
Science of Computer Programming, 63(1):57–87. c© Elsevier, 2006.

Confining Data and Processes

in Global Computing Applications ?

Rocco De Nicola a Daniele Gorla b,a Rosario Pugliese a

aDipartimento di Sistemi e Informatica, Università di Firenze
bDipartimento di Informatica, Università di Roma “La Sapienza”

Abstract

A programming notation is introduced that can be used for protecting secrecy and
integrity of data in global computing applications. The approach is based on the
explicit annotations of data and network nodes. Data are tagged with information
about the allowed movements, network nodes are tagged with information about
the nodes that can send data and spawn processes to them. The annotations are
used to confine movements of data and processes. The approach is illustrated by
applying it to three paradigmatic calculi for global computing, namely cKlaim
(a calculus at the basis of Klaim), Dπ (a distributed version of the π-calculus)
and Mobile Ambients Calculus. For all of these formalisms, it is shown that their
semantics guarantees that computations proceed only while respecting confinement
constraints. Namely, it is proven that, after successful static type checking, data
can reside at and cross only authorised nodes. “Local” formulations of this property
where only relevant sub-nets type check are also presented. Finally, the theory is
tested by using it to model secure behaviours of a UNIX-like multiuser system.

Key words: Global Computing, Formal methods, Type systems, Data secrecy

? This work is partially based on a preliminary paper appeared in [15] and has
been partially supported by EU within FET - Global Computing initiative, projects
MIKADO IST-2001-32222 and AGILE IST-2001-32747. The funding body is not
responsible for any use that might be made of the results presented here.

Email addresses: denicola@dsi.unifi.it (Rocco De Nicola),
gorla@di.uniroma1.it (Daniele Gorla),
pugliese@dsi.unifi.it (Rosario Pugliese)

1

1 Introduction

In the design of programming languages for global computing, the integra-
tion of security mechanisms is a major challenge and great efforts have been
recently devoted to embed such mechanisms within standard programming
features. Several language-based security techniques have been proposed that
range from type systems [19,4,2,13], to data flow analysis [16,25,9,1], from in-
lined reference monitoring [10] to proof-carrying code [24]. We refer the reader
to [26] for an overview of some of these techniques.

The major goal of language-based security is to design languages that are
flexible, expressive and safe. Unfortunately, these are often contrasting re-
quirements. For example, mobile code deeply increases flexibility and thus
expressivity of programming languages, but introduces new security problems
related to unwanted accesses to classified data. Indeed, when programming
has to take into account networks with mobile agents, existence in the envi-
ronment of malicious principals, that can put security of data at risk, must
be assumed. Malicious nodes can attack a mobile process and compromise its
integrity through code modification or its secrecy through leakage of sensitive
data. But one has also to take into account existence of malicious mobile pro-
cesses that might attempt to access or forge private data of the network nodes
hosting them.

A programming language for global computing should thus be equipped with a
foundational model that also encompasses security features; the proof that an
application is ‘safe’ could then be done by relying on formal methods. In our
view, the language security model should consider existence of misbehaving
entities in the execution environment of applications. Moreover, only local
knowledge of the environment can be assumed because it would be impossible
to collect global information in a network with possibly malicious nodes under
the control of thousands different administrative authorities.

The major contribution of this paper is the definition of an approach that
permits protecting the secrecy of data residing on hosting nodes and that
of data carried by mobile processes by relying on program annotation. Our
approach is inspired by Confined-λ [20] and relies on annotating data with
sets of node addresses, called regions, that specify the network nodes that
can interact with them. Also nodes may have annotations that specify which
nodes can send data and spawn processes to them. Data annotations enable
programmers to control the set of nodes that can share specific data, and
permit shading them from other nodes. Node annotations, instead, enable
node administrators to control the set of data and processes each node can
host; thus, the node can refuse malicious processes and unwanted data.

2

The language semantics is then designed to guarantee that computations pro-
ceed while respecting the region constraints. For example, a process P can
access a datum d only if P ’s execution does not export d outside the data re-
gion, say r, i.e. if P only writes d in network nodes included in r or, similarly,
if P only carries d while migrating to nodes included in r. Enforcing simi-
lar constraints requires a form of code inspection that is performed, as much
as possible, statically thus relieving the runtime semantics of the burden to
make expensive checks and, then, improving efficiency. In Section 2 we shall
introduce more details and a simple motivating example.

Our approach is largely independent of a specific model. Indeed, we shall show
how it can be applied to different process calculi for mobile processes. These
calculi have greatly improved the formal understanding of the complex mecha-
nisms underlying global computing but, although share similar intentions and
motivations, rest on different design choices. Usually, they permit describing
both single processes, and nets of located, possibly migrating, processes. Nets
are collections of nodes that can be thought of as physically distributed ma-
chines or as logical partitions of the same machine. Each node is referrable via
an address, is connected to other nodes and hosts a set of processes. Depending
on the design choices of the calculus, e.g. nets may be plain or hierarchically
structured, and the notions of process, node and net may collapse. In the most
basic setting, processes are built up from the empty process and from the basic
actions by using standard operators, e.g., action prefixing, name restriction,
parallel composition and replication. The basic actions permit data exchange,
spawning of new, possibly remote, processes and creation of new resources.

In this paper, we apply the approach to three paradigmatic calculi for global
computing, that are sufficiently different to provide evidence of the generality
of our approach. We shall consider cKlaim (core Klaim [14], a simplified ver-
sion of Klaim [8]) in Section 3, Dπ (Distributed π-calculus [19], a distributed
variant of the π-calculus [23]) in Section 4, and Mobile Ambients Calculus
[5] in Section 5. For each of these calculi, we add regions information to the
syntax of terms, define a type system and an operational semantics that take
annotations into account, and prove that the semantics guarantees that com-
putations proceed only while respecting confinements. Thus, after successful
static type checking, one can guarantee that data are manipulated only by
authorised users. Moreover, since in such dynamic environments we cannot
assume knowledge of the whole net, we also establish a more general result,
namely that absence of violations of data annotations is guaranteed for all
successfully type checked sub-nets, regardless of the configuration and of the
evolution of the whole net they are in. In Section 6 we illustrate our approach
by means of a significative example, where we model the secure implementa-
tion of a UNIX-like multiuser system. Comments on the differences between
the three typing systems and about future and related work are postponed to
Section 7.

3

2 Controlling Data Movement via Types

As stated in the Introduction, we would like to set up a machinery based on
typing that helps in protecting exchanged and local data in global computing
applications. To this aim, we suggest annotating data with sets of network
addresses, describing the sub-net where data can be used; these sets will be
called regions. The annotations allow programmers to fix the nodes that can
share a given datum, and to avoid that the datum is accessed by untrusted
processes (from untrusted nodes). Also network nodes are annotated with
regions that specify the nodes that can send data and those that can spawn
processes to them. This mechanism allows the administrator of a node to
control the data/processes the node can host, and to refuse malicious processes
and unwanted data. Thus, nodes are annotated with two regions, say rd and rp.
We should have rp ⊆ rd since accepting processes is, in general, more dangerous
than accepting data; however, no restriction on the model is imposed to deal
with this issue.

Our typing approach can be implemented by letting regions to be either finite
subsets of addresses and input parameters or the distinct element > (used
to refer to the whole net). The set of all regions R , ranged over by r, can be
partially ordered by the subset inclusion relation ⊆, and has > as top element.
Data annotation is rendered as [data]r; we shall assume that absence of region
annotations stands for >.

The language semantics guarantees that computations proceed according to
region constraints. This property, that we call safety, can be stated as

A net N is safe if, for any datum d occurring in N associated to region r
and for all possible evolutions of N , it holds that d will only cross and reside
at nodes whose addresses are in r.

To better understand the properties we want to model and the impact of our
approach on system security, we present a simple example that, for the time
being, is modelled by means of a sort of abstract language (in the following
sections, the same example shall be modelled by exploiting each of the calculi
we mentioned in the previous section). Operator ‘.’ stands for action prefixing
while ‘∗’ denotes replication of processes. We assume the following process
actions:

• Snd(data, tgt) sends the information data by exploiting the communication
medium tgt;

• Rcv(par, tgt) receives from the communication medium tgt information
that is then bound to parameter par;

• Res(name) creates a fresh name name, and restricts its visibility to the
creating process, shading the name to any other process of the net.

4

Moreover, we shall use function access() for associating ‘access points’ to
nodes. The exact nature of the access points and of the communication
medium tgt, and the way Snd and Rcv exchange data depends on the chosen
communication paradigm. For instance, in case of channel-based synchronous
communication, access(addrS) will return a valid channel for communicat-
ing with addrS, tgt will be a suitable communication channel and actions
Snd/Rcv will be executed simultaneously.

For the sake of simplicity, in the following and in the other examples we shall
use polyadic communication, although we develop our theoretical framework
by considering the monadic and first order variants of the calculi. Here we
further rely on remote communications and on a mechanism that permits de-
composing received data according to the structure of the parameters specified
for receiving them.

Let us now describe the scenario we want to model. Suppose that a client C
requires a service to a server S. Once S has verified the credentials of C (e.g. its
identity or its credit card information), it sends back a secret password, that
C can change. C could then access the service by using the last set password.
This protocol can be modelled by assuming two network addresses, addrC and
addrS, hosting the processes PC and PS, respectively, that are defined below.

PC , Snd(addrC , [creditCard info]{addrC ,addrS}, access(addrS)).

Rcv(y, access(addrC)). < modify password y and access the service >

PS , ∗Rcv(x1, x2, access(addrS)). < check credit card info x2 > .

Res(PWD).Snd([PWD]{x1,addrS} , access(x1)).

< handle password modifications and provide the service >

Notice that, since the information on C’s credit card is marked with region
{addrC , addrS}, only processes at the locations of C and S will be enabled
to capture C’s request. Thus, no attacks mounted from other nodes aimed at
cancelling the request can take place. Similar considerations do hold for the
restricted name PWD that S sends back to C (it represents a secret password
shared between processes at C’s and S’s locations).

To make our theoretical framework properly working, we need to control the
processes arriving at C’s and S’s locations; this is why our typing discipline
requires also nodes to be annotated with regions. Server S can then accept only
processes coming from trusted nodes, but it should accept data coming from
any user; this is necessary to model a setting where S accepts any service
request, while it supplies the service only to accredited users. It has to be
said that we are implicitly assuming the ability of determining the origin
(the source node) of data and processes. By relying on it, we can then check

5

compliance with regions annotations.

In the example above we have exploited remote communication; if only local
communication is allowed, we would need to replace Snd(. . . , access(addrS))
with something like Exec(Snd(. . . , access(addrS)) , addrS), supposing that
Exec(P, dest) spawns process P for execution to the node with address dest.

3 cKlaim: Core Klaim

We start by applying our approach to cKlaim [14], a calculus at the core of
the language Klaim (Kernel Language for Agents Interaction and Mobility,
[8]). The theory developed here simplifies that of [15] because the calculus only
permits monadic communication and uses replication (instead of recursion) to
model infinite behaviours.

The syntax of cKlaim is given in Table 1. There is only one category of
names, namely that of locality names L, ranged over by l. Identifiers, ranged
over by `, can be locality names or variables (ranged over by x), and represent
both the communicable data and the target of (possibly remote) actions. T
denotes templates for pattern matching and may either be a parameter !x, for
some variable x, or a locality name. Data are represented as special processes
〈l〉, thus we may say that each node hosts processes and a (possibly empty)
multiset of data. In the following, we assume that in (well formed) processes
data are never prefixed by an action or replication. By using Linda [11] termi-
nology, we shall call tuple space (TS, for short) the multiset of data hosted by
a node and we let it to represent the repository of the node. Communication
can be remote and relies on multiple distributed tuple spaces. cKlaim nodes
are written l rd

:: rp P . The two region annotations control the nodes that can
send data or processes to l, as established by the node administrator. Process
actions are:

• out([`′]r)@`: creates a new datum `′ (whose region is r) in the TS at `.
• in(T)@`: if T = !x, a datum 〈l〉 is withdrawn from the TS at ` and x is

replaced by l in the continuation; if T = `′, then the action will look for
(and retrieve) a datum 〈`′〉 at the TS of node ` (if any). This second kind
of input action is a form of name matching operator.

• eval(P)@`: spawns process P for execution to the node referred to by `.
• newloc(l): creates a fresh locality name l that is used as the address of a

new node tagged by the region annotations of the creating one and hosting
process nil.

Identifiers occurring in process terms can be bound. More precisely, prefix
in(!x)@`.P binds variable x, while newloc(l).P binds locality l; in both cases,

6

l, h, k, . . . ∈ L Locality names

x, y, z, . . . Variables

` ::= l | x Identifiers

T ::= ` | !x Templates

N ::= l rd
:: rp P | N1 ‖ N2 Nets

P ::= Processes

nil (empty)

| 〈[l]r〉 (datum)

| α.P (prefixing)

| P1 | P2 (parallel composition)

| ∗P (replication)

α ::= Actions

out([`′]r)@` (send)

| in(T)@` (receive)

| eval(P)@` (execute)

| newloc(l) (creation/restriction)

Table 1
cKlaim Syntax

P is the scope of the binding. An identifier that is not bound is called free.
We let fv(P) to denote the set of free variables in P . As usual, α-conversion
allows to freely rename bound identifiers without captures. In the sequel, we
shall assume that bound identifiers in processes are all distinct and different
from the free ones (this is always possible by using α-conversion). Finally, we
shall only consider for execution closed nets, i.e. nets where each occurrence
of a variable is bound by an in prefix (similarly to many real compilers, we
consider terms with free variables as programming errors). In the rest of the
paper, we will omit trailing occurrences of the empty process, as usual.

3.1 Typing cKlaim Nets

The language presented in the previous section is a mean to program appli-
cations where, during the computation, a datum can only appear in localities
contained in its region annotation. The runtime semantics can enforce this
requirement by performing appropriate checks. These (runtime) checks are
necessary because the pattern matching based communication does not per-
mit making any static assumption on the actual structure of tuples hosted by

7

a tuple space. To make the semantics as efficient as possible, a preliminary
typing phase is introduced. Static typing of cKlaim nets aims at guaranteeing
that:

(1) a datum [l]r can be seen at (i.e. can cross) ` if ` ∈ r
(2) a process retrieving a datum [l]r cannot exhibit l outside r.

The typing phase performs check 1. statically and annotates parameters
occurring in templates with regions to enable efficient execution of check
2. at runtime. To better distinguish the annotations put by the program-
mers/administrators from those put by the type system, we shall write the
latter ones as superscripts and the former ones as subscripts. Hence, the syn-
tax of templates becomes

T ::= ` | [! x]r

Intuitively, [! x]r states that the datum replacing x will cross at most the
localities in r.

The typing procedure for cKlaim nets is given in Table 2. Net typings are
written N Â N ′. The typing step includes a type checking phase, to verify
that nets are written according to the region annotations therein, and a type
inference phase, to annotate parameters occurring in templates. Intuitively,
the inference phase takes a net N (written according to the syntax in Table 1)
and returns a net N ′ obtained from N by annotating all the parameters with
a region containing the nodes that the received values will cross. E.g., in pro-
cess in(!x)@l.out([x]r)@l′ the declaration !x of variable x must be associated
to region r. The type checker verifies that each process located at a node l
contains only data that can be seen by l (this is done by the judgement Âl)
and verifies that actions out and eval send data/code to nodes where the
data/code can appear without violating the region annotations.

Judgement Â relies on an auxiliary procedure Γ ` P Â` Γ′ ` P ′ where
the type environment Γ is a finite map from variables to regions such that
fv(P) ⊆ dom(Γ). Thus, the procedure ∅ ` P Â` ∅ ` P ′ is defined only if P
is closed; in that case, for each parameter in P , a region annotation describing
the use of that parameter in the continuation process (i.e. where it will be sent)
is determined and used to decorate P (thus obtaining P ′). Such regions are
determined by the type inference by considering the locality where the process
runs (the ` decorating Â`) and by examining the localities where the variables
can appear upon execution of actions out and/or eval. Notice, however, that
care is needed to avoid that closed nets become open. As an example, consider
the nodes (both of them are legal)

l :: in(!x)@l′.in(!y)@l′′.out([x]{l,y})@l (?)

l :: in(!y)@l′.out([y]{l,y})@l (??)

8

Typing Nets:

(cK-T-Net)

N1 Â N ′
1 N2 Â N ′

2

N1 ‖ N2 Â N ′
1 ‖ N ′

2

(cK-T-Node)

rd, rp ∈ {>} ∪ 2L ∅ ` P Âl ∅ ` P ′

l rd
:: rp P Â l rd

:: rp P ′

Typing Processes:

(cK-T-Nil)

Γ ` nil Â` Γ ` nil

(cK-T-Par)

Γ ` P1 Â` Γ′ ` P ′
1 Γ′ ` P2 Â` Γ′′ ` P ′

2

Γ ` P1|P2 Â` Γ′′ ` P ′
1|P ′

2

(cK-T-Repl)

Γ ` P Â` Γ′ ` P ′

Γ ` ∗P Â` Γ′ ` ∗P ′

(cK-T-New)

Γ ` P Â` Γ′ ` P ′

Γ ` newloc(l).P Â` Γ′ ↗l ` newloc(l).P ′

(cK-T-Datum)

l ∈ r

Γ ` 〈[l′]r〉 Âl Γ ` 〈[l′]r〉

(cK-T-Match)

Γ ` P Â` Γ′ ` P ′

Γ ` in(`′′)@`′.P Â` Γ′ ` in(`′′)@`′.P ′

(cK-T-In)

Γ] {x : {`}} ` P Â` Γ′] {x : r} ` P ′

Γ ` in(!x)@`′.P Â` Γ′↗x ` in([!x]r−{x})@`′.P ′

(cK-T-Out)

{`, `′} ⊆ r Γ ` P Â` Γ′ ` P ′

Γ ` out([`′′]r)@`′.P Â` Γ′ + {x : r}x∈fv(`′′) ` out([`′′]r)@`′.P ′

(cK-T-Eval)

` ∈ reg(P1) Γ ` P1 Â`′ Γ′ ` P ′
1 Γ′ ` P2 Â` Γ′′ ` P ′

2

Γ ` eval(P1)@`′.P2 Â` Γ′′ + {x : {`′}}x∈fv(P1) ` eval(P ′
1)@`′.P ′

2

Table 2
Typing Procedure for cKlaim

Blindly annotating these nodes would result in

l :: in([!x]{l,y})@l′.in([!y]{l})@l′′.out([x]{l,y})@l

l :: in([!y]{l,y})@l′.out([y]{l,y})@l

that are open because of the occurrence of y in the regions of !x and !y, re-
spectively. The solution we designed to accept (?) is to assign !x the region
annotation >. This is reasonable since in([!x]{l,y})@l′ means ‘retrieve a datum

9

from l′ and share it with a generic locality of the net’ (indeed y can be dynam-
ically replaced with any locality name). The solution we designed to accept
(??) is to remove y from !y region annotation and assume that a locality can
always occur in the node having that locality as address.

An anomaly somehow related to (?) is

l :: in(!x)@l′.newloc(l′′).out([x]{l,l′′})@l (†)
that would result in the annotated process

l :: in([!x]{l,l
′′})@l′.newloc(l′′).out([x]{l,l′′})@l

Here the problem is that the l′′ occurring in the annotation associated to !x by
the inference system escapes from the binder newloc that declares l′′. Thus,
these two occurrences of l′′ are not the same! For the sake of simplicity, we
overcome this problem like before, i.e. by assigning > to the region annotation
of !x.

To rule out anomalies like (?) and (†), in Table 2 we use function Γ↗`, that
is inductively defined as

∅ ↗` , ∅

(Γ] {x : r}) ↗` ,





Γ↗`] {x : >} if ` ∈ r

Γ↗`] {x : r} otherwise

where] denotes union between environments with disjoint domains.

Function + extends the information of an environment through another en-
vironment and is undefined if the domain of the second environment is not
included in that of the first one; formally

Γ + ∅ , Γ

Γ + {x : r} , Γ′] {x : r ∪ r′} if Γ = Γ′] {x : r′}
Γ + ({x : r}] Γ′) , (Γ + {x : r}) + Γ′

Finally, we write {. . .}i∈I to mean
⋃

i∈I{. . .}.

Before concluding this section, we briefly comment on some typing rules. No-
tice that the typing of N also verifies that N is closed. Moreover, it can be
easily seen that typing P1|P2 and P2|P1 yields the same typing; this relies on
commutativity of sets union, since Γ grows up by union of regions. In rule
(cK-T-New), the resulting environment is Γ′↗l to rule out anomalies like
(†). In rule (cK-T-In), the procedure should type P in the environment Γ
extended by associating x to region {`}. At the end of this typing phase, the

10

region annotation r calculated for x is associated to the parameter !x. Notice
that x can occur in x’s region r, generating anomalies like (??); to avoid this,
the annotation for x must be r − {x}. Moreover, it is possible that x occurs
in region annotations within Γ′ because of anomalies like (?); thus, the envi-
ronment resulting from this phase must be Γ′↗x. In rule (cK-T-Out), the
type checker verifies that `′′ can stay both in the hosting locality ` and in the
target locality `′. The continuation process P is typed in the environment Γ,
thus obtaining the annotated process P ′ and the environment Γ′. Hence, the
result of the typing will be out([`′′]r)@`′.P ′ together with Γ′ extended with
the information that the variables occurring in `′′ (i.e. x if `′′ = x) could be
seen at r. Similar observations also hold for rule (cK-T-Eval) too; in par-
ticular, the check that the process can cross the locality where it is hosted is
performed whenever the process is going to migrate. To this aim, we exploit
the auxiliary function reg() that returns the intersection of the data regions
occurring in its argument. Its formal definition is

reg(nil) , > reg(newloc(l).P) , reg(P)− {l}
reg(out([`′]r)@`.P) , r ∩ reg(P) reg(in(T)@`.P) = reg(∗P) , reg(P)

reg(P1|P2) = reg(eval(P1)@`.P2) , reg(P1) ∩ reg(P2)

We deem well-typed those nets that successfully passed a typing phase.

Definition 1 (Well-Typed cKlaim Nets) A net N is well-typed if there
exists a net N ′ (written according to the syntax of Table 1) such that N ′ Â N .

3.2 cKlaim Typed Operational Semantics

cKlaim nets are executed according to the reduction relation Â−→ defined
in Table 3. Â−→ relates configurations of the form L.N , where L is such that
loc(N) ⊆ L ⊂fin L and function loc(N) returns the set of localities occurring
in N . In a configuration L . N , L is needed to ensure global freshness of new
addresses. For the sake of readability, when a reduction does not generate any
fresh addresses, we write N Â−→ N ′ instead of L.N Â−→ L.N ′. We denote
with L] L′ the disjoint union of sets L and L′, and with Â−→∗ the reflexive
and transitive closure of Â−→ .

The semantics exploits substitutions, replacing variables with locality names;
the substitution mapping x to l will be written as {l/x}. The application of {l/x}
to any syntactic term (variable/region/process/type environment) t, denoted
by t{l/x}, replaces each free occurrence of x in t with l, with renaming of bound
variables possibly involved to avoid captures. We remark that the application
of a substitution to a process P also acts on the region annotations in P .

11

(cK-Out)
l ∈ r′d

l rd
:: rp out([l′′]r)@l′.P ‖ l′ r′

d
:: r′p P ′ Â−→ l rd

:: rp P ‖ l′ r′
d
:: r′p P ′ | 〈[l′′]r〉

(cK-Eval)
l ∈ r′p

l rd
:: rp eval(Q)@l′.P ‖ l′ r′

d
:: r′p P ′ Â−→ l rd

:: rp P ‖ l′ r′
d
:: r′p P ′ |Q

(cK-In)
r′ ⊆ r

l rd
:: rp in([!x]r

′
)@l′.P ‖ l′ r′

d
:: r′p 〈[l′′]r〉 Â−→ l rd

:: rp P{l′′/x} ‖ l′ r′
d
:: r′p nil

(cK-Match)
l ∈ r

l rd
:: rp in(l′′)@l′.P ‖ l′ r′d

:: r′p 〈[l′′]r〉 Â−→ l rd
:: rp P ‖ l′ r′d

:: r′p nil

(cK-New)

L . l rd
:: rp newloc(l′).P Â−→ L] {l′} . l rd∪{l′}:: rp∪{l′}P ‖ l′ rd∪{l′}:: rp∪{l′}nil

(cK-Call)

l rd
:: rp ∗P Â−→ l rd

:: rp ∗P |P

(cK-Split)
L . l rd

:: rp P1 ‖ l rd
:: rp P2 ‖ N Â−→ L′ . l r′

d
:: r′p P ′

1 ‖ l rd
:: rp P ′

2 ‖ N ′

L . l rd
:: rp P1 |P2 ‖ N Â−→ L′ . l r′

d
:: r′p P ′

1 |P ′
2 ‖ N ′

(cK-Par)
L . N1 Â−→ L′ . N ′

1

L . N1 ‖ N2 Â−→ L′ . N ′
1 ‖ N2

(cK-Struct)
N1 ≡ N ′

1 L . N ′
1 Â−→ L′ . N ′

2 N ′
2 ≡ N2

L . N1 Â−→ L′ . N2

Table 3
cKlaim Operational Semantics

The reduction relation relies on a structural congruence relation, ≡, equating
α-convertible processes, stating that “‖” is commutative and associative, and
that nil acts as the identity for “|”.

We now comment on the semantics rules. Rules (cK-Out) and (cK-Eval)
say that a datum/process can be put at the target of the out/eval only if
such a node accepts the datum/process (i.e. l ∈ r′d and l ∈ r′p). This is nec-

12

essary to prevent an untrusted node l to send data/code to l′. Notice that
no static check could enforce this property without loss of expressivity: e.g.,
in in(!x)@l.eval(. . .)@x, it is statically impossible to know which locality will
replace x without limiting the possible exchanges at l. Thus, it cannot be
determined if the locality executing the eval is trusted by the target locality
or not. Rule (cK-In) says that a process can retrieve a datum only if the
continuation process respects the datum annotation (i.e. r′ ⊆ r). If a datum
is present in the target of the action for which this check succeeds, then the
datum is retrieved and replaces the input variable in the continuation; other-
wise, the process is suspended until such a datum is available (if ever). Rule
(cK-Match) verifies if a datum l′′ is present in l′. If this is the case, the
datum is removed and the continuation proceeds; otherwise, the process is
suspended. Notice that, in order to complete this task, the node executing the
action must be authorised by the region r. In rule (cK-New) the set L of
localities already in use is exploited to choose a fresh address l′ for naming the
new node. Moreover, we assume that a node l trusts every node l′ it creates.
This is reasonable since, once created, l′ is not known to any other node in
the net; thus, l can use it as a private resource and can decide the nodes of
the net that can know it (by also exploiting region annotations). For the sake
of simplicity, l′ is assigned the trust regions of l. However, it would be easy
to extend the language for allowing the programmer to explicitly specify the
trust regions of a newly created node. Rule (cK-Call) unfolds a replicated
process and corresponds to a procedure call. Rule (cK-Split) permits split-
ting the parallel processes running at a node thus enabling the application
of the main reduction rules that, in fact, can be used when there is only one
thread running at l. Technically, a parallel between processes is transformed
into a parallel between nodes. Rules (cK-Par) and (cK-Struct) are stan-
dard: the former says that, if part of a composed net evolves, the whole net
evolves accordingly and the latter says that structural congruent nets have
the same reductions.

We now give two simple properties of the operational semantics. The first one
describes the relationship between the set of localities L in a configuration
L . N and the localities occurring in the net obtained after a reduction step.
The second one describes the way parallel components located at node l could
have been arrived there: they could have been either allocated at l in the
initial setting or placed at l by authorised nodes as the result of subsequent
computations.

Proposition 1 If L . N Â−→ L′ . N ′ and loc(N) ⊆ L, then loc(N ′) ⊆ L′.

Proof: It is easy to prove that, if L . N Â−→ L′ . N ′ then L ⊆ L′ and
loc(N ′) − loc(N) = L′ − L. Hence, we get loc(N ′) = (loc(N ′) − loc(N)) ∪
(loc(N ′) ∩ loc(N)) ⊆ (L′ − L) ∪ loc(N) ⊆ (L′ − L) ∪ L′ = L′. 2

13

Proposition 2 Let L.N Â−→ L′ .N ′, l 6∈ L′−L and l rd
:: rp P be a node of

N ′. Then, for any parallel component P ′ in P it holds that: (i) either P ′ was
located at l in the initial configuration N , or (ii) P ′ is a datum written at l by
a node in rd, or (iii) P ′ is a process spawned to l by a node in rp.

Proof: By a straightforward induction on the length of inference for
L . N Â−→ L′ . N ′ and by exploiting the premises of rules (cK-Out) and
(cK-Eval). 2

To conclude this section, we implement in cKlaim the example presented in
Section 2. In this setting, the addresses are lC and lS with region annotations
such that lS ∈ rC

d and lC ∈ rS
d (usually, rS

d = >), while rC
p = rS

p = ∅. Processes
PC and PS become

PC , out(lC , [cc info]{lC ,lS})@lS.in(!y)@lC .

< modify password y and access the service >

PS , ∗ in(!x1, !x2)@lS. < check credit card info x2 > .

newloc(p).out([p]{x1,lS})@x1.

< handle pwd modifications and provide the service >

By reasonably assuming that the password modification is carried on by only
involving lC and lS, the inference system annotates PC as follows:

P ′
C , out(lC , [cc info]{lC ,lS})@lS.in([!y]{lC ,lS})@lC . · · ·

Similarly, if we assume that credit card checking is performed locally by the
server and never used anymore, PS is annotated as:

P ′
S , ∗ in(!x1, [!x2]

{lS})@lS. · · · .newloc(p).out([p]{x1,lS})@x1. · · ·
Now, the dynamic checks of rule (cK-In) are respected; thus, the resulting
net can evolve as expected:

lC rC
d
:: rC

p
P ′

C ‖ lS rS
d
:: rS

p
P ′

S

Â−→∗ lC rC
d
:: rC

p
in([!y]{lC ,lS})@lC . · · · ‖

lS rS
d
:: rS

p
P ′

S | < check cc info > .newloc(p).out([p]{lC ,lS})@lC . · · ·
Â−→∗ lC rC

d
:: rC

p
< modify password p and access the service > ‖

lS rS
d
:: rS

p
P ′

S | < handle pwd modifications and provide the service >

Notice that, in the reductions above, we omitted the sets L of localities in use:
they can be easily inferred. Moreover, as usual, we used Â−→∗ to denote the
reflexive and transitive closure of Â−→.

14

3.3 Type Soundness

Our main results state that well-typedness is preserved along reductions and
that well-typed nets do respect region annotations. The former result is called
subject reduction; the latter result is called type safety and states that well-
typedness guarantees that there are no immediate violations of data regions.
Together, these results imply the soundness of our theory, i.e. no violation of
data regions will ever occur during the evolution of well-typed nets.

We start by proving two standard technical results for a type system. The first
one states that structural congruence preserves well-typedness and its proof
is standard. The second one freely permits to discharge some entries from a
typing environment by replacing them with localities in all terms involved.

Lemma 1 (Subject Congruence) If N is well-typed and N ≡ N ′ then N ′

is well-typed.

Lemma 2 (Substitutivity) If Γ] {x : r} ` P Â` Γ′] {x : r′} ` P ′

and σ = {l/x}, then Γσ ` Pσ Â`σ Γ′σ ` P ′σ .

Proof: The proof proceeds by induction on the length of the inference used
to derive the typing judgement. The base case is when only rules (cK-T-Nil)
and (cK-T-Datum) are used: in both cases it is trivial to conclude. Let us
consider the inductive case and reason by case analysis on the last rule used
to infer the judgement. We explicitly show the most significant cases; the
remaining ones are easier.

(cK-T-In): By definition, P = in(!y)@`′.Q and P ′ = in([!y]r
′′−{y})@`′.Q′,

where Γ] {x : r}] {y : {`}} ` Q Â` Γ′′] {x : r′′′}] {y : r′′} ` Q′ .
By hypothesis, y 6= x; thus, by induction, Γσ] {y : {`σ}} ` Qσ Â`σ

Γ′′σ] {y : r′′σ} ` Q′σ. Moreover, Γ′ = Γ′′↗y and thus Γ′σ = (Γ′′↗y)σ =
(Γ′′σ)↗y. Hence, by using rule (cK-T-In), we can conclude the wanted
Γσ ` in(!y)@`′σ.Qσ Â`σ Γ′σ ` in([!y]r

′′σ−{y})@`′σ.Q′σ .
(cK-T-Out): By definition, P = out([`1]r1

)@`2.Q and P ′ =
out([`1]r1

)@`2.Q
′, where {`1, `2} ⊆ r1 and Γ] {x : r} ` Q Â`

Γ′′] {x : r2} ` Q′ . Trivially, {`1σ, `2σ} ⊆ r1σ and, by induction,
Γσ ` Qσ Â`σ Γ′′σ ` Q′σ . We now distinguish three cases:
(1) `1 ∈ L. In this case Γ′ = Γ′′ and r′ = r2; thus, Γ′σ = Γ′′σ.

By using rule (cK-T-Out), we can conclude the wanted Γσ `
out([`1σ]r1σ)@`2σ.Qσ Â`σ Γ′σ ` out([`1σ]r1σ)@`2σ.Q′σ .

(2) `1 = x. Now r′ = r2 ∪ r1 but Γ′ = Γ′′; this suffices to conclude like in
the previous case.

(3) `1 = y 6= x. In this case r′ = r2 and Γ′ = Γ′′ + {y : r1}; thus, Γ′σ =
Γ′′σ + {y : r1σ} is defined. We can then conclude like before.

2

15

Theorem 1 (Subject Reduction) If N is well-typed and L.N Â−→ L′.N ′

then N ′ is well-typed.

Proof: The proof proceeds by induction on the length of the inference of
L.N Â−→ L′ .N ′. Notice that the sets of localities L and L′ do not play any
role (namely, they do not affect the definition of well-typed net) and will be
ignored in the rest of the proof.

Base Step: We reason by case analysis on the axioms (i.e. the first six rules)
of Table 3.

(cK-Out). By hypothesis, N = l rd
:: rp out([l′′]r)@l′.P ‖ l′ r′

d
:: r′p P ′ and

there exists a net M such that M Â N . By definition, M = l rd
:: rp

out([l′′]r)@l′.Q ‖ l′ r′
d

:: r′p Q′ where ∅ ` out([l′′]r)@l′.Q Âl ∅ `
out([l′′]r)@l′.P and ∅ ` Q′ Âl′ ∅ ` P ′ . By the premises of rule
(cK-T-Out), ∅ ` Q Âl ∅ ` P and l′ ∈ r. This suffices to conclude that
N ′ = l rd

:: rp P ‖ l′ r′
d
:: r′p P ′ | 〈[l′′]r〉 is well-typed.

(cK-Eval). This case is similar. Indeed, by the premise of rule
(cK-T-Eval), it holds that there exists a process Q′ such that ∅ ` Q′ Âl′

∅ ` Q .
(cK-In). By hypothesis, N results from the typing of a net M = l rd

:: rp

in(!x)@l′.Q ‖ l′ r′
d
:: r′p 〈[l′′]r〉. The main thing to prove is that the well-

typedness of l rd
:: rp in([!x]r

′
)@l′.P implies the well-typedness of l rd

:: rp

P{l′′/x}. By the premise of rule (cK-T-In), it holds that {x : {l}} ` Q Âl

{x : r′′} ` P for r′ = r′′ − {x}. Hence, by Lemma 2, ∅ ` Q{l′′/x} Âl ∅ `
P{l′′/x} . This suffices to conclude.

(cK-Match) and (cK-New). These cases are easy.
(cK-Call). By hypothesis, there exists a process Q such that ∅ ` ∗Q Âl

∅ ` ∗P . By the premise of rule (cK-T-Repl), ∅ ` Q Âl ∅ ` P . Thus,
by using rule (cK-T-Par), we can conclude.

Inductive Step: We reason by case analysis on the last applied inference
rule of Table 3.

(cK-Split). By hypothesis, we have that N = l rd
:: rp P1|P2 ‖ N ′′ results from

the typing of a net M = l rd
:: rp Q1|Q2 ‖ M ′′. In particular, ∅ ` Q1|Q2 Âl

∅ ` P1|P2 that, by rule (cK-T-Par), implies that ∅ ` Q1 Âl Γ ` P1

and Γ ` Q2 Âl ∅ ` P2 . However, Γ must be ∅ as well; indeed, it can be
easily checked that Γ1 ` P ′ Âl Γ2 ` P ′′ implies dom(Γ1) = dom(Γ2).
Hence, l rd

:: rp P1 ‖ l rd
:: rp P2 ‖ N ′′ is well-typed and, by induction,

l r′d:: r′p P ′
1 ‖ l rd

:: rp P ′
2 ‖ N ′ is well-typed. This implies that l r′d:: r′p P ′

1|P ′
2 ‖ N ′

is well-typed, as required.
(cK-Par) and (cK-Struct). By a straightforward induction; the latter

case relies on Lemma 1. 2

We now turn to type safety. As we have already said, it states that well-
typedness guarantees absence of immediate violations of data regions. How-
ever, the wanted safety property requires that data regions are respected along

16

all possible computations. To properly formalise this property we need to de-
fine a finer semantics. Indeed, deeming a net to be safe when “for any node
l rd

:: rp P it holds that l occurs in the region of each datum in P” would not be
satisfactory because the regions annotating data disappear upon data with-
drawal. Thus, it would become impossible to formalise the requirement that
the region specification associated to a datum when it is produced is respected
during all the datum life-time (i.e. also after its retrieval). For example, con-
sider the net N = l rd

:: rp in([!x]r
′
)@l′.P ‖ l′ r′

d
:: r′p 〈[l′′]r〉. Upon execution of

action in, the net becomes N ′ = l rd
:: rp P ′ ‖ l′ r′

d
:: r′p nil, where P ′ = P{l′′/x}.

Now, all the occurrences of l′′ in P ′ are not annotated anymore with region r.
Hence, in N ′ we have no mean to formalise the statement that l can use l′′ by
respecting the original annotation r.

In other terms, with the calculus introduced in Table 1, we cannot express
absence of data regions violations syntactically, because in general we lack
information about the region that originally annotated data carried by pro-
cesses. To overcome this problem, we design a tagged language, where each
occurrence of a locality in a process is tagged with a region determining its
visibility. To this aim, we slightly adapt the syntax of cKlaim, by letting
identifiers to be

` ::= [l]r | x

We can now formalise when a net is safe. To this aim, we extend function
reg defined in Section 3.1 by taking into account also the locality tags when
calculating the region intersection. For example, reg(out([[l]r1

]r2
)@[l′]r3

.P) =
r1 ∩ r2 ∩ r3 ∩ reg(P). Moreover, we let reg(〈[l]r〉) = r.

Definition 2 (Safety) A net N is safe if for any l rd
:: rp P in N , it holds

that l ∈ reg(P).

The tagged semantics generalises that in Table 3. Indeed, processes like
out([[l]r1

]r2
)@[l′]r3

or in([l]r1
)@[l′]r2

can evolve. These terms may arise upon
application of substitutions that now map variables into localities tagged with
regions. We let the application of the substitution to a region to replace vari-
ables only with localities (hence omitting their tags) thus ensuring that regions
are still sets of identifies. The reduction relation, however, ignores the tags
and considers tagged names as plain ones. This should have been somehow
expected because, as we said before, the only role of tags is to enable formal-
ising and checking that a net is safe. Thus, rules (cK-Out) and (cK-In) now
become

l ∈ r′d

l rd
:: rp out([[l′′]r1

]r2
)@[l′]r3

.P ‖ l′ r′
d
:: r′p P ′ Â−→→ l rd

:: rp P ‖ l′ r′
d
:: r′p P ′ | 〈[l′′]r2

〉
r1 ⊆ r

l rd
:: rp in([!x]r1)@[l′]r2

.P ‖ l′ r′d:: r′p 〈[l′′]r〉 Â−→→ l rd
:: rp P{[l′′]r/x} ‖ l′ r′d:: r′p nil

17

pid(`) ∈ reg(`′) ∩ reg(`′′) Γ ` P ÂÂ` Γ′ ` P ′

Γ ` in(`′′)@`′.P ÂÂ` Γ′ ` in(`′′)@`′.P ′

pid(`) ∈ reg(`′) Γ] {x : {pid(`)}} ` P ÂÂ` Γ′] {x : r} ` P ′

Γ ` in(!x)@`′.P ÂÂ` Γ′↗x ` in([!x]r−{x})@`′.P ′

pid(`) ∈ reg(`′) {pid(`), pid(`′)} ⊆ r Γ ` P ÂÂ` Γ′ ` P ′

Γ ` out([x]r)@`′.P ÂÂ` Γ′ + {x : r} ` out([x]r)@`′.P ′

pid(`) ∈ reg(`′) {pid(`), pid(`′)} ⊆ r2 ⊆ r1 Γ ` P ÂÂ` Γ′ ` P ′

Γ ` out([[l]r1
]r2

)@`′.P ÂÂ` Γ′ ` out([[l]r1
]r2

)@`′.P ′

pid(`) ∈ reg(`′) ∩ reg(P1) Γ ` P1 ÂÂ`′ Γ′ ` P ′
1 Γ′ ` P2 ÂÂ` Γ′′ ` P ′

2

Γ ` eval(P1)@`′.P2 ÂÂ` Γ′′ + {x : {pid(`′)}}x∈fv(P1) ` eval(P ′
1)@`′.P ′

2

Table 4
Tagged Typing Rules

To avoid confusion, we use the arrow Â−→→ to relate tagged terms. The other
rules extend those in Table 3 in the expected way.

The typing procedure for tagged terms is denoted byÂÂ and its most significant
rules are given in Table 4 (the other ones are smooth adaptations of those in
Table 2). We use functions pid(`) and reg(`) to denote, respectively, the plain
identifier and the region of the tagged identifier `. The intuition underlying
ÂÂ is that, whenever an identifier occurs at a locality, the locality must be
included in the region tagging the identifier.

Given a plain net N , we use tag(N) to denote the set containing all the well-
typed (w.r.t. ÂÂ) tagged nets obtained by tagging localities in N . Given a
tagged net N , we denote with untag(N) the plain net obtained from N by
removing all the locality tags. Notice that tag(N) is not empty because it
contains at least the net obtained by tagging each locality in N with >. We
call the latter net the outset tagging of N .

Predictably, the tagged language and the original one are strongly related.
Moreover, the typing of tagged terms is preserved along (tagged) reductions.
The following results formalises these properties.

Proposition 3

(1) If N ÂÂ M then untag(N) Â untag(M).

18

(2) If N Â M , then for all M ′ ∈ tag(M) there exists N ′ ∈ tag(N) such that
N ′ ÂÂ M ′.

(3) If L . N Â−→→ L′ . N ′ then L . untag(N) Â−→ L′ . untag(N ′).

Proof: All properties easily follow from definitions of ÂÂ and Â−→→. 2

Corollary 1 (Tagged Subject Reduction) If N is a well-typed tagged net
and L . N Â−→→ L′ . N ′ then N ′ is a well-typed tagged net.

Proof: By Propositions 3.1 and .3, it holds that untag(N) is well-typed and
that L . untag(N) Â−→ L′ . untag(N ′). Because of Theorem 1, this implies
that untag(N ′) is well-typed and, by Proposition 3.2, we can conclude. 2

We are now ready to prove the type safety theorem.

Theorem 2 (Type Safety) If N is a well-typed tagged net then N is safe.

Proof: By definition, N is a well-typed (tagged) net if there exists a net
M such that M ÂÂ N . The proof proceeds by induction on the length of the
inference leading to this judgement and heavily relies on checking the premise
pid(`) ∈ reg(`′) contained in each rule of Table 4. 2

Corollary 2 (Type Soundness) Let N be a (plain) well-typed net and N ′

be its outset tagging. Then L . N ′ Â−→→∗ L′ . N ′′ implies that N ′′ is safe.

Proof: By Proposition 3.2 and by the fact that N ′ ∈ tag(N), it holds that
N ′ is a well-typed tagged net. We now proceed by induction on the length
of Â−→→∗. The base case is Theorem 2; the inductive case trivially follows by
exploiting Corollary 1. 2

The results given above can be generalised by requiring only a subnet of the
whole net to be well-typed. By using the convention that absence of a region
annotation means >, a not well-typed net can be executed according to the
(tagged versions of) rules in Table 3 by safely considering all its variable
annotations as >. We call r-subnet of N the net formed by all the nodes
l rd

:: rp P in N such that {l} ∪ rd ∪ rp ⊆ r. Notice that such a net is not
necessarily defined for all r; of course it is always defined for r = > and
coincides with N (in this case Theorem 3 coincides with Corollary 2).

Theorem 3 (Localised Type Soundness) Let N be a plain net and N ′

be its outset tagging. If the r-subnet of N ′ is defined and well-typed, and if
L . N ′ Â−→→∗ L′ . N ′′, then the r′-subnet of N ′′ is defined and safe, where
r′ = r ∪ (L′ − L).

19

Proof: By exploiting Theorem 2, we only need to show that the r′-subnet of
N ′′ is defined and well-typed. We just consider the case for L.N ′ Â−→→ L′.N ′′;
the more general case is recovered by using an inductive argument similar to
that in Corollary 2. The proof proceeds like that of Theorem 1. Just notice
that, when the operational rule used to infer the reduction is (the tagged
version of) (cK-Out) or (cK-Eval) resp., the premise l ∈ r′d or l ∈ r′p
respectively turns out to be crucial to maintain well-typedness. Moreover, the
only non trivial case for establishing if the r′-subnet is defined, is when the
operational rule used is (cK-New). In this case, the claim is easily proved
since the new node is assigned the regions of the creating one. 2

To conclude, we want to remark that the language can be easily extended to
enable explicit specification of the regions of the new nodes. In this case, exis-
tence of the r′-subnet could be ensured by adding a premise to rule (cK-New)
requiring that the regions of the new nodes are included in those of the creating
node.

4 Dπ: Distributed π-calculus

We now apply our approach to Dπ [19], a variant of the π-calculus [23] with
process distribution and mobility. The syntax of Dπ is given in Table 5. There
are two categories of names: locality names L, ranged over by l, and channel
names C , ranged over by a. The symbol e is used for channel or locality
names, while u, v, called identifiers, denote names and variables (ranged over
by x). The exchanged messages, ranged over by W , can be both identifiers and
compound identifiers of the form v@u (where u is expected to be a locality
name or variable, while v is expected to be a channel name or variable).
Similarly, input parameters, generically referred to as X, can either be a simple
variable x or a compound variable z@y (y is a locality variable and z is a
channel variable). Dπ nodes (located threads, in the original terminology) will
be written as lrp

rd
[[P]]. Communication is local, synchronous and channel based.

Process actions are:

• u!〈[W]r〉: makes available message W (with associated region r) along the
channel u of the locality where the action is fired.

• u?(X): retrieves a message W from the channel u of the locality where
the action is fired and replaces the parameter X with the message in the
continuation process. If X is a variable x, the message retrieved must be a
name e. Otherwise, if X is z@y, then the message must be of the form a@l,
and z will be replaced by a and y will be replaced by l.

• gou: spawns the continuation process for execution at the node referred to
by u.

20

l, h, k, . . . ∈ L Locality names

a, b, c, . . . ∈ C Channel names

x, y, z, . . . Variables

e ::= l | a Names

u ::= e | x Identifiers

X ::= x | z@y Input parameters

W ::= u | v@u Messages

N ::= l
rp
rd [[P]] | N1 ‖ N2 Nets

P ::= Processes

stop (empty)

| α.P (prefixing)

| P1 | P2 (parallel composition)

| (νe)P (restriction)

| ∗P (replication)

α ::= Actions

u!〈[W]r〉 (send)

| u?(X) (receive)

| go u (migrate)

Table 5
Dπ Syntax

Identifiers occurring in process terms can be bound ; more precisely, prefix
u?(X).P binds the variables in X (i.e. it binds x if X = x and binds both y
and z if X = z@y), while (νe)P binds name e; in both cases, P is the scope
of the binding. The set of free variables fv(), α-conversion and closed nets
are defined accordingly.

To conclude the presentation, we want to argue for the need to associate
two regions to each Dπ node. Indeed, differently from cKlaim, no remote
operation is allowed (a part, of course, process spawning), hence the data
region could seem useless. However, using only the process region would be
too restrictive: in fact, if a node l does not know or trust another node k, then
k has no mean to come into contact with l. Our solution permits to distinguish
generic processes from processes that are not very risky because, for example,
they only perform an output and then terminate. These last processes are of
the form u!〈W 〉.stop and we deem them output processes. However, processes

21

of different form could be accepted as well: e.g. process u!〈W 〉.v!〈W ′〉.stop is
as risky as u!〈W 〉.stop. Since we do not want to take a definite standing on
the set of output processes, we use a predicate output(P), that holds true if
and only if P is an output process, but leave aside its exact definition. Thus,
output processes coming from k are accepted by node lrp

rd
[[·]] only if k ∈ rd; all

the other processes are accepted if k ∈ rp (see rule (D-T-Go) in Table 6).

4.1 Typing Dπ Nets

The typing system for cKlaim of Table 2 could be straightforwardly adapted
to deal with Dπ nets; see Remark 1 in Section 4.2. However, in a channel-based
setting region compatibility checks can be statically performed (on the con-
trary, they are dynamically performed in cKlaim – see rule (cK-In)) because
it is natural to associate each channel with a region annotation describing the
region of the data exchangeable along it. Thus, if a channel a can carry data
visible within r, then messages with region r1 ⊇ r can be sent along a and
input parameters with region r2 ⊆ r can be used to retrieve data from a. By
transitivity, we get r2 ⊆ r1 thus ensuring that the use of the data respects
the specifications of the data region. Hence, in this setting, parameters do not
need to be annotated because the correct use of the data can be statically
enforced by the typing system.

To properly deal with name passing, we take advantage of some of the theory
from [19]. The resulting type system is very different from that in Table 2 but
shows how our approach can be adapted to different languages. We assume
the following types:

Types: τ ::= φ | γ | γ@φ

Locality Types: φ ::= r . r′[ũ : γ]rp
rd

Channel Types: γ ::= r(τ)

Intuitively, if v has type r(τ) then it is a channel that can be seen by nodes
in r and can carry messages of type τ . Similarly, if v has type r . r′[ũ : γ]rp

rd

then it is a locality whose name can be one of the names in r′ (this is useful
only when v is a variable; if v is a name, then r′ = {v}, see requirement (‡)
below), that can be seen by nodes in r, accepts data/code from nodes in rd/rp

resp., and hosts channels ũ, in an orderly way of types γ̃. As usual, ˜ denotes
a (possibly empty) set of entities . Finally, γ@φ, with φ = r . r′[ũ : γ]rp

rd
, can

be assigned to a message u@v where u is a channel of type γ and v is a locality
of type r . r′[ũ : γ, u : γ]rp

rd
.

For a type τ , we let reg(τ) to denote the region that can see values of type

22

Typing Nets:
(D-T-Net)

Γ ` N1 Γ ` N2

Γ ` N1 ‖ N2

(D-T-Node)

Γ(l) = r . r′[ã : γ]rp
rd Γ `l P

Γ ` l
rp
rd [[P]]

Typing Processes:

(D-T-Nil)

Γ `u stop

(D-T-Repl)

Γ `u P

Γ `u ∗P

(D-T-Par)

Γ `u P1 Γ `u P2

Γ `u P1|P2

(D-T-CRes)

Γ, ua : γ `u P

Γ `u (νa)P

(D-T-LRes)

Γ, ul : > . {l}[∅]preg(Γ(u))∪{l}
dreg(Γ(u))∪{l} `u P

Γ `u (νl)P

(D-T-In)

Γ `u v : r(τ) val(Γ(u)) ⊆ r Γ, uX : τ `u P

Γ `u v?(X).P

(D-T-Out)

Γ `u v : r′(τ) val(Γ(u)) ⊆ r′ Γ `u W : τ ′ τ v τ ′

u ∈ r
⋃

w∈r val(Γ(w)) ⊆ reg(τ) Γ `u P

Γ `u v!〈[W]r〉.P
(D-T-Go)

val(Γ(u)) ⊆ regu
Γ(go v.P) if output(P) then val(Γ(u)) ⊆ dreg(Γ(v))

else val(Γ(u)) ⊆ preg(Γ(v))
Γ `v P

Γ `u go v.P

Typing Messages:

(D-T-Chan)

Γ(u)(v) = γ

Γ `u v : γ

(D-T-Loc)

Γ(v) = φ

Γ `u v : φ

(D-T-Compound)

Γ(w) = r . r′[ṽ′ : γ′, v : γ]rp
rd

Γ `u v@w : γ@r . r′[ṽ′ : γ′]rp
rd

Table 6
Type Checking for Dπ

τ , i.e. reg(r(τ)) = reg(r . r′[ũ : γ]rp
rd

) , r. Similarly, for a locality type φ =
r . r′[ũ : γ]rp

rd
, we let val(φ), dreg(φ) and preg(φ) to denote, resp., regions r′,

rd and rp.

The typing system for Dπ nets is given in Table 6. The main judgement is
Γ ` N , stating that N is well-typed in the environment Γ. A type environment
is a finite partial function mapping locality names and variables to locality
types. Therefore, since locality types contain information about the allocated
channels, it is also possible to extract from a typing environment the channel

23

Environment Extension :

Γ, uw : φ , Γ′ s.t. Γ′(v) =





Γ(v) if v 6= w and w 6∈ dom(Γ)

φ if v = w 6∈ dom(Γ)

Γ, uw : γ , Γ′ s.t. Γ′(v) =





Γ(v) if v 6= u

r . r′[w : γ, w̃′ : γ′]rp
rd if v = u and w 6∈ w̃′

and Γ(u) = r . r′[w̃′ : γ′]rp
rd

Γ, ux1@x2 : γ@φ , Γ′ s.t. Γ′(v) =





Γ(v) if v 6= x2 and x2 6∈ dom(Γ)

r . r′[x1 : γ, ũ : γ]rp
rd if v = x2 6∈ dom(Γ)

and φ = r . r′[ũ : γ]rp
rd

Subtyping Relation :

τ v τ
τ v τ ′ τ ′ v τ

τ = τ ′

τ1 v τ2 τ2 v τ3

τ1 v τ3

r ⊆ s r′ ⊇ s′ rd ⊆ sd rp ⊆ sp n ≤ m ∀i = 1, · · · , n.γi v γ′i

r . r′[u1 : γ1, . . . , un : γn]rp
rd v s . s′[u1 : γ′1, . . . , um : γ′m]sp

sd

r ⊆ r′ τ v τ ′

r(τ) v r′(τ ′)

γ v γ′ φ v φ′

γ@φ v γ′@φ′

Table 7
Technicalities of Dπ Typing

types associated to channel names and variables. In particular, if Γ(u) =

r . r′[v : γ, ṽ′ : γ′]rp
rd

, we shall write Γ(u)(v) = γ. We shall only consider typing
environments satisfying the following constraint:

Let Γ(v) = r . r′[ũ : γ]rp
rd

. If v ∈ L then r′ = {v}; otherwise, for

each l ∈ r′, it must be that r ⊆ reg(Γ(l)) and rd ⊆ dreg(Γ(l)) (‡)
and rp ⊆ preg(Γ(l)).

This condition states that the component r′ is really useful only when v is
a variable; in this case, it collects the possible names v can assume at run-
time. Moreover, it states that regions r/rd/rp must respect the corresponding
specifications contained in Γ for all the values v can assume.

We assume that Γ ` N holds true only if Γ satisfies (‡), Γ does not con-
tain variables and fv(N) = ∅. The main judgement relies on two auxiliary
judgements for typing processes and messages. Judgement Γ `u P states that
P can be properly executed at u while respecting Γ; we always assume that
fv(P) ⊆ dom(Γ). Judgement Γ `u W : τ states that message W can be as-
signed type τ at u under the assumptions Γ. Some aspects, like the extension

24

of an environment with a new item (written Γ, uW : τ) and the subtyping re-
lation (written τ v τ ′), have been straightforwardly adapted from [19] and are
given in Table 7. We omit comments on these features and refer the interested
reader to [19].

We now briefly comment on some of the typing rules. In rule (D-T-LRes), we
assume that the created node is assigned the regions of the creating one (this is
similar to cKlaim – see rule (cK-New)). In rule (D-T-In), it is checked that
u can access channel v (the fact that v is a channel is ensured by the fact that
Γ indirectly assigns v a channel type through the type of the locality where v
is placed) and that the continuation properly uses the received message (i.e. P
is typeable in an environment obtained by extending Γ with the information
that X has type at most τ , the type of the value carried by v). Similarly, in
rule (D-T-Out), it is checked that u can access channel v, that message W
can be assigned at least type τ in u by Γ, that u can see W and that the region
specified for W is at most the region of the values that v can carry. Finally,
rule (D-T-Go) verifies that u can see v and all the identifiers occurring in P
by exploiting function regu

Γ(·) defined inductively as follows:

regu
Γ(stop) , > regu

Γ(∗P) , regu
Γ(P) regu

Γ(P1|P2) , regu
Γ(P1) ∩ regu

Γ(P2)

regu
Γ((νe)P),regu

Γ(P)−{e} regu
Γ(go v.P) , reg(Γ(v)) ∩ regv

Γ(P)

regu
Γ(v!〈[W]r〉.P), reg(Γ(u)(v)) ∩ r ∩ regu

Γ(P)

regu
Γ(v?(X).P) , reg(Γ(u)(v)) ∩ regu

Γ(P)

The premises of the rule also check if u can send P to v (by exploiting the
data/process region of v according to the fact that P is an output process or
not) and if P typechecks at v.

To conclude, we define well-typed Dπ nets.

Definition 3 (Well-Typed Dπ Nets) A net N is well-typed in Γ if Γ ` N .
A net N is well-typed if there exists a typing environment Γ such that N is
well-typed in Γ.

4.2 Dπ Operational Semantics

Dπ nets evolve according to the reduction relation 7−→ defined in Table 8.
Like in cKlaim, 7−→ relates configurations of the form K . N , where K is a
set of localities and localised channels (thus, K = {l1, l2, . . . , a1@l1, a2@l2, . . .})
such that n(N) ⊆ K ⊂fin L ∪ (C × L), and function n(N) returns the set of
all (possibly compound) names occurring in N . For example, a suitable K for

25

(Dπ-Comm)

l
rp
rd [[a?(X).P | a!〈[W]r〉.Q]] 7−→ l

rp
rd [[P{W/X} | Q]]

(Dπ-Go)

l
rp
rd [[go k.P]] ‖ k

r′p
r′
d
[[Q]] 7−→ l

rp
rd [[stop]] ‖ k

r′p
r′
d
[[P |Q]]

(Dπ-NewLoc)

K . l
rp
rd [[(νk)P]] 7−→ K] {k} . l

rp∪{k}
rd∪{k}[[P]] ‖ k

rp∪{k}
rd∪{k}[[stop]]

(Dπ-NewChan)

K . l
rp
rd [[(νa)P]] 7−→ K] {a@l} . l

rp
rd [[P]]

(Dπ-Call)

l
rp
rd [[∗P]] 7−→ l

rp
rd [[∗P |P]]

(Dπ-Split)

K . l
rp
rd [[P]] ‖ l

rp
rd [[Q]] ‖ N 7−→ K ′ . l

r′p
r′
d
[[P ′]] ‖ l

rp
rd [[Q′]] ‖ N ′

K . l
rp
rd [[P |Q]] ‖ N 7−→ K ′ . l

r′p
r′
d
[[P ′ |Q′]] ‖ N ′

(Dπ-Par)

K . N1 7−→ K ′ . N ′
1

K . N1 ‖ N2 7−→ K ′ . N ′
1 ‖ N2

(Dπ-Struct)

N1 ≡ N ′
1 K . N ′

1 7−→ K ′ . N ′
2 N ′

2 ≡ N2

K . N1 7−→ K ′ . N ′
2

Table 8
Dπ Operational Semantics

the net lrp
rd

[[a?(X).stop]] is {l, a@l} ∪ rp ∪ rd. Like before, 7−→ ∗ denotes the
reflexive and transitive closure of 7−→ .

Substitutions are now generalised so that they map input parameters to mes-
sages and their application keeps into account also the structure of the mes-
sage/parameter involved. In particular, in P{W/X}, if W is a name e, then X
must be a variable x and the application replaces x with e in P ; otherwise,
if W is a compound message a@l, then X must be a compound variable z@y
and the application replaces z with a and y with l in P . Like in cKlaim,

26

substitution application also acts on the region annotations in P .

The reduction relation relies on a structural congruence relation, ≡, equating
α-convertible processes, stating that “‖” is commutative and associative, and
that stop acts as the identity for “|”.

We now comment on the Dπ peculiar operational rules; the others are similar
to the corresponding ones of cKlaim. Notice that, differently from cKlaim,
region annotations are not exploited to infer reductions, thanks to the powerful
static typing. Rule (Dπ-Comm) states that the producer and the consumer
of a datum must locally synchronise along a named channel a. Rule (Dπ-Go)
moves the continuation process to the node target of the go ; notice that the
static typing has already verified that k accepts data/code from l (i.e. l ∈ r′d
or l ∈ r′p, according to the fact that P is an output process or not). Rules
(Dπ-NewLoc) and (Dπ-NewChan) handle name restriction. The first one
creates a new node addressed by the fresh locality name k; k enlarges the
creating node’s regions that, similarly to cKlaim, are assigned to the new
node too. The second rule allocates a new channel in the current locality. In
both cases, the set K of names already in use is exploited to choose a fresh
name. This corresponds to the intuition that, rather than declaring something
as local, one can give it a syntactically different name. The effect is the same
as in the standard semantics [19], where structural congruence is exploited to
extend the scope of names by moving name restriction to the outermost level.

Before concluding, let us implement in Dπ the example given in Section 2.
Like in cKlaim, the addresses are lC and lS with region annotations such
that lS ∈ rC

d and lC ∈ rS
d (usually, rS

d = >), while rC
p = rS

p = ∅. Processes PC

and PS now become

PC , (νpwd).(go lS.req!〈pwd@lC , [creditCard info]{lC ,lS}〉 |
pwd?(y). < modify password y and access the service >)

PS , ∗ req?(x1@x′1, x2). < check credit card info x2 > .

(νp)(gox′1.x1!〈[p]{x′1,lS}〉 |
< handle password modifications and provide the service >)

Channel req is used as the access point to the server for requiring the ser-
vice, while pwd is a fresh channel used to transmit secret passwords between
the client and the server. For the sake of presentation, we also assume basic
values (of type val) for passwords and credit card information. Under these
assumptions, a possible type environment to typecheck the net

lC
rC
p

rC
d
[[PC]] ‖ lS

rS
p

rS
d
[[PS]]

27

is

Γ : lC 7→ φC

lS 7→ > . {lS}[req : >(γpwd@φC × val)]
rS
p

rS
d

where φC = > . {lC}[]
rC
p

rC
d

and γpwd = {lC , lS}(val). Clearly, we are not con-

sidering the activities of modifying/handling passwords, nor those of access-
ing/providing the service. A sketch of the type checking for PC is given below.
It requires to establish that

Γ `lC (νpwd).(go lS.req!〈pwd@lC , [creditCard info]{lC ,lS}〉 | pwd?(y). · · ·)

By applying rules (D-T-LRes) and (D-T-Par), this requires to infer that

Γ1 `lC go lS.req!〈pwd@lC , [creditCard info]{lC ,lS}〉

where Γ1 = Γ, lCpwd : γpwd. The judgement above can be inferred
by using rule (D-T-Go). To this aim, first we establish that {lC} ⊆
reglC

Γ1
(go lS.req!〈pwd@lC , [creditCard info]{lC ,lS}〉) = {lC , lS} and {lC} ⊆ rS

d ,
then we prove that

Γ1 `lS req!〈pwd@lC , [creditCard info]{lC ,lS}〉

This last judgement is inferred by using rule (D-T-Out). Indeed, the following
conditions are all satisfied:

Γ1 `lC req : >(γpwd@φC × val) {lS} ⊆ > Γ1 `lC pwd@lC : γpwd@φC

Γ1 `lC creditCard info : val Γ1 `lS stop

Remark 1 (Typing Dπ Nets à la cKlaim) The typing approach used
for cKlaim, where the values exchanged in communications are checked at
runtime, can be easily adapted to Dπ. The resulting type system is simpler,
e.g. types are simply regions and do not need complex subtyping relations.
Of course, the modified setting requires more runtime checks. The definition
of well-typed nets, like the type inference phase, can be straightforwardly
adapted from Table 2. Clearly, the syntax of Table 5 must be adapted by
letting parameters to be defined as

X ::= [x]r | [z]r1@[y]r2

As regards the operational semantics, we need to replace rules (Dπ-Comm)

28

and (Dπ-Go) in Table 8 with the following ones:

r′ ⊆ r

lrp
rd

[[a?([x]r
′
).P | a!〈[e]r〉.Q]] 7−→ lrp

rd
[[P{e/x} | Q]]

r1 ∪ r2 ⊆ r

lrp
rd

[[a?([z]r1@[y]r2).P | a!〈[b@k]r〉.Q]] 7−→ lrp
rd

[[P{b@k/z@y} | Q]]

if output(P) then l ∈ r′d else l ∈ r′p

lrp
rd

[[go k.P]] ‖ k
r′p
r′
d
[[Q]] 7−→ lrp

rd
[[stop]] ‖ k

r′p
r′
d
[[P |Q]]

4.3 Type Soundness

We now prove subject reduction and type safety for the type system of Table 6.
The type soundness will be an easy corollary of these properties. We start with
the corresponding versions for Dπ of Lemmas 1 and 2; then we state and prove
subject reduction and type safety. To this aim, we define Γ with K for N as
the typing environment Γ extended with the fresh names in K that can type
N . Formally,

Γ with K for N ,





Γ if K = ∅
(Γ with K ′ for N), la : γ if K = K ′] {a@l}
(Γ with K ′ for N)] k : φ if K = K ′] {k}

where we let] to denote both the disjoint union of sets and the union of
functions with disjoint domains. The γ and the φ in the second and third case
above are the minimal types (w.r.t. v) such that (Γ with K for N) ` N .

Remark 2 Notice that it is not always the case that Γ with K for N is
defined; however, if it is defined then N is well-typed.

Lemma 3 (Subject Congruence) If Γ ` N and N ≡ N ′ then Γ ` N ′.

Lemma 4 (Substitutivity) Let W be such that fv(W) = ∅. Then, the fol-
lowing facts hold:

(1) If Γ, vX : τ `u W ′ : τ ′′ and Γ `v W : τ ′, for some τ ′ w τ , then
Γ `u{W/X} W ′{W/X} : τ ′′.

(2) If Γ, vX : τ `u P and Γ `v W : τ ′, for some τ ′ w τ , then Γ `u{W/X}
P{W/X}.

29

Proof: The proof of the first claim is similar to the corresponding one in
[19], once the subtyping relation used is that defined in Table 7. To prove the
second claim, we distinguish three cases (the last one relies on the first two)
according to the structure of parameter X: X can be u (and clearly u is a
variable), or X can be x 6= u, or X can be y@z. We now proceed by induction
on judgement Γ, vX : τ `u P and considers only the first two cases above; the
third one is recovered by considering {a@l/y@z} as the composition of the two
substitutions {a/y} and {l/z}.

The base case is trivial. For the inductive cases, the proof is tedious.
We just show the most delicate case, i.e. when (D-T-Out) is the last
rule applied; for notational convenience, we let Γ′ = Γ, vX : τ . By hy-
pothesis, P = v1!〈[W ′]r〉.P ′; thus, Γ′ `u v1 : r′(τ1), val(Γ′(u)) ⊆ r′,
Γ′ `u W ′ : τ2 for some τ2 w τ1, u ∈ r,

⋃
w∈r val(Γ(w)) ⊆ reg(τ1)

and Γ′ `u P ′. Clearly, u{W/X} ∈ r{W/X}; moreover, by claim (1) of
this Lemma and by induction, we have that Γ `u{W/X} v1{W/X} : r′(τ1),
Γ `u{W/X} W ′{W/X} : τ2 and Γ `u{W/X} P ′{W/X}. We still have to prove
that val(Γ(u{W/X})) ⊆ r′ and

⋃
w∈ r{W/X} val(Γ(w)) ⊆ reg(τ1). By hypoth-

esis, τ v τ ′; thus, it holds that val(Γ(W)) ⊆ val(Γ(X)). Hence, we can
state that val(Γ(u{W/X})) ⊆ val(Γ′(u)) ⊆ r′ and

⋃
w∈ r{W/X} val(Γ(w)) ⊆⋃

w∈r val(Γ(w)) ⊆ reg(τ1) (it suffices to distinguish if X = u or not). Thus,
Γ `u{W/X} (v1{W/X})!〈[W ′{W/X}]r{W/X}〉.P ′{W/X}, as required. 2

Theorem 4 (Subject Reduction) If N is well-typed and K .N 7−→ K ′ .
N ′ then N ′ is well-typed.

Proof: By definition, there exists a typing environment Γ such that Γ ` N .
Thus, because of Remark 2, it suffices to prove that Γ with (K ′ −K) for N ′

is defined. Similarly to Theorem 1, we proceed by induction on the length of
the inference leading to K . N 7−→ K ′ . N ′ and we do not consider K and
K ′ anymore.

Base Step: We reason by case analysis on the axioms (i.e. the first five
rules) of Table 8.

(Dπ-Comm). In this case, K ′−K = ∅; thus, Γ with (K ′−K) for N ′ = Γ if
and only if Γ ` lrp

rd
[[P{W/X} | Q]]. By hypothesis, Γ `l a?(X).P | a!〈[W]r〉.Q;

thus, by rule (D-T-Par), Γ `l a?(X).P and Γ `l a!〈[W]r〉.Q. By rules
(D-T-In) and (D-T-Out), we know that Γ `l a : r′(τ), Γ `l W : τ ′ for
some τ ′ w τ ; moreover Γ, lX : τ `l P and Γ `l Q. Since we assumed that
Γ does not contain variables (otherwise Γ 6` N), we can state that W is a
closed message. Thus, we can apply Lemma 4 and obtain that Γ `l P{W/X}.
This suffices to conclude.

(Dπ-Go). This case is simpler.
(Dπ-NewLoc). In this case, K ′−K = {k}; thus, Γ with (K ′−K) for N ′ is

defined if and only if Γ, lk : φ ` l
rp∪{k}
rd∪{k}[[P]] ‖ k

rp∪{k}
rd∪{k}[[stop]] for some locality

30

type φ. By hypothesis, Γ ` lrp
rd

[[(νk)P]]; thus, by rule (D-T-LRes), it holds

that Γ, lk : > . {k}[∅]rd∪{k}
rp∪{k} `l P . We can now easily conclude.

(Dπ-NewChan). This case is similar.
(Dπ-Call). This case proceeds like in Theorem 1.
Inductive Step: We reason by case analysis on the last applied operational

rule, i.e. (Dπ-Split), (Dπ-Par) or (Dπ-Struct). These cases are similar
to Theorem 1 and, thus, are omitted. 2

We now consider type safety. We could proceed like for cKlaim, by exploiting
a tagged language. However, in the Dπ setting, we can formulate and prove
the safety property in a simpler (but coarser) way. The intuition is that a
Dπ typing environment already associates a region to each (free) name of a
net. Thus, we can define a notion of safety w.r.t. a typing environment in the
following way:

Definition 4 (Safety) A net N is Γ-safe if for any lrd
rp

[[P]] in N , it holds that

l ∈ regl
Γ(P).

This definition is somehow “less accurate” than Definition 2 in that all the
occurrences of the same name are now associated with the same tag. To obtain
the finer property, we should tune the theory presented in Section 3.3; we omit
the details and go on working with Definition 4.

Theorem 5 (Type Safety) If Γ ` N then N is Γ-safe.

Proof: The proof proceeds by induction on the length of the inference of
judgement Γ ` N . The proof relies on the check val(Γ(u)) ⊆ regu

Γ(go v.P) in
rule (D-T-Go), the check val(Γ(u)) ⊆ r in (D-T-In) and val(Γ(u)) ⊆ r′ in
(D-T-Out). 2

Type soundness now easily follows (the definition of r-subnet and the proof
of the claim are similar to the corresponding ones in Section 3.3). Notice that
type soundness can be recovered as an instance of localised type soundness.

Corollary 3 (Localised Type Soundness) Let the r-subnet of N be de-
fined and well-typed in Γ. If K . N 7−→∗ K ′ . N ′ then the r′-subnet of N ′ is
defined and Γ′-safe, where r′ = r∪(K ′−K) and Γ′ = Γ with (K ′−K) for N ′.

5 Mobile Ambients Calculus

Finally, we apply our approach to Mobile Ambients Calculus [5] (in the fol-
lowing, we will shorten it as Ambients). The calculus relies on the notion of

31

n, m, p, . . . ∈ A Ambients names

x, y, z, . . . Variables

u ::= n | x Identifiers

P ::= Processes

0 (empty)

| 〈[u]r〉 (datum)

| α.P (prefixing)

| P1|P2 (parallel composition)

| (νn) (name restriction)

| ∗P (replication)

| u|[P]| (ambient)

α ::= Actions

(x) (receive)

| in u (enter u)

| out u (exit u)

| open u (open u)

Table 9
Ambients Syntax

ambient that can be thought of as a bounded place where processes cooperate.
This notion is similar to that of node, but differently from cKlaim and Dπ
nodes, ambients can be hierarchically structured and can be moved as a whole
under the control of processes.

The syntax of the calculus is given in Table 9. There is only one category of
names, namely that of ambient names A, ranged over by n. Identifiers, ranged
over by u, v, w, denote ambient names and variables (ranged over by x), and
represent both the target of process actions and the data exchanged during
communication. Communication is asynchronous and anonymous (no place or
communication channel is explicitly referred), and takes place locally within
a single ambient.

In Ambients, everything is a process, namely, differently from cKlaim and
Dπ, there is no distinction among processes, nodes and nets. Other than the
standard process operators, i.e. empty process, prefixing, parallel composition,
name restriction and replication, we have 〈[u]r〉, that represents message u
tagged with region r within the current ambient, and n|[P]|, that represents an
ambient with name n and process P running inside. An ambient, hence, has

32

a name, a collection of local processes and a collection of subambients. Notice
that nothing prevents existence of two or more ambients with the same name,
possibly enclosed within the same ambient. Process actions are:

• (x): receives a message u within the current ambient and replaces x with u
in the continuation;

• in u: moves the ambient enclosing the process executing the action in a
sibling ambient whose name is u;

• out u: moves the ambient enclosing the process executing the action out of
its enclosing ambient provided that this is named u;

• open u: dissolves the boundary of an ambient named u and unleashes u’s
content.

Identifiers occurring in processes can be bound. More precisely, prefix (x).P
binds variable x, while (νn)P binds name n; in both cases, P is the scope of
the binding. The set of free variables fv(), α-conversion and closed nets are
defined accordingly.

Differently from the calculi previously presented, in Ambients there is no need
to associate regions rd/rp to ambients. Indeed, as processes are confined within
ambients, new data/code can enter an ambient n only because an ambient
boundary is dissolved by an action open executed within n. Since this action
is under the control of n, no (static nor dynamic) check is needed to prevent
the unwanted arrival of undesired data/code. At most, some control can be
carried on the ambients that n can open; but this is an orthogonal task.

5.1 Typing Ambients Nets

We adopt a static typing approach, like for Dπ. For the sake of presentation,
here we only illustrate the key features of the application of our approach to
Ambients and relegate all technical details to Appendix A. Ambients types
are defined as follows:

T ::= Shh | r1 . r2 . r3[T]

Intuitively, an ambient u has type r1 . r2 . r3[T] if its name is in r3 (this is
useful only if u is a variable), it can be seen by all ambients in r1 and enclosed
within all ambients in r2. Moreover, the ambient hosts processes exchanging
data of type T , the local conversation topic. Topics of conversations were
introduced in [4]; here we use them in a similar way and denote with Shh the
absence of exchanges in the ambient. Moreover, we always assume that types
are well-formed, i.e., for all r1 . r2 . r3[·], it holds that r2 ⊆ r1. Finally, we let
cont(r1 . r2 . r3[·]) = r2 and look(r1 . r2 . r3[·]) = r1.

33

The main judgement is Γ ` P and states that P is well-typed under the
assumptions Γ. A type environment Γ is a finite partial function mapping
ambient names and variables to types (a well-formedness condition similar
to (‡) in Section 4.1 is assumed, see Appendix A). The key requirement to
typecheck Ambients processes is that

whenever ambient n is contained in ambient m (i.e., m|[n|[· · ·]| | · · ·]|), (§)
it must hold that cont(Γ(m)) ⊆ cont(Γ(n))

By construction, we have that cont(Γ(n)) ⊆ look(Γ(n)). These conditions
together ensure that, if m is opened while still containing n, n can be seen by
the ambient enclosing m. For example, consider the following process:

k|[m|[n|[〈[d]r〉 | · · ·]| | open n]| | open m]|

If the process is well-typed, we know that k ∈ cont(Γ(m)) ⊆ {m} ∪
cont(Γ(m)) ⊆ cont(Γ(n)) ⊆ r (these inclusions follow by the premises of
the typing rules). This means that both k and m can see datum d; hence, the
execution of actions open n and open m does not break well-typedness, as
intended.

Well-typedness for Ambients processes is defined as follows.

Definition 5 (Well-Typed Ambients Processes) A process P is well-
typed in Γ if Γ ` P . P is well-typed if there exists a typing environment
Γ such that P is well-typed in Γ.

Remark 3 To conclude this section, we want to remark that most of the
intricacies in the setting of the Ambients calculus (especially, the need for re-
quirement (§) above) are related to the presence of action open. Indeed, other
calculi, that have been derived from Ambients by removing such a primitive,
can be typed very similarly to Dπ. As a first example, we consider M3 [6]
where action open is replaced by a primitive for process migration, to, which
is in the same vein of cKlaim’s eval and Dπ’s go . In this setting, types look
like Dπ’s locality types and are defined as r . r′[T]rp

rd
(the meaning of r, r′, rd

and rp is like in Dπ, while T is the topic of conversation). As another example,
we consider Boxed Ambients [2] where action open is replaced with primi-
tives for (non local) parent/child communication. Types still take the form
r . r′[T]rp

rd
, but more checks are needed in the typing phase to ascertain that

data are exchanged correctly. Indeed, the ability of performing (limited forms
of) remote communications introduces new possibilities to forge data regions.

34

(A-In)

n|[in m.P |Q]| | m|[R]| −→ m|[n|[P |Q]| | R]|

(A-Call)

∗P −→ ∗P | P

(A-Out)

m|[n|[out m.P |Q]| | R]| −→ n|[P |Q]| | m|[R]|

(A-Res)

A . (νn)P −→ A] {n} . P

(A-Open)

open m.P |m|[R]| −→ P |R

(A-Par)

A . P1 −→ A′ . P ′
1

A . P1|P2 −→ A′ . P ′
1|P2

(A-Comm)

〈[m]r〉 | (x).Q −→ Q{m/x}

(A-Amb)

A . P −→ A′ . P ′

A . n|[P]| −→ A′ . n|[P ′]|

(A-Struct)

P1 ≡ P ′
1 A . P ′

1 −→ A′ . P ′
2 P ′

2 ≡ P2

A . P1 −→ A′ . P2

Table 10
Ambients Operational Semantics

5.2 Ambients Operational Semantics

Ambients processes are executed according to the reduction relation −→
defined in Table 10. Like for the previous calculi, −→ relates configurations
of the form A . P , where A is now a set of ambient names such that n(P) ⊆
A ⊂fin A. Function n(P) returns the set of ambient names occurring in P . As
usual, −→∗ stands for the reflexive and transitive closure of −→ .

The semantics is given modulo a structural congruence relation, ≡, equating
α-convertible processes and stating that “|” is commutative, associative and
with 0 as identity.

We now comment on the Ambients peculiar operational rules. Rule (A-In)
says that the ambient n performing the action enters the sibling ambient m. If
no sibling m can be found, the operation gets stuck until such a sibling exists;
if more than one sibling m exists, any one of them can be chosen. Symmet-
rically, rule (A-Out) says that the ambient n performing the action exits its
enclosing ambient if this is named m; otherwise, the action gets stuck. Rule
(A-Open) says that the boundary of ambient n is dissolved and n’s content is
unleashed, possibly within the ambient performing the action. If no ambient

35

n is found, the operation gets stuck until such an ambient exists; if more than
one ambient n exists, any one of them can be chosen. Rule (A-Comm) ac-
counts for asynchronous communication between co-located processes; again,
the static typing enables the communication without any runtime overhead.
In rule (A-Res), the set A of names already in use is exploited to choose a
fresh name n. Finally, rule (A-Amb) states that, if the content of an ambient
evolves, then the whole ambient evolves accordingly.

Before concluding, let us implement in Ambients the example presented in
Section 2. The server and the client are modelled as two sibling ambients
whose names are nS and nC . Processes PC and PS now become

PC , (νpwd)(req|[out nC .in nS.〈nC , pwd, [cc info]{nC ,nS ,req}〉]|
| open pwd.(y). < modify pwd y and access the service >)

PS , ∗open req.(x1, x2, x3). < check credit card info x3 > .

(νp)(x2|[out nS.in x1.〈[p]{x1,x2,nS}〉]| |
< handle password modifications and provide the service >)

Ambient req is used as an access point to the server; indeed, it brings message
〈nC , pwd, [cc info]{nC ,nS ,req}〉 out of the client and then in the server, where
it is dissolved, thus enabling the reception of the message. This is carried on
by the following reductions (where, like before, the sets A of names in use are
omitted):

nC |[PC]| | nS|[PS]|
−→∗ nC |[open pwd. · · ·]| | nS|[PS]| | req|[in nS.〈nC , pwd, [cc info]{nC ,nS ,req}〉]|
−→ nC |[open pwd. · · ·]| | nS|[PS | req|[〈nC , pwd, [cc info]{nC ,nS ,req}〉]|]|
−→ nC |[open pwd. · · ·]| | nS|[PS | 〈nC , pwd, [cc info]{nC ,nS ,req}〉 | (x1, x2, x3). · · ·]|

Upon verification of the credit card information, the server creates a new
password p that is delivered back to nC by the ambient pwd. Again, this last
ambient serves as an access point to the client and acts like ambient req above.

By comparing this implementation with that in Dπ, one can notice how chan-
nels can be implemented in Ambients. Intuitively, channels (e.g., req and pwd

in the example above) are rendered as pilot ambients that bring messages from
the sender to the receiver, by following possibly complex routing paths. Once
they have reached their final destination, such ambients are opened so that
the messages they carry on are unleashed and can be retrieved by the receiver.

36

6 A Realistic Example: Implementing a Multiuser System

In this section we want to further illustrate our approach. To this aim, we use
the framework presented so far to program a simple but meaningful example
in cKlaim; the implementations in the other calculi can be derived straight-
forwardly. For the sake of readability, we will use parameterised process defi-
nitions and strings. Moreover, we borrow from [13] polyadic communication,
i.e. the possibility of exchanging tuples of data, and the primitive read that
behaves similarly to in but, after its execution, it leaves the accessed data in
the TS. Clearly, the type inference for actions read works similarly to that
for actions in (by adding region annotations to parameters occurring in tem-
plates).

We present the behaviour of a simple UNIX-like multiuser system, where users
can login (exploiting a password-based approach) and use the system function-
alities, which consist in reading/writing files or executing programs. For the
sake of presentation, we shall present the system in three steps and, finally,
we shall merge them together. Let lS be the address of the server, > be its
data trust region and ∅ be its process trust region (thus no user can spawn
code to lS).

User Identification. We start with programming the identification of differ-
ent users via passwords. Localities play the role of user IDs. Let lp be a private
repository used by lS to record the registered users and their passwords. Thus,
lp hosts the tuples

〈l1, [pwd1]{l1,lp,lS}〉 | . . . | 〈ln, [pwdn]{ln,lp,lS}〉

Let l be a user wanting to log in lS. If l is already known to lS (i.e. it is one
of the lis), then l can use a process like

out(“login”, l, [pwd]{l,lS})@lS.in(“logged”)@lS. . . .

for communicating with the server process

Login(lp) , ∗ in(“login”, !u, !z)@lS.read(u, z)@lp.out([“logged”]{lS ,u})@lS

Intuitively, l requires a connection by sending its user ID (its locality) and
its password; the server checks if this information is correct and sends back
an ack, activating the continuation of the computation at l. Notice that the
region annotations of pwd and “logged” rule out attacks of a nasty intruder
aimed at cancelling the request of login or the corresponding ack, and preserve
the secrecy of the password.

37

If the user is not registered at lS yet, he can send an “hello” request to the
server containing its address and wait for a password

out([“hello”]{l,lS}, l)@lS.in(“registered”, !pwd)@lS. . . .

The server then handles this request with the process

NewUser(lp) , ∗ in(“hello”, !u)@lS.newloc(pwd).out(u, [pwd]{u,lS ,lp})@lp.

out(“registered”, [pwd]{lS ,u})@lS

Of course, a locality l′ different from l can send lS a request for a new password
pretending to be l: the only difference with the “hello” message given above
is that the message now should contain also l′ in the data region. However,
the server will report the new password to l and the region associated to the
password will ensure that pwd will not leave l. Thus, l′ can withdraw pwd
only by sending a process to l and then acting at l with the new password.
This can be possible only if l trusts l′, implying that l accepts this ‘suspicious’
activity of l′.

We now show the use of our typing theory in the setting just presented. In
particular, we give evidence on how we can prevent attacks aimed at cancelling
messages and the activity of malicious users pretending to play the role of other
users.

• Let lcanc be a locality hosting a process that aims at interfering with the
login procedures by performing action in(“hello”, !x)@lS. In this way, it
removes the hello message sent by a new user l wanting to be connected
with the server lS. The system is modelled as follows

lcanc :: in(“hello”, !x)@lS.DONE ‖ lS :: NewUser(lp)

‖ l :: out([“hello”]{l,lS}, l)@lS.in(“registered”, !pwd)@lS. · · ·
Â−→ lcanc :: in(“hello”, !x)@lS.DONE

‖ l :: in(“registered”, !pwd)@lS. · · ·
‖ lS :: NewUser(lp) | 〈[“hello”]{l,lS}, l〉

Â−→/ lcanc :: DONE ‖ l :: in(“registered”, !pwd)@lS. · · ·
‖ lS :: NewUser(lp)

Notice that the last transition cannot take place. As intended, the intruder
running at lcanc is not enabled to withdraw the tuple 〈[“hello”]{l,lS}, l〉 be-
cause lcanc 6∈ {l, lS} (see the runtime check of rule (cK-Match)).

• Let now lpret be a locality pretending to act on behalf of l, by trying to
acquire a log to lS under the identity of l. Let us examine the possible

38

evolutions of the system:

lpret :: out(“hello”, l)@lS.in(“registered”, !pwd)@lS.DONE

‖ lS :: NewUser(lp)

Â−→ Â−→ Â−→ Â−→ lpret :: in(“registered”, !pwd)@lS.DONE

‖ lS :: NewUser(lp)| 〈“registered”, [pwd]{lS ,l}〉
Â−→/ lpret :: DONE ‖ lS :: NewUser(lp)

Again, the last reduction cannot take place because lpret 6∈ {lS, l}. The only
way for lpret to withdraw datum 〈“registered”, [pwd]{lS ,l}〉 is to spawn a pro-
cess to l (if it exists in the net) executing action in(“registered”, !pwd)@lS
(that would be enabled, because l ∈ {lS, l}). Such a migration, however,
must be authorised by l (indeed, it can take place only if lpret ∈ rl

p, where
rl
p is the node region controlling migrations to l).

The File System. We now consider a server handling a file system where
different users can write/read data. Let lf be a private repository used by lS
to store the files. A file named N , whose content is the string S, that can be
read by users in r and written by users in r′, is stored in lf as the process

CN , 〈N , [“read”]r∪{lS ,lf} , [“written”]r′∪{lS ,lf}〉 | 〈N, S〉

Intuitively, “read” and “written” are just dummy data used to properly store
regions r and r′. Then, the server handles requests for reading and writing
files with the following processes

Read(lf) , ∗ in(“read”, !u, !n)@lS.read(n, !zr, !zw)@lf .read(n, !z)@lf .

out([zr]{lf ,lS ,u}, n, z)@u

Write(lf) , ∗ in(“write”, !u, !n, !z)@lS.read(n, !zr, !zw)@lf .in(n, !z′)@lf .

out(n, z)@lf .out([zw]{u,lf ,lS}, n)@u

Intuitively, the first in action collects the request for reading/writing the file
named n performed by locality u; then the following read action, once type
checked, verifies if the locality replacing u has the read/write privilege on
file n (see below). Finally, the required operation is performed (the content
of the file is read or the old content is replaced with the new one) and an
acknowledgement (containing the kind of operation performed, the name of
the file and, in the “read” case, also its content) is reported to u.

We now show how our types can control read accesses to files. There are
two features devoted to this aim: the type inference phase carried on process
Read(lf) and the runtime checks of the operational semantics (in particular,

39

the premise of rule (cK-In)). We first give the type inference; recall that
absence of region annotations stands for >.

{lS, u} ⊆ s Γ1 ` nil ÂlS Γ1 ` nil

Γ1 ` out ([zr]s, n, z)@u ÂlS Γ2 ` out ([zr]s, n, z)@u

Γ3 ` read (n, !z)@lf .out([zr]s, n, z)@u ÂlS

Γ4 ` read (n, !z)@lf .out([zr]s, n, z)@u

Γ5 ` read (n, !zr, !zw)@lf .read(n, !z)@lf .out([zr]s, n, z)@u ÂlS

Γ6 ` read (n, [!zr]
s, [!zw]{lS})@lf .read(n, !z)@lf .out([zr]s, n, z)@u

∅ ` in (“read”, !u, !n)@lS.read(n, !zr, !zw)@lf .

read(n, !z)@lf .out([zr]s, n, z)@u

ÂlS ∅ ` in (“read”, [!u]{ls}, !n)@lS.read(n, [!zr]
s, [!zw]{lS})@lf .

read(n, !z)@lf .out([zr]s, n, z)@u

where we let s , {lf , lS, u} and

Γ1 , Γ3] {z : {lS}} Γ2 , Γ1 + {zr : s, n : >, z : >}
Γ3 , Γ5] {zr : {lS}, zw : {lS}} Γ4 , {u : {lS}, n : >, zr : s, zw : {lS}}
Γ5 , u : {lS}, n : {lS} Γ6 , u : {lS}, n : >

We now call TRead(lf) the process obtained from the typing inference above.
Let l be a user wanting to read a file named FILE associated to a read region
ρ = {lf , lS, l, . . .}. FILE is then stored at lf as the process

CFILE , 〈FILE , [“read”]ρ , [“written”]ρ′〉 | 〈FILE, content〉
The evolution of user l is

l :: out(“read”, l, F ILE)@lS.in(“read”, F ILE, !cont)@l.P

‖ lf :: CFILE ‖ lS :: TRead(lf)

Â−→ Â−→ l :: in(“read”, F ILE, !cont)@l.P ‖ lf :: CFILE

‖ lS :: TRead(lf) | read(FILE, [!zr]
{lf ,lS ,l}, [!zw]{lS})@lf . · · ·

Now, action read(FILE, [!zr]
{lf ,lS ,l}, [!zw]{lS})@lf is enabled, because

{lf , lS, l} ⊆ ρ; thus, the content of FILE will be transferred to l that, in
turn, will be enabled to retrieve it (by binding content to the variable cont)
and use it in P . Notice that, if a user l′ 6∈ ρ had tried to carry on the same
task, these actions would not have been enabled, since {lf , lS, l′} 6⊆ ρ.

40

Executing Code-on-Demand. In this last setting, a user can dynamically
download some code from the server to perform a given task. The server stores
all the downloadable processes as executable (named) files in a private locality
lc. For each executable file named N , whose code is P and that is downloadable
by nodes in r, the server stores in lc the component

CN , 〈N, [“downloaded”]r∪{lS ,lc}〉 |
∗ in(req, N, !u)@lc.read(N, !ze)@lc.

eval(eval(out([ze]{lc,lS ,u}, N)@u.P)@u)@lS

Then, when a user wants to download some code, the server handles its request
with the process

Execute(lc) , ∗ in(“execute”, !u, !n)@lS.out(req, n, u)@lc

Notice that lc cannot directly send P for execution to u because (the locality
associated to) u cannot have lc in its trust region (since lc is fresh). Thus, P
must firstly cross lS and then, if lS is in the process trust region of u (which we
assume it is the case), the code-on-demand procedure successfully terminates,
by also reporting an ack to the user.

The System. Finally, we can put together the activities shown so far to
obtain the implementation of the whole server. Thus, the (not yet typed)
initial configuration of lS would be

lS > :: ∅ newloc(u1).newloc(u2).newloc(u3) .

< set up u1 with the identites and passwords of the users > .

< set up u2 with the data of the file system > .

< set up u3 with the downloadable processes > .

(NewUser(u1) | Login(u1) | Read(u2) |
Write(u2) | Execute(u3))

Our example simplifies UNIX behaviour in two major aspects. Firstly, we
did not require that a user must login before using the functionalities offered
by the system; secondly, the files/programs are put by the system and not
by the users. Both these choices were driven by the aim of simplifying the
presentation; however, our setting could be easily enriched with more refined
and realistic features.

Finally, we want to remark that, by exploiting the dummy data “read”,
“written” and “downloaded”, we have been able to enforce an access con-

41

trol policy by only using region annotations. This confirms that, in spite of its
simplicity, the approach we presented in this paper is very powerful.

7 Conclusions and Related Work

The main contribution of this paper is the introduction of a typing discipline
for fixing the network region where data and processes can safely move. Our
types can prevent execution of those actions that could compromise region
specifications. To provide evidence of the generality of our approach, it has
been applied to three paradigmatic calculi for global computing with quite
different design choices. The technique developed works even when only a local
knowledge of the net during the compilation can be assumed and misbehaving
entities are present in the system. A few example applications implemented
in all the three calculi have been also shown.

We want to remark that our theory permits to naturally implement a security
mechanism based on sandboxes. We already noticed, in the introduction, that
nodes can be seen as logical partitions of a single physical machine. By exploit-
ing this intuition, one can split each machine into an appropriate number of
nodes each with its own security policy. In this way, fine grained security poli-
cies can be programmed to guarantee that untrusted processes (e.g., coming
from unchecked nodes) are accepted only at dedicated nodes and that from
these nodes remote operations and spawning of threads are not permitted.

We conclude by commenting on the three instantiations of our region based
approach; this should also shed light on the different choices and paradigms
underlying the considered calculi. We shall also discuss possible extensions
and confront our work with that of other researchers.

Assessment. Differently from that of Dπ and Ambients, the typing of cK-
laim requires some dynamic checks; this feature, however, is orthogonal to
data secrecy and only depends on the underlying process calculus. In fact,
these runtime checks could be avoided, and a typing discipline similar to that
of Ambients could be developed for cKlaim too, by additionally requiring
that all data exchanged within a node have the same type. However, we find
it too demanding to force a cKlaim node to contain only data of the same
type. On the contrary, Dπ channels can be reasonably assigned a fixed type
because they can be seen as methods a node supplies to the processes it hosts,
and ambients can be reasonably assigned the same type because, due to their
hierarchical organisation, they could be thought of as logical partitions of the
same memory space.

There is a thread-off between simplicity, efficiency and implementability. The

42

type system for cKlaim is quite simple and easily implementable (types are
just sets and operations on types are unions, intersections, subset inclusions,
...). Clearly, its runtime semantics is less efficient because of the dynamic
checks in rules (cK-Out), (cK-Eval), (cK-In) and (cK-Match). Never-
theless, we consider reasonable this dynamic burden, since it only involves
efficiently implementable operations on sets. On the contrary, Dπ and Ambi-
ents have very efficient runtime semantics (no type related check is present)
at the expense of more involved static semantics. Also implementability is not
straightforward: a preliminary implementation for the (simpler) type system
of [19] appeared in a very technical paper [21]; type inference algorithms for
Ambients-like calculi are even more complex (see, e.g., [29,6,12]). Since our
type systems for Dπ and Ambient do rely on [19] and [4] respectively, we
believe that they will also inherit the problems related to the implementation.

Finally, notice that in the setting of Dπ and Ambient explicit tagging of lo-
cations/data could seem useless, because no runtime check is ever performed.
It might then appear more natural to leave the syntax untagged and record
all type related information in the typing environment. The main drawback
of this solution is that it would require a global (centralised) knowledge of
all types. Tagging, instead, permits storing and inferring typing information
locally, and keeps the formalisms closer to programmers’ needs.

Possible extensions. Node regions could be handled more dynamically by
extending the calculi we presented with actions for adding and removing nodes
from regions (in this way, e.g., nodes could choose whether to trust newly cre-
ated ones). However, this more expressive framework would require additional
runtime checks. In particular, none of the two guarantees illustrated at the
beginning of Section 3.1 could then be issued after static checks; the type sys-
tem would then only permit inferring the regions of the arguments of process
actions, and render dynamic checks more efficient.

Related Work. Much work has been recently devoted to designing languages
for mobile processes that come equipped with security mechanisms based on,
e.g., type systems [19,4,2,6,13] or control and data flow analysis [16,25,9,1].
The approach presented here is related to both these techniques. It exploits a
type system to ensure confinement of data, and guarantees that the semantics
respects the annotations by relying on the typing phase. Typing keeps track
of data movements with a technique similar to control flow analysis.

Our work has been inspired by that on Confined-λ [20], a higher-order func-
tional language that supports distributed computing by allowing expressions
at different localities to communicate via channels. To limit the movement of
values, programmers can assign regions to them; a type system is defined that
guarantees that each value can roam only within the allowed region. There

43

are however some differences with our approach. First of all, we consider not
only channels but also other communication media that require a more dy-
namic typing mechanism. Then, we permit annotating only the relevant data
while in [20] a programmer must declare a type (i.e. a region) for any con-
stant, function and channel. When typing a net, we do not rely on any form of
global knowledge of the system; only the annotations in the process are con-
sidered. We can infer this information by the local use of channels/ambients
(in Dπ and Ambients resp.) or by just examining the code (in cKlaim). On
the contrary, the type system in [20] assumes a global typing environment for
handling shared channels; this somehow conflicts with the features of a global
computing setting. Finally, we also give ‘localised’ formulations of the sound-
ness theorem stating that well-typedness of a given subnet is preserved also in
presence of untyped contexts. This is a crucial property for global computing
systems where little assumptions on the behaviour of the context can be made.

Confinement has been also explored in the context of Java. In [27], confined
types are introduced to confine classes and objects within specific packages.
Then, in [28], a static type system based on confined types is defined for
a Java-based calculus and its soundness is proved. Hence, in Java software
modules play the role of our network regions, and confinement is associated
rather with objects encapsulation than with movements of data and processes.

The group types, originally proposed for the Ambients calculus [4] and then
recast to the π-calculus [3], have purposes similar to our region annotations.
A group type is just a name that can be dynamically created but cannot be
communicated (i.e. the scope of a group name cannot be extended). It permits
to control name visibility in different regions of a net: a fresh name belonging
to a fresh group can never be communicated to any process outside the scope
of the group. Group types can then be used to handle processes and ambients
movements, and in general to prevent accidental or malicious leakage of private
names without using more complex dependent types (see, e.g., [22]). Notice
that restricted names can be handled in a more flexible way in our framework
by readily adapting the use of groups or, even better, of the abstract names
from [22]. However, differently from our approach, when exploiting groups or
abstract names some global knowledge is still necessary for taking into account
the types of the names occurring free in a net.

Group types have also been used in region-based memory management where
the focus is on efficiency, rather than on distribution and mobility. For in-
stance, in [7] a connection between memory regions and group types is estab-
lished and a variant of the π-calculus equipped with group types is used as a
device to simplify the proof of correctness of dynamic memory management.

Finally, we want to consider a lower level approach to protect visibility of
data via encryption. Encrypted data can appear everywhere in the net, but

44

(A-T-Empty)

Γ ` 0

(A-T-Par)

Γ ` P1 Γ ` P2

Γ ` P1|P2

(A-T-Repl)

Γ ` P

Γ ` ∗P

(A-T-Amb)

Γ `n P

Γ ` n|[P]|

(A-T-Res)

Γ, n 7→ r1 . r2 . {n}[T] ` P

Γ ` (νn)P

Table A.1
Main Judgement for Typing Ambients

can be effectively used only by those users that know the decryption key. At an
abstract level, we can consider the content of an encrypted message to be vis-
ible only within the region containing the nodes knowing the decryption key.
Thus, it might appear that our approach could be implemented by resorting
to cryptographic primitives. However, we would like to stress an important
difference. When encryption is used, the producer of encrypted data can con-
trol the access to (plain) data only by controlling visibility of the decryption
key. But this can be hardly controlled: once a decryption key has been passed
on, information leakage can reveal the key, thus breaking the controllability
of data. By exploiting our approach, the data producer can decide in advance
which are the users enabled to access the data; this information is preserved
during any evolution of the system. However, it should be noticed that indi-
rect information flows can be generated; for an account of these problems and
some possible solutions we refer the interested reader to [17,18].

Acknowledgements. We would like to thank Riccardo Focardi and Gianluigi
Zavattaro for inviting us to present our work at the SecCo’03 Workshop and
for stimulating the preparation of this manuscript. The reviewers gave fruitful
comments that helped in improving the paper.

A Technical Details for Ambients

The typing procedure for Ambients processes is presented in Tables A.1
and A.2. It is somehow inspired by the basic typing of [4] and also includes
some features we have already presented for Dπ in Section 4.1.

The main judgement Γ ` P is defined by the rules in Table A.1. Intuitively, it
states that P is well-typed under the assumptions Γ. Differently from [5], we
do not assign a type to processes and consider ill-typed those processes with
actions or messages occurring outside any ambient boundary. The latter choice
reflects our intuition of ambients as nodes of a net: a process cannot perform

45

(AA-T-Nil)

Γ `u 0

(AA-T-Par)

Γ `u P1 Γ `u P2

Γ `u P1|P2

(AA-T-Repl)

Γ `u P

Γ `u ∗P

(AA-T-Amb)

val(Γ(u)) ∪ cont(Γ(u)) ⊆ cont(Γ(v)) Γ `v P

Γ `u v|[P]|

(AA-T-Res)

Γ, n 7→ r1 . r2 . {n}[T] `u P

Γ `u (νn)P

(AA-T-In)

val(Γ(v)) ∪ cont(Γ(v)) ⊆ look(Γ(u))
val(Γ(u)) ∪ cont(Γ(u)) ⊆ cont(Γ(v)) Γ `v P

Γ `v in u.P

(AA-T-Out)

val(Γ(v)) ∪ cont(Γ(v)) ⊆ look(Γ(u)) Γ `v P

Γ `v out u.P

(AA-T-Open)

val(Γ(v)) ∪ cont(Γ(v)) ⊆ look(u) Γ `v P

Γ `v open u.P

(AA-T-Rcv)

Γ(u) = r1 . r2 . r3[T] Γ, x 7→ T `u P

Γ `u (x).P

(AA-T-Snd)

Γ(v)=r1 . r2 . r3[T] Γ(u)=T val(Γ(v)) ∪ cont(Γ(v)) ⊆
⋃
w∈r

val(Γ(w)) ⊆ look(T)

Γ `v 〈[u]r〉
Table A.2
Auxiliary Judgement for Typing Ambients

any computational activity if it has not been allocated within some ambient.
The main judgement relies on the auxiliary judgement Γ `u P defined by the
rules in Table A.2. This judgement is invoked in rule (A-T-Amb) of the main
judgement and states that, when located within ambient u, process P can be
typed in the environment Γ. As a matter of notation, Γ, u 7→ T will stand for
the type environment Γ′ such that Γ′(v) = Γ(v), if v 6= u and u 6∈ dom(Γ),
and Γ′(v) = T if v = u 6∈ dom(Γ).

We use functions look(T), cont(T) and val(T) to denote the regions r1, r2 and
r3, respectively, when T = r1 . r2 . r3[·]; look(Shh) denotes >. Finally, we also
assume the following well-formedness condition on environments:

46

Let Γ(v) = r1 . r2 . r3[T]. For every n ∈ r2 it must be that cont(Γ(n)) ⊆ r2.
Moreover, if v ∈ A then r3 = {v}; otherwise, for each n ∈ r3, it must be
that r1 ⊆ look(Γ(n)) and r2 ⊆ cont(Γ(n)).

We now briefly comment on some key features of the type system. For each oc-
currence of an identifier u, it is verified that the ambient containing the occur-
rence, and all the possibly enclosing ambients, can see u (see rules (AA-T-In),
(AA-T-Out), (AA-T-Open) and (AA-T-Snd) – and, indirectly, also rule
(AA-T-Amb)). The crucial rules are (AA-T-Amb) and (AA-T-In): they en-
sure that the ambient hierarchy always maintains the invariant (§) described
in Section 5.1. Finally, rules (AA-T-Rcv) and (AA-T-Snd) exploit the topic
of conversation to handle communications, i.e. to assign types to input vari-
ables or to verify that messages are sent at the type required by the ambient
where the exchanges take place.

We now prove subject reduction and type safety for Ambients; the proofs are
similar to those presented for Dπ in Section 4.3. Here, we only illustrate the
most significant differences. First, Γ with A for P is the least environment
that type checks P such that

Γ with A for P ,





Γ if A = ∅
(Γ with A′ for P), n 7→ r1 . r2 . {n}[T] if A =A′] {n}

The technical lemmas to establish subject reduction are, like before, subject
congruence and substitutivity. Moreover, we give a Lemma (crucial in the case
for open) that formally justifies the invariant (§) given in Section 5.1.

Lemma 5 (Subject Congruence) If Γ `u P and P ≡ P ′ then Γ `u P ′.
The claim holds also when replacing `u with `.

Lemma 6 (Substitutivity) If Γ, x 7→ T `v P and Γ(n) = T , then Γ `v{n/x}
P{n/x}.

Proof: The proof proceeds by induction on Γ, x 7→ T `v P . The proof is
long and tedious because we must inspect all typing rules; here, we explicitly
consider one of them, namely (AA-T-In). In what follows, for the sake of
readability, we let Γ′ = Γ, x 7→ T .

Whenever (AA-T-In) is the last rule applied in the inference, it must be
that P = in u.Q. Thus, val(Γ′(v)) ∪ cont(Γ′(v)) ⊆ look(Γ′(u)), val(Γ′(u)) ∪
cont(Γ′(u)) ⊆ cont(Γ′(v)) and Γ′ `v Q. By induction, we have that Γ `v{n/x}
Q{n/x}. Moreover, Γ(u{n/x}) = Γ′(u); indeed, if u = x then Γ(u{n/x}) =
Γ(n) = T = Γ′(x), otherwise Γ(u{n/x}) = Γ(u) = Γ′(u). Similarly, Γ(v{n/x}) =
Γ′(v); this suffices to conclude the wanted Γ `v{n/x} in (u{n/x}).Q{n/x}. 2

47

Lemma 7 If Γ `v P and val(Γ(u)) ⊆ cont(Γ(v)), then Γ `u P .

Proof: By induction on the length of judgement Γ `v P . The proof is easy
because of well-formedness of Γ. 2

Theorem 6 (Subject Reduction) Let A . P −→ A′ . P ′. Then

(1) Γ `n P implies that (Γ with A′ − A for P ′) `n P ′;
(2) P is well-typed implies that P ′ is well-typed.

Proof: The first claim is proved standardly, by induction on the length of the
inference for A . P −→ A′ . P ′. The most interesting cases are the following
ones:

(A-Open). In this case P = open m.Q | m|[R]|, while P ′ = Q |R. By
hypothesis, Γ `n m|[R]| and Γ `n open m.Q. By rules (AA-T-Amb)
and (AA-T-Open), we also have that Γ `m R and Γ `n Q; moreover,
by Lemma 7, we have that Γ `n R, because, by the premise of rule
(AA-T-Amb), we know that n ∈ cont(Γ(m)). This suffices to conclude.

(A-Comm). In this case P = 〈[m]r〉 | (x).Q, while P ′ = Q{m/x}. By hypoth-
esis, Γ `n 〈[m]r〉 and Γ `n (x).Q. These judgements imply that Γ(m) = T
and Γ, x 7→ T `n Q, where Γ(n) = r1 . r2 . {n}[T]. By Lemma 6 it holds
that Γ `n Q{m/x}, as required.

The second claim is proved similarly to Theorem 4. Indeed, it suffices to prove
that Γ with A′ − A for P ′ is defined, where Γ is such that Γ ` P . The proof
is by induction on A.P −→ A′ .P ′. Both for the base and for the inductive
case, we only consider the most significant cases; the other ones are simpler.

(A-In). In this case P = n|[in m.Q1 |Q2]| | m|[R]|, while P ′ = m|[n|[Q1 |Q2]| | R]|;
moreover, A′ = A. Thus, we only prove that N ′ is well-typed in Γ. By
hypothesis, Γ `m R, Γ `n Q2 and Γ `n in m.Q1. The last judgement
implies that {m} ∪ cont(Γ(m)) ⊆ cont(Γ(n)) and Γ `n Q1. We can easily
conclude.

(A-Res). In this case, P = (νn)P ′ and A′ − A = {n}. Now, Γ with A′ −
A for P ′ is Γ, n 7→ r1 . r2 . {n}[T] if there exist some r1, r2 and T that type
P ′. The existence of these r1, r2 and T is ensured by the premise of rule
(A-T-Res), that is the last rule used to infer Γ ` (νn)P ′.

(A-Amb). By hypothesis, P = n|[Q]| and P ′ = n|[Q′]|, because A . Q −→
A′ . Q′. Moreover, Γ `n Q; by the first claim of this Theorem, this implies
that (Γ with A′ − A for Q′) `n Q′. Thus, n|[Q′]| is well-typed, as required.

2

We now formulate and prove type safety and type soundness by following the
guidelines of Section 4.3. We exploit function regΓ(·) that is defined inductively

48

as follows:

regΓ(0) , ∅ regΓ(P |Q) , regΓ(P) ∩ regΓ(Q) regΓ(u|[P]|) , look(Γ(u))

regΓ(in u.P) = regΓ(out u.P) = regΓ(open u.P) , look(Γ(u)) ∩ regΓ(P)

regΓ(〈[u]r〉) , ⋃
w∈r val(Γ(w)) regΓ(∗P) = regΓ((x).P) , regΓ(P)

Definition 6 (Safety) A process P is Γ-safe if for any sub-ambient u|[Q]| of
P , it holds that val(Γ(u)) ⊆ regΓ(Q).

Theorem 7 (Type Safety) If Γ ` P then P is Γ-safe.

Proof: It suffices to prove that Γ `u P implies that val(Γ(u)) ⊆ regΓ(P).
This is done by a standard induction on the typing judgement. 2

Like in Dπ, a localised formulation of type soundness can be given. Indeed,
we can define the Γ-r-subprocess of P as the process containing all the sub-
ambients n|[Q]| of P such that {n} ∪ {m : n ∈ cont(Γ(m))} ∪ cont(Γ(n)) ⊆ r.
Thus, n|[Q]| is part of the Γ-r-subprocess of P if and only if r contains n, all
the ambients that n can contain and all the ambients that can contain n. This
amounts to say that at least all the subtree rooted in n and all the ancestors
of n in the ambient hierarchy must be typed to ensure the safety of data oc-
curring in n. Again, since the Γ->-subprocess of P is P itself, the following
theorem also states the soundness result when P is fully typed.

Theorem 8 (Localised Type Soundness) Let the Γ-r-subnet of P be de-
fined and well-typed in Γ. If A . P −→∗ A′ . P ′, then the Γ′-r′-subnet of P ′ is
defined and Γ′-safe, where r′ = r ∪ (A′ − A) and Γ′ = Γ with A′ − A for P ′.

49

References

[1] C. Braghin, A. Cortesi, and R. Focardi. Security Boundaries in Mobile
Ambients. Computer Languages, 28(1):101–127, Nov 2002.

[2] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Proc. of TACS
2001, volume 2215 of LNCS, pages 38–63. Springer, 2001.

[3] L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. In
C. Palamidessi, editor, Proc. of CONCUR 2000, volume 1877 of LNCS, pages
365–379. Springer, 2000.

[4] L. Cardelli, G. Ghelli, and A. D. Gordon. Types for the ambient calculus.
Journal of Information and Computation, 177(2):160–194, 2002.

[5] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[6] M. Coppo, M. Dezani-Ciancaglini, E. Giovannetti, and I. Salvo. M3: Mobility
types for mobile processes in mobile ambients. In Proc. of CATS’02, volume 78
of ENTCS. Elsevier, 2002.

[7] S. Dal-Zilio and A. D. Gordon. Region analysis and a pi-calculus with groups.
In M. Nielsen and B. Rovan, editors, Proceedings of MFCS 2000, volume 1893
of LNCS, pages 409–424. Springer, 2000.

[8] R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for
Agents Interaction and Mobility. IEEE Transactions on Software Engineering,
24(5):315–330, 1998.

[9] P. Degano, F. Levi, and C. Bodei. Safe ambients: Control flow analysis and
security. In Proc. of ASIAN’00, volume 1961 of LNCS, pages 199–214. Springer,
2000.

[10] Ú. Erlingsson and F. B. Schneider. SASI enforcement of security policies: A
retrospective. In New Security Paradigms Workshop, pages 87–95. ACM Press,
1999.

[11] D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[12] E. Giovannetti. Type inference for mobile ambients in prolog. In Proc. of
CATS’04, ENTCS. Elsevier, 2004.

[13] D. Gorla and R. Pugliese. Resource access and mobility control with dynamic
privileges acquisition. In J. Baeten, J. Lenstra, J. Parrow, and G. Woeginger,
editors, Proc. of ICALP’03, volume 2719 of LNCS, pages 119–132. Springer-
Verlag, 2003.

[14] D. Gorla and R. Pugliese. A semantic theory for global computing system.
Research report, Dipartimento di Sistemi e Informatica, Università di Firenze,
2003. Available at http://www.dsi.unifi.it/~pugliese/DOWNLOAD/-
bis4k-full.pdf.

50

[15] D. Gorla and R. Pugliese. Controlling data movement in global computing
applications. In Proc. of 19th Annual ACM-SIGAPP Symposium on Applied
Computing (SAC’04). ACM Press, 2004.

[16] R. R. Hansen, J. G. Jensen, F. Nielson, and H. R. Nielson. Abstract
interpretation of mobile ambients. In Proc. of SAS 1999, volume 1694 of LNCS,
pages 134–148. Springer, 1999.

[17] M. Hennessy. The security pi-calculus and non-interference. In Proc. of MFPS
XIX, ENTCS. Elsevier, 2003. Full version to appear in Journal of Logic and
Algebraic Programming.

[18] M. Hennessy and J. Riely. Information flow vs. resource access in the
asynchronous pi-calculus. In U. Montanari, J. Rolim, and E. Welzl, editors,
Proc. of ICALP 2000, volume 1853 of LNCS, pages 415–427. Springer, 2000.

[19] M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile
Agents. Information and Computation, 173:82–120, 2002.

[20] Z. D. Kirli. Confined mobile functions. In Proc. of the 14th CSFW, pages
283–294. IEEE Computer Society, 2001.

[21] C. Lhoussaine. Type inference for a distributed pi-calculus. In Proc. of
ESOP’03, volume 2618 of LNCS, pages 253–268. Springer-Verlag, 2003. Full
version to appear in Science of Computer Programming.

[22] C. Lhoussaine and V. Sassone. A dependently typed ambient calculus. In
Proceedings of ESOP’04, volume 2986 of LNCS, pages 171–187. Springer-Verlag,
2004.

[23] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Journal of Information and Computation, 100:1–77, Sept. 1992.

[24] G. Necula. Proof-Carrying Code. In Proceedings of POPL ’97, pages 106–119.
ACM Press, 1997.

[25] F. Nielson, H. R. Nielson, R. R. Hansen, and J. G. Jensen. Validating firewalls
in mobile ambients. In J. C. Baeten and S. Mauw, editors, Proc. of CONCUR
’99, volume 1664 of LNCS, pages 463–477. Springer, 1999.

[26] F. B. Schneider, G. Morrisett, and R. Harper. A language-based approach to
security. In Informatics: 10 Years Ahead, 10 Years Back, volume 2000 of LNCS,
pages 86–101. Springer, 2000.

[27] J. Vitek and B. Bokowski. Confined types in java. Software - Practice and
Experience, 31(6):507–532, 2001.

[28] T. Zhao, J. Palsber, and J. Vitek. Lightweight confinement for featherweight
java. In Proc. of the 18th OOPSLA, pages 135–148. ACM Press, 2003.

[29] P. Zimmer. Subtyping and typing algorithms for mobile ambients. In Proc. of
FoSSaCS’00, volume 1784 of LNCS, pages 375–390. Springer, 2000.

51

