structures, making it difficult to reason on the resulting processes.
TKLAIM and π-calculus can be seen as formalisms standing at two different

3 Notice that, since trace equivalence does not rely on co-induction (i.e., it is not reduction
closed), the way in which SYS′i,k generates σ is not relevant.
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levels of abstraction: TKLAIM enables the user to exploit the knowledge of
the topology of the net; the π-calculus (and especially its dialects more suit-
able for distributed implementations, like Join calculus [18] and π1`-calculus
[1]) permits directly referring to network sockets (that can be represented as
communication channels).

(2) A convincing encoding should enjoy ‘reasonable’ properties, like those
pointed out in [30]. We believe this cannot be the case for the encoding of
TKLAIM. For example, in [14] we presented the encoding of a TKLAIM’s sub-
calculus into the asynchronous π-calculus and argued that it is not possible to
devise a convergence preserving encoding. We are now working on proving
that, due to the check of existence of the target of a communication that is
performed in TKLAIM and not in the π-calculus, a divergence free encoding
does not exist.

We conclude by touching upon most strictly related work and some possible devel-
opments.

Related work Several calculi with process distribution and mobility have been
proposed in the last decade. In the Introduction, we have already touched upon
major differences between some calculi for global computers and TKLAIM from a
linguistic point of view. Here, we want to mention work on equivalences for such
languages.

Bisimulation-based characterisations of barbed congruences for calculi relying on a
flat net topology are developed in [1,22]; such characterisations are mainly derived
from bisimulation equivalences for the π-calculus and its variants. Bisimulation-
based characterisations of barbed congruences for calculi relying on a hierarchi-
cal net topology are developed in [25,8,10,23]. All such bisimulations follow San-
giorgi’s context bisimulation [33], thus they still rely on a universal quantification
over processes. Moreover, the bisimulations introduced in [10,23] are not complete
proof techniques for the corresponding barbed congruences.

Even though processes can occur in TKLAIM as arguments of actions eval, our
formalism shares with calculi relying on a flat net topology the fact that the LTS
and the associated bisimulation do not use labels containing processes. Indeed, the
bisimulation relies only on a standard quantification over names (when considering
labels of the form ∃? 〈l〉@ l2 : l1) and we strongly conjecture that it is decidable,
for non-trivial fragments of the language: techniques similar to those in [28] could
be used here. But we have also that TKLAIM shares with calculi relying on a hierar-
chical net topology the complexity of the underlying LTS. As a partial defence we
can say that the LTS is just an adequate tool to establish the alternative characteri-
sation of barbed congruence and it is not intended as a tool to define the operational
semantics of TKLAIM.
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The work most closely related to ours is [19]. There, a distributed version of the π-
calculus is presented where nodes are connected through links that can fail during
the computation; a bisimulation-based proof technique is used to establish proper-
ties of systems. A notable difference is that in TKLAIM a deactivated connection
can be re-established later on, via the primitives conn/acpt, whereas this is not
possible in DπF . Thus we have that in DπF link failures are permanent, whereas in
TKLAIM they can also be transient.

Future work It would be worth studying forms of abstractions, e.g. administra-
tive domains and security policies, that determine virtual networks on top of the
effective ones. To this aim, dynamically evolving type environments could be ex-
ploited to constraint the behaviours of processes and the observations of an envi-
ronment. Some work in this direction has been done in [22].

Orthogonally, it would also be interesting to analyse efficiency issues to better clar-
ify, e.g., the advantages of mobile code and process distribution. A possible ap-
plication is to study possible rearrangements of the processes over a given net to
minimise the number of remote operations, that are normally more expensive and
slower than local ones. A simple way to model this scenario is to assign costs to
connections (see, e.g., [12]) and develop efficiency preorders based on such infor-
mation.

Appendix A: Technical Proofs

Proof of Proposition 4.4: Let (ν̃l) (N ‖ K)
α
−→ N̄; we reason by induction on

the depth of the shortest inference for
α
−→ and prove that only one of the cases

enumerated in this Proposition is possible. We have three base cases (of depth 2);
in all of them, l̃ = ∅ and the hypotheses are axioms from Table 4. We analyse the
last rule used in the inference:

• (LTS-PAR): we fall in case 1. of this Proposition.
• (LTS-OFFER): we fall in case 2. of this Proposition.
• (LTS-COMPL): we fall in case 3. or 4. of this Proposition.

For the inductive step, we reason by case analysis on the last rule applied in the
inference. The cases for (LTS-PAR), (LTS-OFFER) and (LTS-COMPL) are easily
adapted from the base case (no inductive hypothesis is needed).

(LTS-RES): let l̃ = (l, l̃′); then, (νl̃′) (N ‖ K)
α
−→ N̄′ and N̄ , (νl) N̄′, for l < n(α).

By induction on (νl̃′) (N ‖ K)
α
−→ N̄′, that has a shorter inference, we fall in one

of the cases of this Proposition. In the same case falls also the inference for
(ν̃l) (N ‖ K)

α
−→ N̄.
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(LTS-OPEN): now l̃ = (l, l̃′), (νl̃′) (N ‖ K)
〈l〉@ l1: l2
−−−−−−−→ N̄′, α = (νl) 〈l〉@ l1 : l2 and

N̄ , N̄′. Thus, we apply induction and we can only fall in cases 1 or 2 (or their
symmetric versions); in the same case falls the inference from (ν̃l) (N ‖ K).

(LTS-STRUCT): we reason by case analysis on the axiom of Table 2 used by the
rule. If reflexivity of ≡ or axiom (ALPHA) is used, we rely on a trivial induction;
otherwise, we have the following possibilities:
(PZERO): l̃ = ∅ and we fall in case 1. of this Proposition.
(PCOM): l̃ = ∅ and K ‖ N

α
−→ N̄′, for N̄′ ≡ N̄. By induction on K ‖ N

α
−→ N̄′, that

has a shorter inference, we fall in one of the cases of this Proposition. Now, if
the induction yields one of the first six cases, the original net N ‖ K evolves
according to the symmetric case and vice versa.

(PASS): again, l̃ = ∅; moreover, N , N1 ‖ N2 and N1 ‖ (N2 ‖ K)
α
−→ N̄′, for

N̄′ ≡ N̄. We now apply induction and reason on the case in which the latter
transition falls:
Case 1: then, N1

α
−→ N′1 and N̄′ , N′1 ‖ (N2 ‖ K). We still easily fall in case 1.

Symmetric of case 1: N2 ‖ K
α
−→ N̄′′ and N̄′ , N1 ‖ N̄′′: we apply induction

to N2 ‖ K
α
−→ N̄′′; the case for (N1 ‖ N2) ‖ K is the same as that obtained in

this latter inductive step.

Case 2: then, N1
(νl̃′) 〈l〉@ l1: l1
−−−−−−−−−−→ N′1, N2 ‖ K

l1yl2
−−−→ N̄′′ and N̄′ , N′1 ‖ N̄′′. By

induction, N2 ‖ K
l1yl2
−−−→ is only possible when either N2

l1yl2
−−−→ or K

l1yl2
−−−→ ;

then, (N1 ‖ N2) ‖ K evolves according to cases 1. or 2., respectively.
Cases 3, 5, 6, and symmetric of cases 2, 3 and 4: similar to the previous

case.
Case 4: then, N1

∃? 〈l〉@ l1: l2
−−−−−−−−−→ N′1, N2 ‖ K

(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ N̄′′ and N̄′ , (νl) (N′1 ‖

N̄′′): by induction, N2 ‖ K
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ can be inferred in four ways:

• N2
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to case 1.

• K
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to case 4.

• N2
(νl) 〈l〉@ l2: l2
−−−−−−−−−−→ and K

l2yl1
−−−→ : then, N ‖ K evolves according to case

6.
• N2

l2yl1
−−−→ and K

(νl) 〈l〉@ l2: l2
−−−−−−−−−−→ : then, N ‖ K evolves according to case

5.

Symmetric of case 5: N1
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→ N′1, N2 ‖ K

l2yl1
−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ N̄′′ and

N̄′ , (νl̃′) (N′1 ‖ N̄′′): by induction, N2 ‖ K
l2yl1
−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ can be inferred

in four ways:

• N2
l2yl1
−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ : then, N ‖ K evolves according to case 1.

• K
l2yl1
−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ : then, N ‖ K evolves according to the symmetric

of case 5.
• N2

∃? 〈l〉@ l2: l1
−−−−−−−−−→ and K

l2yl1
−−−→ : then, N ‖ K evolves according to case 6.

• N2
l2yl1
−−−→ and K

∃? 〈l〉@ l2: l1
−−−−−−−−−→ : then, N ‖ K evolves according to the

symmetric of case 4.
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Symmetric of case 6: N1
l2yl1
−−−→ N′1, N2 ‖ K

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ N̄′′ and

N̄′ , (νl̃′) (N′1 ‖ N̄′′): by induction, N2 ‖ K
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ can be

inferred in four ways:

• N2
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ : then, N ‖ K evolves according to case 1.

• K
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ : then, N ‖ K evolves according to the

symmetric of case 6.

• N2
∃? 〈l〉@ l2: l1
−−−−−−−−−→ and K

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→ : then, N ‖ K evolves according to

case 5.

• N2
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→ and K

∃? 〈l〉@ l2: l1
−−−−−−−−−→ : then, N ‖ K evolves according to

the symmetric of case 4.
symmetric version of (PASS): similar to the previous one, but now K , K1 ‖

K2 and (N ‖ K1) ‖ K2
α
−→ N̄′.

(RCOM): l̃ = (l1, l2, l̃′) and (νl2) (νl1) (νl̃′) (N ‖ K)
α
−→ N̄′, for N̄′ ≡ N̄; then, by

induction, we can conclude that (νl1) (νl2) (νl̃′) (N ‖ K) evolves correspond-
ingly.

(EXT): l̃ = ∅; moreover, K , (νl) K̄ and (νl) (N ‖ K̄)
α
−→ N̄′, for N̄′ ≡ N̄ and

l < fn(N). Now, we can apply induction to (νl) (N ‖ K̄)
α
−→ N̄′ and conclude

that N ‖ K evolves in the same way as (νl) (N ‖ K̄); just notice that, whenever

K̄
〈l〉@ l2: l1
−−−−−−−→ K′ arises upon induction, we obtain K

(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ K′.

symmetric version of (EXT): similar to the previous one. Notice that now l̃ =

{l}; moreover, whenever (νl) K
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ K′ arises, it will be replaced by

K
〈l〉@ l2: l1
−−−−−−−→ K′.

symmetric versions of (REPL), (CLONE), (SELF) or (CONN): we can build a
no longer inference for N ‖ K

α
−→ N̄ where the symmetric version of

(REPL)/(CLONE)/ (SELF)/(CONN) is not used at all. Thus, we can easily con-
clude by relying on one of the previous cases.

Proof of Lemma 5.7: Let (νl̃1)(l̃2)(N ‖ K)
α
−→ N̄; by Proposition 5.3, we have six-

teen possible interactions.

(1) (Proposition 5.3(1)) (νl̃1)(l̃2)N
α
−→ (νl̃′1)(l̃′2)N′ and N̄ ≡ (νl̃′1)(l̃′2)(N′ ‖ K); we have

five sub-cases:
(a) (l̃1, l̃2)∩n(α) = ∅, N

α
−→ N′, l̃′1 = l̃1 and l̃′2 = l̃2: then, (̃l)N

α
−→ (̃l)N′; we reason

by case analysis on α:
(i) α ∈ {τ, l1 y l2, (ν̃l) 〈l〉@ l1 : l1 , (ν̃l) l1 : ?l2 , l1 : !l2 }. By hy-

pothesis, (̃l)M
α̂
=⇒ (̃l)M′ and (̃l)N′ ≈ (̃l)M′; thus, trivially, (νl̃1)(l̃2)(M ‖

K)
α̂
=⇒ (νl̃1)(l̃2)(M′ ‖ K) , M̄ and, by definition, N̄< M̄.

(ii) α = ∃?β. By (EXT), we have that (̃l)M ‖ NET(β) ≡ (̃l)(M ‖
NET(β)) =⇒ (̃l)M′ and (̃l)N′ ≈ (̃l)M′; hence, by (EXT) and (HEXT),

38



it holds that (νl̃1)(l̃2)(M ‖ K) ‖ NET(β) ≡ (νl̃1)(l̃2)(M ‖ NET(β) ‖
K) =⇒ (νl̃1)(l̃2)(M′ ‖ K) , M̄ and N̄< M̄.

(b) α = (νl)α′, α′ = 〈l〉@ l1 : l2 , l ∈ l̃1, {l1, l2} ∩ (l̃1, l̃2) = ∅, N
α′

−→ N′,
l̃′1 = l̃1 − {l} and l̃′2 = l̃2 ∪ {l}: then, it can be either l ∈ l̃ or not; how-

ever, in both cases, (̃l)M
α′

==⇒ (̃l)M′ and (̃l)N′ ≈ (̃l)M′. Then, (νl̃1)(l̃2)(M ‖
K)

α
=⇒ (νl̃′1)(l̃′2)(M′ ‖ K) , M̄ and N̄< M̄, because l̃ is still a subset of (l̃′1, l̃

′
2) .

(c) α ∈ { 〈l〉@ l1 : l2 ,∃? 〈l〉@ l1 : l2 }, l ∈ l̃2, {l1, l2} ∩ (l̃1, l̃2) = ∅, N
α
−→ N′,

l̃′1 = l̃1 and l̃′2 = l̃2: the case for α = 〈l〉@ l1 : l2 is similar to case 1(a).i,
whereas the case for α = ∃? 〈l〉@ l1 : l2 is similar to case 1(a).ii.

(d) α = (νl)α′, α′ = l : ?l′ , l ∈ l̃1, l′ < (l̃1, l̃2), N
α′

−→ N′, l̃′1 = l̃1 − {l}

and l̃′2 = l̃2: if l < l̃ then the case is simple. Otherwise, (̃l)N
α′

==⇒ (̃l′)N′,

for l̃′ = l̃ − {l}; thus, (̃l)M
α′

==⇒ (̃l′)M′ and (̃l′)N′ ≈ (̃l′)M′. Then, (νl̃1)(l̃2)(M ‖
K)

α
=⇒ (νl̃′1)(l̃2)(M′ ‖ K) , M̄ and N̄< M̄, because l̃′ ⊆ l̃ and, hence, l̃′∩fa(K) =

∅.
(e) α ∈ {l y l′, l : ?l′ , l : !l′ }, l ∈ l̃2, l′ < (l̃1, l̃2), N

α
−→ N′, l̃′1 = l̃1 and

l̃′2 = l̃2 − {l}: similar to case 1(d).
(2) (symmetric of Proposition 5.3(1)) (νl̃1)(l̃2)K

α
−→ (νl̃′1)(l̃′2)K′ and N̄ ≡ (νl̃′1)(l̃′2)(N ‖

K′); since we are working up-to ≡, by using laws (EXT) and (HEXT), we can
assume that K′ is restriction and half-restriction free. We only give details for
point (a); points (b)/.../(e) can be proved by arguments easy derivable from
what follows. For case (a), we reason by case analysis on α:
(i) α = τ. Then, trivially, l̃1 ⊆ l̃′1 (‘⊂’ holds whenever K evolves by perform-

ing a new) and l̃′2 = l̃2. Thus, (νl̃1)(l̃2)(M ‖ K)
τ
−→ (νl̃′1)(l̃′2)(M ‖ K′) , M̄;

by definition, N̄ < M̄, because l̃ ⊆ (l̃′1, l̃
′
2) and fa(K′) = fa(K) (see Proposi-

tion 5.4).
(ii) α = 〈l〉@ l1 : l2 . By Proposition 5.4, fa(K′) = fa(K). Moreover, by

definition of the LTS, it must be {l1, l2} ∩ (l̃1, l̃2) = ∅. If l ∈ l̃1, then l̃′1 ,
l̃1 − {l} and l̃′2 = l̃2 ∪ {l}; otherwise, l̃′1 = l̃1 and l̃′2 = l̃2. In both cases, we
conclude as before, because l̃ is still a subset of (l̃′1, l̃

′
2).

(iii) α ∈ {l1 y l2, l1 : ?l2 , l1 : !l2 }. Then, by definition of the LTS, l2 < (l̃1, l̃2)
and, because l1 ∈ fa(K), l1 < l̃. Moreover, if l1 < (l̃1, l̃2), then l̃′1 = l̃1

and l̃′2 = l̃2; if l1 ∈ l̃1 (this case is possible only for α = l1 : ?l2 ), then
l̃′1 = l̃1 − {l1} and l̃′2 = l̃2; finally, if l1 ∈ l̃2, then l̃′1 = l̃1 and l̃′2 = l̃2 − {l1}.
Hence, (νl̃1)(l̃2)(M ‖ K)

α
−→ (νl̃′1)(l̃′2)(M ‖ K′) , M̄ and, by definition, N̄ < M̄,

because l̃ is still a subset of (l̃′1, l̃
′
2) and l̃ ∩ fa(K′) = ∅.

(iv) α = ∃?β. Then (νl̃1)(l̃2)(M ‖ K) ‖ NET(β) ≡ (νl̃1)(l̃2)(M ‖ K ‖
NET(β))

τ
−→ (νl̃1)(l̃2)(M ‖ K′) , M̄ and, trivially, N̄ < M̄. Indeed, by Propo-

sition 5.4, fa(K′) = fa(K) ∪ {l2} but, by definition of the LTS, l2 < (l̃1, l̃2);
thus, fa(K′) ∩ l̃ = ∅.
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(3) (Proposition 5.3(2)) N
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→ (̃l′)N′, K

l1yl2
−−−→ K′ and N̄ ≡ (νl̃′1)(l̃′2)(N′ ‖ K′);

if l̃′1 = l̃1 and l̃′2 = l̃2, the proof is derivable from case 13; if l̃′1 = l̃1 − {l} and
l̃′2 = l̃2 ∪ {l}, the proof is similar to case 1(b).

(4) (symmetric of Proposition 5.3(2)) N
l1yl2
−−−→ N′, K

〈l〉@ l2: l2
−−−−−−−→ K′ and N̄ ≡

(νl̃1)(l̃2)(N′ ‖ K′); this case is easy derivable from case 14.

(5) (Proposition 5.3(3)) N
∃?l1yl2
−−−−−→ N′, K

l1yl2
−−−→ K′ and N̄ ≡ (νl̃1)(l̃2)(N′ ‖ K′); then,

since {l1, l2} ⊆ fa(K), we have that {l1, l2} ∩ l̃ = ∅. Hence, (̃l)M ‖ {l1 ↔ l2} ≡

(̃l)(M ‖ {l1 ↔ l2}) =⇒ (̃l)M′ and (̃l)N′ ≈ (̃l)M′. Now, by Proposition 5.2(1),
(νl̃1)(l̃2)(M ‖ K) ≡ (νl̃1)(l̃2)(M ‖ {l1 ↔ l2} ‖ K

′) and we can easily conclude.

(6) (symmetric of Proposition 5.3(3)) N
l1yl2
−−−→ N′, K

∃?l1yl2
−−−−−→ K′ and N̄ ≡ (νl̃1)(l̃2)(N′ ‖

K′); then, since l1 ∈ fa(K), we have that l1 < l̃. If l2 < l̃, then (̃l)M
l1yl2
====⇒ (̃l)M′

and (̃l)N′ ≈ (̃l)M′; we can easily conclude (notice that fa(K′) = fa(K) ∪ {l2}

and, hence, fa(K′) ∩ l̃ = ∅). If l2 ∈ l̃, then we consider N
l2yl1
−−−→ N′ (that must

hold whenever N
l1yl2
−−−→ N′ holds). Thus, (̃l)N

l2yl1
−−−→ (̃l′)N′, for l̃′ = l̃ − {l2}; then,

(̃l)M
l2yl1
====⇒ (̃l′)M′ and (̃l′)N′ ≈ (̃l′)M′; this suffices to conclude, as fa(K′)∩ l̃′ = ∅.

(7) (Proposition 5.3(4).a) N
∃? 〈l〉@ l2: l1
−−−−−−−−−→ N′, K

〈l〉@ l2: l1
−−−−−−−→ K′ and N̄ ≡ (νl̃1)(l̃2)(N′ ‖ K′);

this case is similar to case 5.

(8) (symmetric of Proposition 5.3(4).a) K
∃? 〈l〉@ l2: l1
−−−−−−−−−→ K′, N

(νl̃′) 〈l〉@ l2: l1
−−−−−−−−−−→ (̃l′)N′, l̃′ ∩

fn(K) = ∅ and N̄ ≡ (νl̃′, l̃1) (l̃2)(N′ ‖ K′): again, by definition of the LTS, l1 ∈

fa(K). So, l1 < l̃, whereas it may be either l2 ∈ l̃ or not; we only consider the

first case, as the second one is simpler. Then, (̃l)N
l2yl1
−−−→

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→ (l̃′′)N′,

where l̃′′ = (̃l − {l2}) ∪ l̃′. Thus, (̃l)M
l2yl1
====⇒

(νl̃′) 〈l〉@ l2: l2
===========⇒ (l̃′′)M′ and (l̃′′)N′′ ≈

(l̃′′)M′. By Proposition 5.2, (νl̃1)(l̃2)(M ‖ K) =⇒ (νl̃′, l̃1) (l̃2)(M′ ‖ {l1 ↔ l2} ‖ l2 ::
〈l〉 ‖ K)

τ
−→ (νl̃′, l̃1) (l̃2)(M′ ‖ K′) , M̄ and N̄ < M̄: indeed, l̃′′ ⊆ (̃l′, l̃1, l̃2) and,

because l̃′ ∩ fn(K) = ∅, it holds that l̃′′ ∩ fa(K′) = ∅.

(9) (symmetric of Proposition 5.3(4).b) K
∃? 〈l〉@ l2: l1
−−−−−−−−−→ K′, N ≡ (l) N′, N′

〈l〉@ l2: l1
−−−−−−−→ N′′,

l < fa(K) and N̄ ≡ (νl̃1) (l, l̃2) (N′′ ‖ K′): this case can be proved like case 8;
notice that here we have l̃′′ = (̃l − {l2}).

(10) (Proposition 5.3(5).a) N
l1yl2
−−−→ N′

∃? 〈l〉@ l2: l1
−−−−−−−−−→ N′′, K

〈l〉@ l2: l2
−−−−−−−→ K′ and N̄ ≡

(νl̃1)(l̃2)(N′′ ‖ K′); by definition of K and of the LTS, it holds that l2 < l̃. On the
other hand, it may be either l1 ∈ l̃ or not; we only explicitly consider the first

case, that is more delicate. We now have (̃l)N
l1yl2
−−−→ (̃l′)N′, with l̃′ = l̃ − {l1};

then, (̃l)M
l1yl2
====⇒ (̃l′)M′ and (̃l′)N′ ≈ (̃l′)M′. Now, (̃l′)N′

∃? 〈l〉@ l2: l1
−−−−−−−−−→ (̃l′)N′′; thus,

(̃l′)M′ ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 ≡ (̃l′)(M′ ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉) =⇒ (̃l′)M′′ and
(̃l′)N′′ ≈ (̃l′)M′′. By Proposition 5.2, (νl̃1)(l̃2)(M ‖ K) =⇒ (νl̃1)(l̃2)(M′ ‖ {l1 ↔ l2} ‖

l2 :: 〈l〉 ‖ K′) =⇒ (νl̃1)(l̃2)(M′′ ‖ K′) , M̄ and N̄< M̄.

(11) (symmetric of Proposition 5.3(5).a) N
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→ (̃l′)N′, K

l1yl2
−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ K′

and N̄ ≡ (νl̃′, l̃1) (l̃2)(N′ ‖ K′): this is similar to case 6 but simpler, because
l̃ ∩ {l1, l2} = ∅.
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(12) (symmetric of Proposition 5.3(5).b) N ≡ (l) N′
〈l〉@ l2: l2
−−−−−−−→ (l) N′′,

K
l1yl2
−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ K′ and N̄ ≡ (νl̃1) (l, l̃2) (N′′ ‖ K′): this case is similar

to case 9 but simpler, because l̃ ∩ {l1, l2} = ∅.

(13) (Proposition 5.3(6)) N
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−→ (̃l′)N′

∃? 〈l〉@ l2: l1
−−−−−−−−−→ (̃l′)N′′, K

l1yl2
−−−→ K′ and N̄ ≡

(νl̃′, l̃1) (l̃2)(N′′ ‖ K′); by definition of K, it holds that {l1, l2} ∩ l̃ = ∅. Hence,

(̃l)M
(νl̃′) 〈l〉@ l2: l2
===========⇒ (̃l, l̃′) M′, (̃l, l̃′) M′ ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 ≡ (̃l, l̃′) (M′ ‖ {l1 ↔

l2} ‖ l2 :: 〈l〉) =⇒ (̃l, l̃′) M′′ and (̃l, l̃′) N′′ ≈ (̃l, l̃′) M′′; we easily conclude up-to
≡, since (̃l, l̃′) ⊆ (̃l′, l̃1, l̃2) and (̃l, l̃′) ∩ fa(K′) = ∅, because bound names are
different from the free ones.

(14) (symmetric of Proposition 5.3(6)) N
l1yl2
−−−→ N′, K

〈l〉@ l2: l2
−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→ K′ and

N̄ ≡ (νl̃1)(l̃2)(N′ ‖ K′); notice that {l1, l2} ∩ l̃ = ∅ and easily conclude.

(15) (Proposition 5.3(7)) N
(νl̃′) l2: ?l1
−−−−−−−→ N′, K

l1: !l2
−−−−→ K′ and N̄ ≡ (νl̃′, l̃1) (l̃2)(N′ ‖ K′ ‖

{l1 ↔ l2}); by definition of the LTS and by l̃ ∩ fa(K) = ∅, it holds that l1 < l̃. If

l̃′ = {l2}, then l2 < l̃; so, (̃l)M
(νl2) l2: ?l1
========⇒ (̃l)M′, for (̃l)N′ ≈ (̃l)M′, and we easily

conclude. If l̃′ = ∅, we reason like in case 6.
(16) (symmetric of Proposition 5.3(7)) N

l2: !l1
−−−−→ N′, K

l1: ?l2
−−−−→ K′ and N̄ ≡ (νl̃1)(l̃2)(N′ ‖

K′ ‖ {l1 ↔ l2}); similar to case 15.

Proof of Lemma 5.8: Let (l̃1)N
α
−→ N. Notice that, since ( f̃1, f̃2) are reserved, they

will remain fresh upon any transition; moreover, since free addresses can only
increase upon transitions (see Proposition 5.4), nodes in l̃2 will remain present
in any reduct of N and M. We reason by case analysis on α; 4 moreover, to
lighten notations, when l̃1, f̃1, l̃2, f̃2 are clear from the context, we shall abbreviate
[[N, l̃1, f̃1, l̃2, f̃2]] as [[N]].

(1) α = τ: then, N ≡ (l̃1)N′, for N
τ
−→ N′. This implies that [[N]]

τ
−→ [[N′]]; because

of reduction closure of �, [[M]] =⇒ M̄ and [[N′]] � M̄. Since ( f̃1, f̃2) are fresh,
it must be that M =⇒ M′ (thus, (l̃1)M =⇒ (l̃1)M′) and M̄ ≡ [[M′]]; hence, by
definition, N< (l̃1)M′ up-to ≡.

(2) α = l y l′: by definition of the LTS, l′ < l̃1; however, l′ can belong to l̃2 or
not, whereas it can be either l < (l̃1, l̃2), l ∈ l̃1 or l ∈ l̃2; moreover, if both l and
l′ belong to l̃2, we also have to consider whether they are the same name or
not. This yield seven sub-cases:
(a) (l̃1, l̃2) ∩ {l, l′} = ∅: as before, N ≡ (l̃1)N′ for N

α
−→ N′. Let l f ∈ ( f̃1, f̃2) and

consider the context

C [·] , [ · ] ‖ l′ :: acpt(l f ) ‖ l f :: GO l′ DO disc(l) THEN (nil⊕out()@l f )

4 We follow here a way of reasoning similar to the one used in Theorem 4.11. Thus, we
shall only give the discriminating context C [·] and some details on the key issues.
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By context and reduction closure, we obtain that (l̃1)M
lyl′
===⇒ (l̃1)M′′ and

(l̃1)N′ < (l̃1)M′′.

(b) l ∈ l̃1 and l′ < l̃2: then l , l′ and N , (l̃′1)N′, for N
lyl′
−−→ N′ and l̃′1 , l̃1−{l};

let l = li and f ′h+1 be a new, reserved and fresh name. Consider the context

C [·] ,[ · ] ‖ l′ :: acpt( f ′h+1) ‖ { fi ↔ f ′h+1} ‖

f ′h+1 :: in(!x)@ fi.disc( fi).GO l′ DO eval(acpt( f ′h+1))@x. disc(x) THEN

conn(x).(out(x)@ f ′h+1 ⊕ nil)

Like before, we consider the reductions C [[[N]]] |=⇒ [[N′, l̃′1, f̃∗, l̃′2, f̃ ′∗ ]] ‖
fi :: nil, where f̃∗ , f̃1 − { fi}, l̃′2 , l̃2 ∪ {li} and f̃ ′∗ , f̃2 ∪ { f ′h+1}. Because
of freshness of fi, [[N′, l̃′1, f̃∗, l̃′2, f̃ ′∗ ]] ‖ fi :: nil � [[N′, l̃′1, f̃∗, l̃′2, f̃ ′∗ ]]; we can
easily conclude.

(c) l ∈ l̃2 and l′ < l̃2: let l = l′j and consider the context

C [·] , [ · ] ‖ l′ :: acpt( f ′j ) ‖ f ′j ::in(!x)@ f ′j .GO l′ DO disc(x) THEN

out(x)@ f ′j .(nil ⊕ out()@ f ′j )

(d) l′ ∈ l̃2 and l < (l̃1, l̃2): like the previous case, with l in place of l′.
(e) l ∈ l̃1 and l′ ∈ l̃2: let l = li, l′ = l′j and f ′h+1 be a new, reserved and fresh

name; then, consider the context, derived from that in 2(b)

C [·] ,[ · ] ‖ { f ′j ↔ fi} ‖ { f ′j ↔ f ′h+1} ‖

f ′j :: in(!x)@ fi.disc( fi).in(!y)@ f ′j .out(y)@ f ′j .eval(acpt( f ′j ))@y.

GO y DO eval(acpt( f ′h+1))@x. disc(x) THEN

eval(disc( f ′j ).conn(x).(out(x)@ f ′h+1 ⊕ nil))@ f ′h+1

(f) l ∈ l̃2 and l′ ∈ l̃2, with l , l′: let l = l′j1 and l = l′j2 , for j1 , j2; consider
the context

C [·] ,[ · ] ‖ { f ′j1 ↔ f ′j2} ‖

f ′j2 :: in(!y)@ f ′j2 .in(!x)@ f ′j1 .eval(acpt( f ′j2))@y.

GO y DO disc(x) THEN out(y)@ f ′j2 .

eval(disc( f ′j2).out(x)@ f ′j1 .(nil ⊕ out()@ f ′j1))@ f ′j1

(g) l = l′ ∈ l̃2: then, by rule (SELF), l ∈ fa(M) implies M ≡ M ‖ {l ↔ l}, and
the thesis easily follows.
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(3) α = 〈l〉@ l′ : l′ : this case is similar to case 2., with action in(·)@l′ replacing

disc(·) in C [·].

(4) α = (νl) 〈l〉@ l′ : l′ : we have two sub-cases:
(a) l′ < l̃2: then, N ≡ (l̃1)N′, for N

α
−→ N′ and N′ ≡ (l) N′′. Let fk+1 be a new,

reserved and fresh name; consider the context

C [·] , [ · ] ‖ { fk+1 ↔ l′} ‖ fk+1 :: in(!x)@l′.disc(l′).(out(x)@ fk+1 ⊕ nil)

Similarly to the 3rd case in the proof of Theorem 4.11, closure under such
a context implies that (l̃1)M

α
=⇒ (l, l̃1) M′ and (l, l̃1) N′′ ≈ (l, l̃1) M′; we can

easily conclude.
(b) l′ = l′j: as before, let fk+1 be a new, reserved and fresh name, and consider

the context

C [·] , [ · ] ‖ { fk+1 ↔ f ′j } ‖ f ′j ::in(!y)@ f ′j .out(y)@ f ′j .in(!x)@y.

eval(disc( f ′j ).(out(x)@ fk+1 ⊕ nil))@ fk+1

(5) α = ∃?ly l′: by definition of the LTS, {l, l′} ∩ l̃1 = ∅; we have five sub-cases:
(a) {l, l′} ∩ l̃2 = ∅: we consider the context C [·] , [ · ] ‖ {l ↔ l′} and easily

conclude.
(b) l = l′j and l′ < l̃2: consider the context

C [·] ,[ · ] ‖ {l′ ↔ f ′j } ‖

f ′j ::in(!x)@ f ′j .eval(acpt(x))@l′.disc(l′).eval(acpt( f ′j ))@x.

GO x DO conn(l′) THEN out(x)@ f ′j .(nil ⊕ out()@ f ′j )

(c) l′ = l′j and l < l̃2: like case 5(b), with l in place of l′.
(d) l = l′j1 and l = l′j2 , for j1 , j2: like case 2(f), with acpt( f ′j2).acpt(x) in

place of acpt( f ′j2) and conn(x) in place of disc(x) .

(e) l = l′ ∈ l̃2: like case 2(g).
(6) α = l : !l′ : this case is similar to case 2., with actions conn(·).disc(·) replacing

disc(·) .

(7) α = l : ?l′ : like case 6., with acpt in place of conn.
(8) α = (νl) l : ?l′ : by definition of the LTS, l′ < l̃1; thus, we have two sub-cases:

(a) l′ < l̃2: let f ′h+1 be a new, reserved and fresh name; consider the context

C [·] , [ · ] ‖ { f ′h+1 ↔ l′} ‖ l′ ::acpt(!x).eval(conn( f ′h+1))@x.disc(x).

eval(disc(l′).acpt(x).(out(x)@ f ′h+1 ⊕ nil))@ f ′h+1

Notice that, by reasoning as in case 4(a), we can state that M performs a
conn(l′) from a restricted node (whose address can be alpha-converted to
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l).
(b) l′ = l′j: as before, let f ′h+1 be a new, reserved and fresh name, and consider

the context

C [·] , [·] ‖ { f ′h+1 ↔ f ′j } ‖ f ′j ::in(!y)@ f ′j .out(y)@ f ′j .eval(acpt( f ′j ))@y.

GO y DO acpt(!x).eval(conn( f ′h+1))@x.disc(x) THEN

eval(disc( f ′j ).acpt(x).(out(x)@ f ′h+1 ⊕ nil))@ f ′h+1

(9) α = ∃? 〈l〉@ l′′ : l′ : by definition of the LTS, {l′, l′′} ∩ l̃1 = ∅, whereas it can
be l ∈ l̃1; moreover, l, l′ and l′′ can belong to l̃2 or not. By also distinguishing
whether l = l′, l = l′′ and l′ = l′′, we have nineteen sub-cases:
(a) {l, l′, l′′} ∩ (l̃1, l̃2) = ∅: consider the context C [·] , [ · ] ‖ {l′ ↔ l′′} ‖ l′′ ::
〈l〉.

(b) l = li and {l′, l′′} ∩ l̃2 = ∅: consider the context

C [·] ,[ · ] ‖ {l′′ ↔ fi} ‖ {l′′ ↔ l′} ‖

fi :: in(!x)@ fi.out(x)@ fi.out(x)@l′′.disc(l′′).(nil ⊕ out()@ fi)

(c) l = l′j and {l′, l′′} ∩ l̃2 = ∅: like case 9(b), with f ′j in place of fi.
(d) l′ = l′j and {l, l′′} ∩ (l̃1, l̃2) = ∅: consider the context

C [·] ,[ · ] ‖ {l′′ ↔ f ′j } ‖

f ′j :: in(!x)@ f ′j .eval(acpt(x))@l′′.out(l)@l′′.disc(l′′).eval(acpt( f ′j ))@x.

GO x DO conn(l′′) THEN out(x)@ f ′j .(nil ⊕ out()@ f ′j )

(e) l′′ = l′j and {l, l′} ∩ (l̃1, l̃2) = ∅: consider the context

C [·] , [·] ‖ l′ :: acpt( f ′j ) ‖ f ′j ::in(!x)@ f ′j .eval(acpt(l′))@x.out(l)@x.

GO l′ DO conn(x) THEN

out(x)@ f ′j .(nil ⊕ out()@ f ′j )

(f) l = li, l′ = l′j and l′′ < l̃2: consider the context, derived from that in case
9(d)

C [·] ,[ · ] ‖ {l′′ ↔ f ′j } ‖ { f
′
j ↔ fi} ‖

f ′j :: in(!y)@ fi.out(y)@ fi.disc( fi).

in(!x)@ f ′j .eval(acpt(x))@l′′.out(y)@l′′.disc(l′′).eval(acpt( f ′j ))@x.

GO x DO conn(l′′) THEN out(x)@ f ′j .(nil ⊕ out()@ f ′j )
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(g) l = l′j1 , l′ = l′j2 , j1 , j2 and l′′ < l̃2: like case 9(f), with f ′j1 in place of fi

and f ′j2 in place of f ′j .
(h) l = l′ = l′j and l′′ < l̃2: like case 9(d), with x in place of l.
(i) l = li, l′′ = l′j and l′ < l̃2: like case 9(f), with l′ in place of l′′ everywhere,

except for out(y)@l′′ that becomes out(y)@x.
(j) l = l′j1 , l′′ = l′j2 , j1 , j2 and l′ < l̃2: like case 9(g), with l′ in place of l′′

everywhere, except for out(y)@l′′ that becomes out(y)@x.
(k) l = l′′ = l′j and l′ < l̃2: like case 9(e), with x in place of l.
(l) l′ = l′j1 , l′′ = l′j2 , j1 , j2 and l < (l̃1, l̃2): consider the context

C [·] ,[ · ] ‖ { f ′j1 ↔ f ′j2} ‖ f ′j1 :: acpt( f ′j2) ‖

f ′j2 :: in(!x)@ f ′j1 .out(x)@ f ′j1 .disc( f ′j1).in(!y)@ f ′j2 .

GO f ′j1 DO eval(acpt(y))@x THEN eval(acpt( f ′j2))@y.

GO y DO out(l)@y.conn(x) THEN out(y)@ f ′j2 .(nil ⊕ out()@ f ′j2)

(m) l′ = l′′ = l′j and l < (l̃1, l̃2): consider the context

C [·] , [ · ] ‖ f ′j :: in(!y)@ f ′j .out(l)@y.out(y)@ f ′j .(nil ⊕ out()@ f ′j )

(n) l = li, l′ = l′j1 and l′′ = l′j2 , with j1 , j2: consider the following context,
derived from case 9(l):

C [·] ,[ · ] ‖ { fi ↔ f ′j2} ‖ { f
′
j1 ↔ f ′j2} ‖ f ′j1 :: acpt( f ′j2) ‖

f ′j2 :: in(!z)@ fi.out(z)@ fi.disc( fi).

in(!x)@ f ′j1 .out(x)@ f ′j1 .disc( f ′j1).in(!y)@ f ′j2 .

GO f ′j1 DO eval(acpt(y))@x THEN eval(acpt( f ′j2))@y.

GO y DO out(z)@y.conn(x) THEN out(y)@ f ′j2 .(nil ⊕ out()@ f ′j2)

(o) l = li, l′ = l′′ = l′j: consider the following context, derived from case
9(m):

C [·] , [ · ] ‖ { f ′j ↔ fi} ‖ f ′j ::in(!z)@ fi.out(z)@ fi.disc( fi).in(!y)@ f ′j .

out(z)@y.out(y)@ f ′j .(nil ⊕ out()@ f ′j )

(p) l = l′j, l′ = l′j1 and l′′ = l′j2 , with |{ j, j1, j2}| = 3: like case 9(n), with f ′j in
place of fi.

(q) l = l′ = l′j1 , l′′ = l′j2 and j1 , j2: like case 9(l), with x in place of l.
(r) l = l′′ = l′j2 , l′ = l′j1 and j1 , j2: like case 9(l), with y in place of l.
(s) l = l′ = l′′ = l′j: like case 9(m), with y in place of l.
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