
Theoretical Computer Science, 356(3):387–421. c© Elsevier, 2006.

On the Expressive Power of K-based Calculi?

Rocco De Nicola a Daniele Gorla b Rosario Pugliese a

aDipartimento di Sistemi e Informatica, Università di Firenze
bDipartimento di Informatica, Università di Roma “La Sapienza”

Abstract

We study the expressive power of variants of K, an experimental language with pro-
gramming primitives for network-aware programming that combines the process algebra
approach with the coordination-oriented one. K has proved to be suitable for program-
ming a wide range of distributed applications with agents and code mobility, and has been
implemented on the top of a runtime system written in Java. In this paper, the expressivity
of its constructs is tested by distilling from it a few, more and more foundational, languages
and by studying the encoding of each of them into a simpler one. The expressive power
of the considered calculi is finally tested by comparing one of them with asynchronous
π-calculus.

Key words: Process calculi, Network-aware programming, Expressiveness, Language
encodings, Behavioural equivalences, Bisimulation

1 Introduction

In the design of programming languages for network-aware programming, a key
research challenge is devising theoretical models and calculi with a clean formal
semantics for specifying, programming and reasoning about network-aware appli-
cations. These models and calculi could provide the basis for the design of systems
sound “by construction” and behaving in a predictable and analyzable way. The
crux is to identify the more appropriate abstractions and to supply foundational and
effective tools for supporting the development of network-aware applications.

? This work is the full version of [14] and has been carried on while the second author was
a PhD student at the University of Florence.

Email addresses: denicola@dsi.unifi.it (Rocco De Nicola),
gorla@di.uniroma1.it (Daniele Gorla),
pugliese@dsi.unifi.it (Rosario Pugliese).

1

One of the abstractions that appears to be very important is mobility. This feature
deeply increases flexibility and, thus, expressiveness of programming languages for
network-aware programming. Evidence of the success of this programming style is
provided by the recent design of commercial/prototype programming languages
with primitives for moving code and processes.

The first foundational calculus dealing with mobility has been the π-calculus [23],
a simple and expressive calculus aiming at capturing the essence of name passing
with the minimum number of basic constructs. Indeed, the only operators of the
π-calculus are the empty process, output and input prefix, parallel composition,
name restriction and process replication; the exchanged values of the calculus are
just names. If considered from a network-aware perspective, one could say that π-
calculus misses an explicit notion of locality and/or domain where computations
take place.

To deal with this deficiency of π-calculus, several foundational formalisms, pre-
sented as process calculi or strongly based on them, have been developed. They
have, undoubtedly, improved the formal understanding of network-aware systems.
We want to mention, among the others, Ambient calculus [10], Dπ-calculus [20]
and K [11]. As usual, a major problem in the development of a foundational
language is to find appropriate sets of abstractions that can be considered an ac-
ceptable compromise between expressiveness, elegance and implementability. A
paradigmatic example is the Ambient calculus: it is very elegant and expressive,
but it still lacks a reasonable distributed implementation.

We have been long working with K, an experimental language with program-
ming constructs for network-aware programming that combines the process algebra
paradigm with the coordination-oriented one. K has been specifically designed
to program distributed systems consisting of several mobile components that inter-
act through multiple distributed tuple spaces. K primitives allow programmers
to distribute and retrieve data and processes to and from the nodes of a net. More-
over, localities are first-class citizens that can be dynamically created and commu-
nicated over the network. Components, both stationary and mobile, can explicitly
refer and control the spatial structures of the network. Communication takes place
through distributed repositories (a very flexible model that meets important require-
ments of network-aware programming) and remote operations (to supply a realistic
abstraction level and avoid heavily resorting to code mobility).

K rests on an extension of the basic L coordination model [17] with multi-
ple distributed tuple spaces. A tuple space is a multiset of tuples that are sequences
of information items. Tuples are anonymous and can be associatively selected from
tuple spaces by means of a pattern-matching mechanism. Tuples can contain both
values and code that can be subsequently accessed and evaluated. An allocation
environment (associating logical and physical localities) is used to avoid the pro-
grammers to consider the precise physical allocation of the distributed tuple spaces.

2

K has been upgraded to a full fledged programming language (called X-K
[2,4]) by relying on the implementation of a run-time system [3] developed in Java
for the sake of portability. The linguistic constructs of K have proved to be
appropriate for programming a wide range of distributed applications with agents
and code mobility [11,12] that, once compiled in Java, can be run over different
platforms.

In this paper, we aim at assessing the expressive power of tuple based communi-
cations and evaluating the theoretical impact of the linguistic primitives proposed
for K. This task is performed by distilling from K a few, more and more,
foundational calculi and studying the possibility of encoding each of the calculi in
a more basilar one. A tight comparison between these calculi and asynchronous π-
calculus [21,6] is also provided. The first sub-calculus we consider is µK [19];
it is obtained by eliminating from K the distinction between logical and phys-
ical localities (i.e., no allocation environment) and the possibility of higher order
communication (i.e., no process code in tuples). The second sub-calculus, K,
is obtained from µK by only considering monadic communications and by re-
moving the basic actions read. The last calculus, K, is obtained by removing
also the possibility of performing remote inputs and outputs; communications is
only local and process migration is needed to use remote resources.

To assess the quality of our encodings, we shall use well-established criteria,
namely full abstraction and semantical equivalence, based on an appropriate family
of equivalences EQ (see, e.g., [25]).

Full Abstraction w.r.t. EQ: An encoding enc(·) of language X into language Y
satisfies this property if for every pair of X -terms T1 and T2 it holds that
T1 EQX T2 if and only if enc(T1) EQY enc(T2).

Semantical Equivalence w.r.t. EQ: An encoding enc(·) of language X into lan-
guage Y satisfies this property if for every X -term T it holds that T EQZ enc(T),
for some language Z containing both X and Y .

In the above definitions, EQ is not a precise equivalence but a family of equiva-
lences that has to be properly instantiated to the considered languages, say X , Y , Z,
to obtain EQX , EQY and EQZ . Of course, a stronger equivalence guarantees a bet-
ter encoding, in that it attests that the target language has expressive power closer
to that of the source calculus. Moreover, we have that, if an encoding is semantical
equivalent w.r.t. EQ then it is also fully abstract w.r.t. the same equivalence. Thus,
an encoding enjoying semantical equivalence is ‘better’ then an encoding enjoying
fully abstraction.

The equivalences we use in this paper are barbed bisimilarity, �̇, and barbed con-
gruence, �; these are uniformly defined equivalences on process calculi often used
as ‘touchstone’ semantic theories. Barbed bisimulation equates two terms that offer
the same observable behaviour along all possible computations. Barbed congruence

3

KLAIM µKLAIM

 CKLAIM

πa-calculus

 L-CKLAIM

F. A. w.r.t. ≅tr

F. A.
w.r.t. ≅tr

S. E.
w.r.t. ≅

F. A. w.r.t. ≅tr

F. A. w.r.t. ≅tr

Table 1
Overview of our Results

is obtained by closing barbed bisimulation under all possible language contexts. As
expected, see e.g. [30], barbed bisimilarity is coarser then barbed congruence. It
often turns out that a ‘half-way’ solution between the two notions above is the
appropriate one; it relies on what we call translated barbed congruence, written
�

tr. We say that an encoding enc(·) from language X to language Y is fully abstract
w.r.t. �tr whenever the set of contexts in Y considered for context closure is formed
by using only the translation via enc(·) of contexts in X . Indeed, if we consider the
encoding as a protocol (i.e. a precise sequence of message exchanges), translated
contexts represent opponents conforming to the protocol. This result suffices to as-
sess expressiveness of languages, see, e.g., [5,9]. Indeed, it amounts to saying that
the source language can be faithfully compiled in the target one.

The main results of our work are summarized in Table 1. There, a labelled arrow

between two calculi, X
P
−→ Y , means that language X can be encoded in language

Y and that the encoding enjoys property P . The arrow is dotted d if the actual
encoding can introduce divergence, i.e. infinite sequences of reductions that in the
source term were not present. Moreover, ↪→ stands for the identity encoding, F.A.
stands for Fully Abstract, and S .E. stands for Semantically Equivalent.

The rest of this paper is organized as follows. K and the three calculi derived
from it are presented in Section 2. Sections 3, 4 and 5 present the encodings of

4

Nets: N ::= 0
∣∣∣∣∣ l ::ρ C

∣∣∣∣∣ N1 ‖ N2

∣∣∣∣∣ (νl)N

Components: C ::= 〈t〉
∣∣∣∣∣ P

∣∣∣∣∣ C1 | C2

Processes: P ::= nil
∣∣∣∣∣ a.P

∣∣∣∣∣ P1 | P2

∣∣∣∣∣ X
∣∣∣∣∣ rec X.P

Actions: a ::= in(T)@u
∣∣∣∣∣ read(T)@u

∣∣∣∣∣ out(t)@u
∣∣∣∣∣ eval(P)@u

∣∣∣∣∣ new(l)

Tuples: t ::= u
∣∣∣∣∣ P

∣∣∣∣∣ t1, t2

Templates: T ::= u
∣∣∣∣∣ ! x

∣∣∣∣∣ ! X
∣∣∣∣∣ T1,T2

Table 2
K syntax

K in µK, of µK into K and of K into K, respectively.
Section 6 contains a comparison with πa-calculus; in particular it presents an en-
coding of πa-calculus into K and an encoding of K into πa-calculus.
Section 7 contains a conclusive assessment of the presented encodings, while Sec-
tion 8 ends the paper.

2 A Family of Process Languages

In this section, we formally present the languages we shall work with, namely
K [11] and the three calculi derived from it.

2.1 K: Kernel Language for Agents Interaction and Mobility

The syntax of K is given in Table 2. We assume two disjoint countable sets: L of
names l, l′, . . . and V of variables x, y, . . . , X, Y, . . . , self, where self is a reserved
variable (see below). Notationally, we prefer letters x, y, . . . when we want to stress
the use of a name as a basic variable, and X, Y, . . . when we want to stress the use
of a name as a process variable. We will use u for basic variables and localities.

Processes, ranged over by P,Q,R, . . ., are the K active computational units and
may be executed concurrently either at the same locality or at different localities.
Processes are built from the terminated process nil and from basic actions by us-
ing action prefixing, parallel composition and recursion. Basic Actions, ranged over
by a, permit removing/accessing/adding data from/to node repositories, activating
new threads of execution and creating new nodes. Action new is not indexed with
an address because it always acts locally; all the other actions explicitly indicate

5

the (possibly remote) locality where they will take effect. Tuples, t, are the com-
municable objects: they are sequences of names and processes. Templates, T , are
patterns used to retrieve tuples and the pattern matching underlying the communi-
cation mechanism is that of L [17].

Nets, ranged over by N,M,H,K, . . ., are finite collections of nodes. A node is a
triple l ::ρ C, where locality l is the address of the node, ρ is the allocation en-
vironment (a finite partial function mapping variables into names, used to imple-
ment dynamic binding of names) and C is the component located at l. Components,
ranged over by C,D, . . ., can be either processes or data, denoted by 〈t〉. In the net
(νl)N, the scope of the name l is restricted to N; the intended effect is that if one
considers the net N1 ‖ (νl)N2 then locality l of N2 cannot be immediately referred
to from within N1. We say that a net is well-formed if for each node l ::ρ C we have
that ρ(self) = l, and, for any pair of nodes l ::ρ C and l′ ::ρ′ C′, we have that l = l′

implies ρ = ρ′. Hereafter, we will only consider well-formed nets. Moreover, we
shall always assume that bound names are always the address of a node in the net.

Names and variables occurring in K processes and nets can be bound. More
precisely, prefix new(l).P binds name l in P, and, similarly, net restriction (νl)N
binds l in N. Prefix in(. . . , ! , . . .)@u.P binds variable in P; this prefix is similar
to the λ-abstraction of the λ-calculus. Finally, rec X.P binds variable X in P. A
name/variable that is not bound is called free. The sets fn(·) and bn(·) (respectively,
of free and bound names of a term) and fv(·) and bv(·) (of free/bound variables)
are defined accordingly. The set n(·) is the union of the free and bound names and
variables occurring in · . Moreover, we define fl(N) as the subset of fn(N) that are
addresses of nodes in N.

As usual, we say that two terms are alpha-equivalent, written =α, if one can be
obtained from the other by renaming bound names/variables. We shall say that u
is fresh for if u < n(). In the sequel, we shall work with terms whose bound
variables are all distinct and whose bound names are all distinct and different from
the free ones.

Remark 2.1 The language presented so far slightly differs from [11]. The three
differences are: the absence of values and expressions, the absence of non-
deterministic choice, and the use of recursion instead of process definitions. Values
and expressions (e.g., integers, strings, ...) are not included only to simplify rea-
soning: they can be easily encoded by following the classical implementations in
π-calculus (see, e.g., [30]). A restricted form of non-deterministic choice is im-
plicitly provided by K through actions read/in: their semantics is determined
by the availability of tuples matching a given template, and in case of multiple
matching the choice is internally determined. Other forms of choice could be im-
plemented by following [25,24]. Recursion is easier to deal with in a theoretical
framework because the syntax of a recursive term already contains all the code
needed to properly run the term itself.

6

Notation 2.2 We write A , W to mean that A is of the form W; this notation is
used to assign a symbolic name A to the term W. We shall use notation ·̃ to de-
note sequences of objects (e.g. l̃ is a sequence of names); this will be sometimes
written as x̃i∈I, for an appropriate index-set I. Moreover, if x̃ = (x1, ..., xn), we
shall assume that xi , x j for i , j. If x̃ = (x1, . . . , xn) and ỹ = (y1, . . . , ym) then
x̃, ỹ will denote the sequence of pairwise distinct elements (x1, . . . , xn, y1, . . . , ym).
When convenient, we shall regard a sequence simply as a set.
We shall sometimes write in()@l, out()@l and 〈〉 to mean that the argument of the
actions or the datum are an empty sequence of items. We usually omit trailing oc-
currences of process nil and write Π j∈J Wj for the parallel composition (both ‘|’ and
‘‖’) of terms (components or nets, resp.) Wj.
Finally, we assume that allocation environments act as the identity on locality
names. This assumption simplifies the operational semantics.

The operational semantics relies on a structural congruence relation, ≡, bringing
the participants of a potential interaction to contiguous positions, and a reduction
relation, 7−→, expressing the evolution of a net. The structural congruence is the
least congruence closed under the axioms given in the upper part of Table 3. Most
of the laws are mundane [22,30], while laws (A) and (C) are peculiar to our
setting. The first one states that nil is the identity for ‘|’; the second one turns a
parallel between co-located components into a parallel between nodes (thus, it is
also used to achieve commutativity and associativity of ‘|’).

The reduction relation is given in the lower part of Table 3. There, we use two
auxiliary functions:

(1) a tuple/template evaluation function, E[[]]ρ, to transform variables accord-
ing to the allocation environment of the node performing the action whose
argument is . The main clauses of its definition are given below:

E[[u]]ρ =



u if u ∈ L

ρ(u) if u ∈ dom(ρ)

UNDEF otherwise

E[[P]]ρ = P{ρ}

where P{ρ} denotes the process obtained from P by replacing any free oc-
currence of a variable x that is not within the argument of an eval with ρ(x).
Clearly, E[[P]]ρ is UNDEF if ρ(x) is undefined for some of these x. We shall
write E[[t]]ρ = t′ to denote that the evaluation of t using ρ succeeds and re-
turns t′.

(2) a pattern matching function, match(·, ·), to verify the compliance of a tuple
w.r.t. a template and to associate values (i.e. names and processes) to variables
bound in templates. Intuitively, a tuple matches against a template if they have
the same number of fields, and corresponding fields match (where a bound
name matches any value, while two names match only if they are identical).

7

Axioms for Structural Congruence:

Monoid laws for “‖”, i.e.

N ‖ 0 ≡ N , N1 ‖ N2 ≡ N2 ‖ N1 , (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(A) N ≡ N′ if N =α N′

(RC) (νl1)(νl2)N ≡ (νl2)(νl1)N

(E) N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l < fn(N1)

(A) l ::ρ C ≡ l ::ρ (C |nil)

(C) l ::ρ C1|C2 ≡ l ::ρ C1 ‖ l ::ρ C2

(R) l ::ρ rec X.P ≡ l ::ρ P[rec X.P/X]

Reduction Relation:

(R-O)
ρ(u) = l′ E[[t]]ρ = t′

l ::ρ out(t)@u.P ‖ l′ ::ρ′ nil 7−→ l ::ρ P ‖ l′ ::ρ′ 〈t
′〉

(R-E)
ρ(u) = l′

l ::ρ eval(P2)@u.P1 ‖ l′ ::ρ′ nil 7−→ l ::ρ P1 ‖ l′ ::ρ′ P2

(R-I)
ρ(u) = l′ match(E[[T]]ρ, t) = σ

l ::ρ in(T)@u.P ‖ l′ ::ρ′ 〈t〉 7−→ l ::ρ Pσ ‖ l′ ::ρ′ nil

(R-R)
ρ(u) = l′ match(E[[T]]ρ, t) = σ

l ::ρ read(T)@u.P ‖ l′ ::ρ′ 〈t〉 7−→ l ::ρ Pσ ‖ l′ ::ρ′ 〈t〉

(R-N) l ::ρ new(l′).P 7−→ (νl′)(l ::ρ P ‖ l′ ::ρ[l′/self] nil)

(R-P)
N1 7−→ N′1

N1 ‖ N2 7−→ N′1 ‖ N2

(R-R)
N 7−→ N′

(νl)N 7−→ (νl)N′

(R-S)
N ≡ M 7−→ M′ ≡ N′

N 7−→ N′

Table 3
K Operational Semantics

8

Formally, match is defined by the following rules:

match(l, l) = ε match(!x, l) = [l/x]

match(!X, P) = [P/X]
match(T1, t1) = σ1 match(T2, t2) = σ2

match(T1, T2 , t1, t2) = σ1 ◦ σ2

where we let ‘ε’ to be the empty substitution and ‘◦’ to denote substitutions
composition. Here, a substitution σ is a function mapping names and pro-
cesses into variables; Pσ denotes the (capture avoiding) application of σ to P.
Moreover, we assume that Pσ yields a process written according to the syntax
of Table 2.

The intuition beyond the operational rules of K is the following. In rule
(R-O), the local allocation environment is used both to determine the name
of the node where the tuple must be placed and to evaluate the argument tuple. This
implies that if the argument tuple contains a field with a process, the corresponding
field of the evaluated tuple contains the process resulting from the evaluation of its
free variables. Hence, processes in a tuple are transmitted after the interpretation of
their free variables through the local allocation environment. This corresponds to
having a static scoping discipline for the (possibly remote) generation of tuples. A
dynamic linking strategy is adopted for the eval operation, rule (R-E). In this
case the free variables of the spawned process are not interpreted using the local
allocation environment: the linking of variables is done at the remote node. Rules
(R-I) and (R-R) require existence of a matching datum in the target node.
The tuple is then used to replace the free occurrences of the variables bound by the
template in the continuation of the process performing the actions. With action in,
the matched datum is consumed while with action read it is not. Finally, in rule
(R-N), the environment of a new node is derived from that of the creating one
with the obvious update for the self variable. Therefore, the new node inherits all
the bindings of the creating node.

2.2 µK: micro K

The calculus µK has been derived in [19] from K by removing allocation
environments and the possibility of having pieces of code as tuple fields. 1 Its syn-
tax is given in Table 4. The removal of allocation environments makes it possible
to merge together names and variables. Thus, we only assume a countable set N
of names l, l′, . . . , u, . . . , x, y, . . . , X, Y, Names provide the abstract counterpart
of the set of communicable objects and can be used as localities, basic variables

1 The calculus used in this paper slightly differs from the calculus given in [19]: the dif-
ferences are the absence of values and expressions (to simplify reasoning) and the use of
recursion. These simplifications have been motivated in Remark 2.1.

9

N ::= 0
∣∣∣∣∣ l :: C

∣∣∣∣∣ N1 ‖ N2

∣∣∣∣∣ (νl)N C ::= like in Table 2

t ::= u
∣∣∣∣∣ t1, t2 P ::= like in Table 2

T ::= u
∣∣∣∣∣ ! x

∣∣∣∣∣ T1,T2 a ::= like in Table 2

Table 4
µK Syntax

(R-O) l :: out(t)@l′.P ‖ l′ :: nil 7−→ l :: P ‖ l′ :: 〈t〉

(R-E) l :: eval(P2)@l′.P1 ‖ l′ :: nil 7−→ l :: P1 ‖ l′ :: P2

(R-I)
match(T, t) = σ

l :: in(T)@l′.P ‖ l′ :: 〈t〉 7−→ l :: Pσ ‖ l′ :: nil

(R-R)
match(T, t) = σ

l :: read(T)@l′.P ‖ l′ :: 〈t〉 7−→ l :: Pσ ‖ l′ :: 〈t〉

(R-N) l :: new(l′).P 7−→ (νl′)(l :: P ‖ l′ :: nil)

Table 5
µK Distinctive Reduction Rules

or process variables: we do not need to distinguish between these three kinds of
objects anymore. Like before, we prefer letters l, l′, . . . when we want to stress the
use of a name as a locality, x, y, . . . when we want to stress the use of a name as a
basic variable, and X, Y, . . . when we want to stress the use of a name as a process
variable. We will use u for basic variables and localities.

Notice that µK can be considered as the largest sub-calculus of K where
tuples do not contain any process, allocation environments are empty and all pro-
cesses are closed. These modifications sensibly simplifies the operational seman-
tics of the language. The structural congruence is readily adapted from Table 3; the
key laws to define the reduction relation are given in Table 5. Notice that now tu-
ples/templates evaluation function is useless and substitutions are (standard) func-
tions of names. Hence, the definition of function match is given by the following
laws:

match(l, l) = ε

match(!x, l) = [l/x]

match(T1, t1) = σ1 match(T2, t2) = σ2

match(T1, T2 , t1, t2) = σ1 ◦ σ2

10

N ::= like in Table 4 a ::= in(T)@u
∣∣∣∣∣ out(t)@u

∣∣∣∣∣ eval(P)@u
∣∣∣∣∣ new(l)

C ::= like in Table 4 t ::= u

P ::= like in Table 4 T ::= u
∣∣∣∣∣ !x

Table 6
K Syntax

2.3 K: core K

The calculus K has been introduced in [13] by eliminating from µK action
read and by only considering monadic communications (i.e. tuples and templates
containing only one field). The formal syntax of K is given in Table 6. No-
tice that K is a sub-calculus of µK and thus it inherits from µK the
operational semantics.

2.4 K: local core K

K is the version of K where actions out and in can be only performed
locally, i.e. the only remote primitive is action eval (this is the principle underly-
ing the language Dπ [20]). The syntax of the new calculus can be derived from
the syntax of K (see Table 6) by using the following production for process
actions:

a ::= in(T)
∣∣∣∣ out(t)

∣∣∣∣ eval(P)@u
∣∣∣∣ new(l)

We want to remark that K is a sub-calculus of K: indeed, it is the largest
sub-calculus of K closed under the predicate{, defined as

N { , N = 0 ∨ (N = (νl)N′ ∧ N′ {) ∨

(N = N1 ‖ N2 ∧ N1 { ∧ N2 {) ∨ (N = l :: C ∧ C {l)

C {l , C = 〈l′〉 ∨ (C = P ∧ P{l) ∨ (C = C1|C2 ∧ C1 {l ∧ C2 {l)

P{u , (P = nil, X) ∨ (P = eval(Q)@v.R ∧ Q{v ∧ R{u) ∨

(P = P1|P2 ∧ P1 {u ∧ P2 {u) ∨

(P = in(T)@u.Q, out(t)@u.Q, new(l).Q, rec X.Q ∧ Q{u)

The only relevant cases are those for prefixes in/out/eval. They ensure that actions
in and out only specify as target node the node where the action is executed (i.e.
the u decorating{u).

11

The operational semantics of K is obtained by replacing rules (R-O) and
(R-I) of Table 5 with the following ones:

(R-O) l :: out(l′).P 7−→ l :: P | 〈l′〉

(R-I) l :: in(T).P | 〈l′〉 7−→ l :: Pσ if match(T, l′) = σ

2.5 Observational Semantics

A net context C[·] is a net with an occurrence of a hole [·] to be filled with any net. 2

Formally,

C[·] ::= [·]
∣∣∣∣ N ‖ C[·]

∣∣∣∣ (νl)C[·]

We now give the main equivalences we shall work with throughout this paper,
namely barbed bisimilarity and reduction barbed congruence. To this aim, we start
by defining an intuitive notion of observable, or barb.

Definition 2.3 (Barbs) Predicate N ↓ l holds true if and only if N ≡ (ν̃l)(N′ ‖ l ::ρ
〈t〉) for some l̃, N′ and t such that l < l̃. Predicate N ⇓ l holds true if and only if
N 7−→∗ N′, for some N′ such that N′ ↓ l.

Definition 2.4 Let < be a binary relation between nets.< is said

- barb preserving, if N<M and N ↓ l imply M ⇓ l
- reduction closed, if N < M and N 7−→ N ′ imply M 7−→∗ M′ and N′ < M′, for

some M′

- context closed, if N < M implies C[N]< C[M] for every net context C[·].

Definition 2.5 (Barbed Bisimilarity) A symmetric relation < between nets is a
barbed bisimulation if it is barb preserving and reduction closed. Barbed bisimilar-
ity, �̇, is the largest barbed bisimulation.

Definition 2.6 (Reduction Barbed Congruence) Reduction barbed congruence,
�, is the largest symmetric, barb preserving, reduction and context closed relation
between nets.

2 In the case of K, we implicitly assume that the hole of a context C[·] can be filled
only with those nets N such that the resulting net C[N] is well-formed, i.e. allocation envi-
ronments in clones of the same node coincide.

12

2.6 Technical Preliminaries

In this section, we set up the technical background needed for establishing the prop-
erties enjoyed by the encodings. We start by presenting the necessary notions and
notations for µK; the corresponding ones for K and K are strictly
related to them and are sketched at the end.

We start by introducing a labelled transition system (LTS, for short) that describes
the evolution of a net and provides information about the performed actions [13].
The LTS is given in Table 7 and uses labels as generated by the following BNF (we
use I ::= nil | 〈t〉 to denote inert node components):

χ ::= τ
∣∣∣∣ (ν̃l) I @ l α ::= χ

∣∣∣∣ . l
∣∣∣∣ t / l1

Let us now briefly comment on some rules of the LTS; most of them are adapted
from the π-calculus [30]. Rule (LTS-E) signals existence of nodes (label
nil @ l) or of data (label 〈t〉 @ l). Rules (LTS-O) and (LTS-E) express the
intention of spawning a component and require the existence of the target node
to complete successfully (rule (LTS-S)). Similarly, rules (LTS-I) (given in an
early style) and (LTS-R) express the intention of performing an input; this input
is actually performed (rule (LTS-C)) only if the chosen datum is present in the
target node. Notice that, in the right hand side of these rules, existence of the node
target of the action can be assumed: indeed, if l provides datum 〈t〉, this implies that
l does exist. Rule (LTS-O) signals extrusion of bound names; as in some presen-
tation of π-calculus (see, e.g., [27]), this rule is used to investigate the capability of
processes to export bound names, rather than to extend the scope of bound names.
To this last aim, law (E) is used; in fact, in rule (LTS-C) labels do not carry
any restriction on names, whose scope must have been previously extended. Rules
(LTS-R), (LTS-P) and (LTS-S) are standard.

Notation 2.7 We shall write N
α
−→ to mean that there exists a net N ′ such that

N
α
−→ N′. Alternatively, we could say that N can perform an α-step. Moreover, we

shall usually denote relation composition by juxtaposition; thus, e.g., N
α
−→
α′

−→ M

means that there exists a net N ′ such that N
α
−→ N′

α′

−→ M. As usual, we let =⇒ to

stand for
τ
−→∗ and

α
=⇒ to stand for =⇒

α
−→=⇒ . Notation

α̂
=⇒ stands for =⇒ , if α = τ,

and for
α
=⇒ , otherwise; similarly,

α̂
−→ stands for

α
−→ if α , τ, and for either

τ
−→ or

the identity, otherwise.

We now present some useful properties of the LTS that substantiate its use through-
out the paper. We start with a simple Proposition that relates the labels of the LTS
with the syntax of the net performing the labelled action.

13

(LTS-O)

l :: out(t)@l′.P
. l′
−−→ l :: P ‖ l′ :: 〈t〉

(LTS-E)

l :: eval(Q)@l′.P
. l′
−−→ l :: P ‖ l′ :: Q

(LTS-I)
match(T, t) = σ

l :: in(T)@l′.P
t / l′
−−−−→ l :: Pσ ‖ l′ :: nil

(LTS-R)
match(T, t) = σ

l :: read(T)@l′.P
t / l′
−−−→ l :: Pσ ‖ l′ :: 〈t〉

(LTS-N)

l :: new(l′).P
τ
−→ (νl′)(l :: P ‖ l′ :: nil)

(LTS-E)

l :: I
I @ l
−−−−→ l :: nil

(LTS-C)

N1
t / l′
−−−−→ N′1 N2

〈t〉 @ l′
−−−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-S)

N1
nil @ l
−−−−−→ N′1 N2

. l
−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-R)

N
α
−→ N′ l < n(α)

(νl)N
α
−→ (νl)N′

(LTS-O)

N
(ν̃l) 〈t〉 @ l′
−−−−−−−−→ N′ l ∈ fn(t) − {̃l, l′}

(νl)N
(ν̃l,l) 〈t〉 @ l′
−−−−−−−−−→ N′

(LTS-P)

N1
α
−→ N2 bn(α) ∩ fn(N) = ∅

N1 ‖ N
α
−→ N2 ‖ N

(LTS-S)

N ≡ M
α
−→ M′ ≡ N′

N
α
−→ N′

Table 7
µK Labelled Transition System (LTS)

Proposition 2.8 The following facts hold:

(1) N
nil @ l
−−−−−→ N′ if and only if N ≡ N′′ ‖ l :: nil; moreover, N′′ ≡ N′ ≡ N.

(2) N
(ν̃l) 〈t〉 @ l
−−−−−−−→ N′ if and only if N ≡ (ν̃l)(N′′ ‖ l :: 〈t〉) for l < l̃; moreover,

N′ ≡ N′′ ‖ l :: nil.

Then, we can use the LTS to describe the possible evolutions of a net put in a
context. This result will enable the development of the proofs of this paper.

Proposition 2.9 C[N]
α
−→ N̄ if and only if one of the following conditions hold:

(1) N
α
−→ N′ with n(α) ∩ bn(C[·]) = ∅

(2) C[0]
α
−→ C ′[0]

14

(3) N
α′

−→ N′ with α = (νl)α′, C[·] , C1[(νl)C2[·]] and fn(α) ∩ bn(C1[·], C2[·]) = ∅

(4) C[·] , C1[C2[·] ‖ H] with H
nil @ l
−−−−−→ H′, N

. l
−−→ N′ and l < bn(C2[·])

(5) C[·] , C1[C2[·] ‖ H] with H
. l
−−→ H′, N

nil @ l
−−−−−→ N′ and l < bn(C2[·])

(6) C[·] ≡ C1[C2[·] ‖ H] with H
〈t〉 @ l
−−−−−→ H′, N

t / l
−−−→ N′ and {l, t} ∩ bn(C2[·]) = ∅

(7) C[·] ≡ C1[C2[·] ‖ H] with H
t / l
−−−→ H′, N

(ν̃l) 〈t〉 @ l
−−−−−−−→ N′ and {l, t} < bn(C2[·]).

Moreover, the resulting net N̄ is, respectively, structurally equivalent to C[N ′],
or C ′[N], or C1[C2[N′]], or C[N′], or C1[C2[N] ‖ H′], or C1[C2[N′] ‖ H′], or
C1[(ν̃l)C2[N′ ‖ H′]]. Finally, α = τ in cases 4., 5., 6., and 7. .

Proof: The “if” part is trivial, by using the LTS of Table 7 and by observing that
M

α
−→ M′ with n(α) ∩ bn(D[·]) = ∅ implies D[M]

α
−→ D[M′]. The “only if” part is

proved by induction on the length of the inference of
α
−→ . In the base case (length

1), it must be C[·] , [·]; hence, obviously C[N] , N
α
−→ N′ , C[N′] and we trivially

fall in case (1) of this Lemma. For the inductive step, we reason by case analysis
on the last rule applied in the inference; the proof is long and quite standard. Thus,
we only sketch here the most delicate case; for full details, see [18]. Let us assume
that the last rule used to infer the transition has been (LTS-S); thus,

C[N] ≡ M1
α
−→ M2 ≡ N̄

C[N]
α
−→ N̄

We now proceed by induction on the structure of context C[·]. The base case (for
C[·] , [·]) trivially falls in case (1) of this Lemma. For the inductive case, let us
reason by case analysis on the structure of C[·]:

C[·] , (νl)D[·]. We furtherly identify three possible sub-cases:
• if M1 , (νl)M and l ∈ bn(α), for some M ≡ D[N], then we can apply the

structural induction to D[N]
α′

−→ M′, for some M′ ≡ M2 and α = (νl)α′, and fall
in one of the first two cases of this Lemma. By using rule (LTS-O), we can
conclude that C[N]

α
−→ N̄ falls in cases (2) or (3) of this Lemma.

• if M1 , (νl)M and l < bn(α), for some M ≡ D[N], then we can apply the
structural induction to D[N]

α
−→ M′, for some M′ such that M2 ≡ (νl)M′, falling

in one of the cases of this Lemma. Then, by using (LTS-R), we can conclude
that C[N]

α
−→ N̄ falls in the same case of this Lemma.

• otherwise, we can prove that C[N] ≡ M′
1

α
−→ M2 such that M′

1 , (νl)M by using
a no longer inference (but possibly using more structural laws). Hence, we can
reduce this case to the previous one.

C[·] , D[·] ‖ K. Because of the structure of C[·], it can be one of the following
cases:
• K

α
−→ K′ and N̄ ≡ D[N] ‖ K′. In this case, we are trivially in case (2) of this

Lemma.

15

• D[N]
α
−→ N̄′ and N̄ ≡ N̄′ ‖ K. In this case, we use the structural induction.

• If α = τ then other four cases are possible:

· D[N]
. l
−−→ N̄′, K

nil @ l
−−−−−→ K and N̄ ≡ N̄′ ‖ K. By structural induction, it

can be that either N
. l
−−→ N′, or D[0]

. l
−−→ D ′[0]. In both cases is easy to

conclude.

· D[N]
(ν̃l) 〈t〉 @ l
−−−−−−−→ N̄′, K

t / l
−−−→ K′ and N̄ ≡ (ν̃l)(N̄′ ‖ K′). This case is similar

to the previous one.

· D[N]
nil @ l
−−−−−→D[N], K

. l
−−→ K′ and N̄ ≡ D[N] ‖ K′. By structural induction,

it can be one of the first two cases of this Lemma and we can easily
conclude.

· D[N]
t / l
−−−→ N̄′, K

(ν̃l) 〈t〉 @ l
−−−−−−−→ K′ and N̄ ≡ (ν̃l)(N̄′ ‖ K′). This case is similar

to the previous one. �

By exploiting this result, it is easy to prove that the LTS we have just defined is
sound w.r.t. the semantics of the calculus.

Proposition 2.10 (Soundness of the LTS) N 7−→ N ′ if and only if N
τ
−→ N′.

Because of this result we shall regularly mix the use of reductions and of τ-steps,
and use one in place of the other interchangeably.

As we already said in the Introduction, we shall assess the quality of our encod-
ings by using a notion of translated barbed congruence. Once fixed an encoding
enc(·) from a certain language L into µK, this equivalence is defined like barbed
congruence but it only consider those contexts that are the encoding (via enc) of
a source one. By following [5], we shall denote this barbed congruence as �tr

µK
(because the contexts considered are always translated, via enc). However, in the
proofs, it will be convenient to keep track of the number of τ-steps a net requires to
simulate the other while establishing barbed congruence. This gives rise to a pre-

order on nets that we call barbed expansion. Recall from Notation 2.7 that N
τ̂
−→ N′

stands for either N ≡ N′ or N
τ
−→ N′.

Definition 2.11 (Barbed Expansion Preorder) A preorder < between µK
nets is a barbed expansion if for each N1<N2 it holds that:

(1) if N1 ↓ l then N2 ⇓ l;
(2) if N2 ↓ l then N1 ↓ l;

(3) if N1
τ
−→ N′1 then N2

τ
=⇒ N′2 and N′1<N′2, for some N′2;

(4) if N2
τ
−→ N′2 then N1

τ̂
−→ N′1 and N′1<N′2, for some N′1;

(5) C[N1] < C[N2], for every context C[·].

The expansion preorder, .µK , is the largest barbed expansion (when notationally
useful, we write N.µK M as M&µKN).

16

Like barbed congruence, barbed expansion can be defined by requiring closure only
under a subset of language contexts. In particular, once fixed an encoding enc(·)
from a certain language L into µK, we define .tr

µK , the translated barbed ex-
pansion, to be the largest relation defined like .µK , but where context closure only
consider those contexts C[·] such that C[·] = enc(D[·]) and D[·] is an L-context. We
let enc(D[·]) be defined as a standard net encoding that replaces [·] with [·]. We now
establish an ordering among the relations introduced so far.

Proposition 2.12 ≡ ⊂ .µK ⊂ �µK and ≡ ⊂ .tr
µK ⊂ �

tr
µK .

Proof: We just prove the first statement; the second one can be proved similarly.
The inclusion ≡ ⊂ .µK is simple: proving ‘⊆’ is straightforward, while the first
four statements of Proposition 2.16 can be used to prove that the reverse inclusion
does not hold. The inclusion .µK ⊂ �µK holds by definition. �

In what follows, we shall use some well-established proof techniques, namely up-
to expansion techniques. We say that < is a barbed congruence up-to .µK if it is
defined like in Definition 2.5 but reduction and context closure are weakened and
consider &µK<.µK (instead of<) in the closure. The translated versions of barbed
congruence and expansion are modified similarly. Formally, we have the following
definitions.

Definition 2.13 (Barbed Congruence up-to .µK) A symmetric relation between
µK nets < is a barbed congruence up-to .µK if, whenever N1 < N2, it holds
that:

- if N1 ↓ l then N2 ⇓ l;
- if N1

τ
−→ N′1 then there exists N′2 such that N2 =⇒ N′2 and N′1 &µK<.µK N′2;

- for every context C[·], it holds that C[N1] &µK<.µK C[N2].

Definition 2.14 (Translated Barbed Congruence up-to .tr
µK) A symmetric rela-

tion between µK nets < is a translated barbed congruence up-to .tr
µK if,

whenever N1 < N2, it holds that:

- if N1 ↓ l then N2 ⇓ l;
- if N1

τ
−→ N′1 then there exists N′2 such that N2 =⇒ N′2 and N′1 &

tr
µK<.

tr
µK N′2;

- C[N1] &tr
µK<.

tr
µK C[N2], for every translated context C[·].

Proposition 2.15 (Up-to Techniques) The following facts hold:

(1) if< is a barbed congruence up-to .µK , then< ⊆ �µK.
(2) if< is a translated barbed congruence up-to .tr

µK , then< ⊆ �tr
µK .

Proof: The proofs of the two claims are similar; we just show the first one. It
suffices to prove that = , {(N,M) : N&µK<.µK M} is barb preserving, reduction
closed and closed under translated contexts. We consider N&µKN1 < M1.µK M. Let

17

N
τ
−→ N′. Then, by hypothesis, N1

τ̂
−→ N2 and N′&µKN2. Now, if N1 ≡ N2, we can

state that N′&µKN1; hence, M =⇒ M and N′ = M. On the other hand, if N1
τ
−→ N2

then M1
τ̂
=⇒ M2 and N2 &µK<.µK M2. Then, M

τ̂
=⇒ M′ and M2.µK M′; hence, by

transitivity of .µK (that can be easily proved), we obtain N ′ < M′, as required.
Now, let N ↓ l; then, N1 ↓ l. Then, M1 ⇓ l, i.e. M1 =⇒ M2 ↓ l. Now, M =⇒ M′ and
M2 .µK M′; thus, M′ ⇓ l and, hence, M ⇓ l, as required. Finally, context closure
holds by definition. �

We now give some simple laws that greatly simplify our proofs.

Proposition 2.16 The following facts hold:

(1) (νl′)(l :: Pσ ‖ l′ :: nil) .µK (νl′)(l :: in(T)@l′.P ‖ l′ :: 〈t〉) whenever
match(T, t) = σ

(2) l :: P ‖ l′ :: 〈t〉 .µK l :: out(t)@l′.P ‖ l′ :: nil
(3) l :: P ‖ l′ :: Q .µK l :: eval(Q)@l′.P ‖ l′ :: nil
(4) (νl′)(l :: P ‖ l′ :: nil) .µK l :: new(l′).P
(5) (νl)(l :: I) .µK 0 .µK (νl)(l :: I).

Technicalities for K and K. Most of the theory presented for µK
can be easily adapted to K and K. In particular, an LTS for K can
be obtained from the rules in Table 7 by removing the rule for action read and by
only considering monadic tuples/templates. The LTS for K is obtained by
replacing the rules of K for actions out and in with the following ones:

l :: out(l′).P
τ
−→ l :: P | 〈l′〉

match(T, l′) = σ

l :: in(T).P
l′ / l
−−−→ l :: Pσ

Then, we denote with �cK the restriction of �µK to K nets; clearly, �cK ⊆ �µK .
Relations .cK , �tr

cK and �tr
cK are defined similarly. Finally, we define similar rela-

tions .lcK and �lcK for K. Clearly, all the properties stated and proved in
this section for µK can be faithfully rephrased to deal with the sub-relations
containing only K or K nets.

3 K vs µK

Intuitions. There are two differences between K and µK: pres-
ence/absence of allocation environments and presence/absence of higher-order
communications. Intuitively, allocation environments are translated into tuples of
the TS allocated at a reserved locality env. If the allocation environment ρ of l
maps x to l′, then a tuple 〈l, x, l′〉 is stored at env. Hence, when performing an ac-
tion out/in/read, all the (originally) free variables occurring in the tuple/template

18

must be translated according to the current allocation environment. This is made
possible by adding a sequence of actions read to properly translate the free vari-
ables. Notice, however, that a renaming of the free variables with fresh ones is
necessary not to capture occurrences of the same variables within the scope of pre-
fixed actions eval (this is necessary to correctly implement the dynamic binding of
these variables). Informally, the K node

l1 ::ρ1 P

with
P , out(x, l′)@y.eval(out(x, l′)@y)@x (1)

and ρ1 such that ρ1(x) = l1 and ρ1(y) = l2, is translated into the µK net

l1 :: P′ ‖ env :: 〈l, x, l1〉 | 〈l, y, l2〉 | . . .

where
P′ , read(l, x, !x′)@env.read(l, y, !y′)@env.

out(x′, l′)@y′.eval(out(x, l′)@y)@x′
(2)

Since the name binding discipline implemented for actions out is static, the theory
developed for higher-order π-calculus [29] by means of triggers can be smoothly
integrated to the present setting. In loc.cit., a HOπ-calculus process

ā〈p〉 | a(X).X

is translated to
(νc)(ā〈c〉 | !c().p′) | a(x). x̄〈〉

where ā〈p〉 sends process p on channel a and p′ is the translation of p (for a more
precise syntax and semantics of π-calculus see Section 6.1). The idea of this encod-
ing is to assign a fresh pointer c to p and distribute it in place of p. Such pointer
is then used by the interested processes to activate as many copies of p as needed.
This idea can be faithfully adapted to K. For example, the net

l1 ::ρ1 out(P)@l1 ‖ l2 ::ρ2 in(!X)@l1.X

where P is defined like in (1), is translated into

l1 :: new(l).eval(Pl)@l.out(l)@l1 ‖ l2 :: in(!x)@l1.out(l2)@x ‖ env :: . . .

where
Pl , rec X.in(!z)@l.(X | eval(P′)@z)

and P′ is defined like in (2).

As this intuitive discussion should have clarified, name translation and handling of
higher-order data are compatible issues. In particular, the full abstraction result of

19

〈(0)〉 , env :: 〈〉 〈(N1 ‖ N2)〉 , 〈(N1)〉 ‖ 〈(N2)〉

〈((νl)N)〉 , (νl)〈(N)〉 〈(l ::ρ C)〉 , l :: 〈(C)〉l;fv(C) ‖ env :: 〈l, l〉 |
x,self
Π

(x,l′)∈ρ
〈l, x, l′〉

where env is a reserved name.

Table 8
Encoding K into µK: Nets

[29] can be established in our framework as well. Nevertheless, a formal presenta-
tion of the complete encoding turns out to be notationally overcomplicated. Thus,
from now on, we only consider the first-order fragment of K, i.e. those K
nets that do not contain processes in tuple fields.

Formal development. We now formalise the way in which we can simulate in
µK the translation via allocation environments of free variables to locality
names. This is done by the encoding presented in Table 8, where env is a reserved
name.

As already said, env’s TS collects tuples of the form 〈l, x, l′〉 to properly record
the associations in l’s allocation environment. Moreover, node env also contains
another kind of tuples, i.e. pairs 〈l′, l〉 stating that the allocation environment of l′

coincides with l’s one, except for the self entry. This is useful when l′ is a node
created by l. Indeed, we do not duplicate the allocation environment of l in env
for l′, but we just put a “link” to the original environment; we shall say that l is
an alias for l′. Clearly, this solution imposes the special handling of variable self,
that is not implemented as the other entries of an allocation environment but is
automatically resolved by the encoding (see the second case for the encoding of
action eval and the side conditions (∗∗) and (∗ ∗ ∗) for actions out, in and read).
Moreover, if l created l′ that, in turn, created l′′, then env contains the tuples 〈l′, l〉
and 〈l′′, l〉 (see the encoding of action new). This is necessary because the allocation
environment of l′ is, in fact, the environment of l. Thus, when performing an action
out/in/read, the translation of the (originally) free variables must be preceded by
an action read that retrieves the link to the proper allocation environment.

Notice that, when a locality l is present in N, its allocation environment is explic-
itly stored in env and l is clearly linked to itself (i.e., the tuple 〈l, l〉 is stored in
env). Notice also that, by definition of 〈(0)〉, the tuple space of env is never empty.
This will turn out to be fundamental in order to obtain a fully abstraction result.
Moreover, notice that structurally equivalent nets (like 0 and 0 ‖ 0) may have dif-
ferent encodings. Nevertheless, this is not a problem, since we work with translated
barbed congruence, that ignores this fact.

20

〈(〈t〉)〉u;V , 〈t〉

〈(C1|C2)〉u;V , 〈(C1)〉u;V | 〈(C2)〉u;V

〈(nil)〉u;V , nil

〈(X)〉u;V , X

〈(rec X.P)〉u;V , rec X.〈(P)〉u;V

〈(new(l).P)〉u;V , new(l).read(u, !y)@env.out(l, y)@env.〈(P)〉u;V where y is fresh

〈(eval(Q)@v.P)〉u;V ,



eval(〈(Q)〉v;V)@v.〈(P)〉u;V

eval(〈(Q)〉u;V)@u.〈(P)〉u;V

read(u, !y)@env.read(y, v, !z)@env.

eval(〈(Q)〉z;V)@z.〈(P)〉u;V

if v ∈ L

if v = self

if (∗)

〈(out(t)@v.P)〉u;V , read(u, !y)@env.read(y, x1, !y1)@env. · · · where (∗∗)

· · · .read(y, xn, !yn)@env.out(t′)@v′.〈(P)〉u;V

〈(in(T)@v.P)〉u;V , read(u, !y)@env.read(y, x1, !y1)@env. · · · where (∗ ∗ ∗)

· · · .read(y, xn, !yn)@env.in(T ′)@v′.〈(P)〉u;V

〈(read(T)@v.P)〉u;V , read(u, !y)@env.read(y, x1, !y1)@env. · · · where (∗ ∗ ∗)

· · · .read(y, xn, !yn)@env.read(T ′)@v′.〈(P)〉u;V

(∗) v ∈ V − {self} and y, z are fresh

(∗∗) {x1, · · ·, xn} = (fv(t, v) − {self}) ∩ V and y, y1, · · ·, yn are fresh and

t′ = t[u, y1, · · ·, yn/self, x1, · · ·, xn] and v′ = v[u, y1, · · ·, yn/self, x1, · · ·, xn]

(∗ ∗ ∗) {x1, · · ·, xn} = (fv(T, v) − {self}) ∩ V and y, y1, · · ·, yn are fresh and

T ′ = T [u, y1, · · ·, yn/self, x1, · · ·, xn] and v′ = v[u, y1, · · ·, yn/self, x1, · · ·, xn]

Table 9
Encoding K into µK: Components

21

The main encoding relies on an auxiliary encoding for node components given in
Table 9. Then, the component C located in l is encoded as 〈(C)〉l;fv(C). This encoding
uses env for operations related to environments, keeps track of the locality where
the component is located (to statically resolve occurrences of variable self and to
dynamically enable the encoded term to properly translate the free variables occur-
ring in actions out/in/read) and records the originally free variables occurring in
C. This last information is necessary because the encoding proceeds composition-
ally; thus, it is necessary to distinguish which variables were free ‘at the beginning’
from those that are temporarily free but will be bound by a binding prefix during
the encoding phase. To clarify this point, consider the following process

P , in(!x1)@l.out(x1, x2)@l

located at l′. In this process, only x2 is (originally) free. But to encode P, we need
to first encode the (sub)process out(x1, x2)@l that has two free variables: x1 and x2.
Hence, if we encode such a process as

read(l′, !y)@env.read(y, x1, !y1)@env.read(y, x2, !y2)@env.out(y1, y2)@l

we would change the overall behaviour. Indeed, the binding of the first argument of
action out to the argument of action in (programmed in P) would be lost. The right
solution is

read(l′, !y)@env.read(y, x2, !y2)@env.out(x1, y2)@l

that, once prefixed by (the encoding of) action in(!x1)@l, properly binds variable
x1.

To prove properties of this encoding, we first introduce a notion of normal form
of an encoding 〈(N)〉, written 〈〈(N)〉〉. Essentially, the normal form of an encoding is
the net resulting from the execution of (what we can call) administrative τ-steps.
Informally, these are the τ-steps introduced by the encoding and that do not corre-
spond to any τ-step in the source net. Normal forms enjoy the desirable property
of being prompt, i.e. any top-level action they intend to perform corresponds to an
analogous action in the source term. This fact will greatly simplify our proofs.

Intuitively, 〈〈(N)〉〉 is obtained from 〈(N)〉 by firing as many top-level ‘administrative’
actions read (introduced to implement allocation environments) as possible. For
example, if ρ is the allocation environment of l and the side condition (∗ ∗ ∗) of
Table 9 holds, we let

〈〈(read(T)@v.P)〉〉l;V , read(l′, xk, !yk)@env. · · · .read(l′, xn, !yn)@env.

read(T ′)@v′.〈(P)〉l;V

where l′ is the alias for l, {x1, · · · , xk−1} ⊆ dom(ρ) and xk < dom(ρ). The idea
underlying this normalization is that, if 〈〈(read(T)@v.P)〉〉l;V has a top-level action

22

of the form read(·, x, !y)@env, then there exists a variable in (fv(T, v)−{self})∩V
that cannot be resolved in ρ; thus, the original action read(T)@v gets stuck. Hence,
as expected, also its encoding gets stuck when it tries to resolve variable x.

The above definition can be made more formal; however, for the sake of simplicity,
we think that this intuitive presentation suffices. Just notice that the normalization
procedure behaves similarly when the translated action is a in/out/eval, and it ex-
tends homomorphically to complex processes and nets. The following result states
that the reduction to normal forms is performed while respecting &tr

µK .

Lemma 3.1 〈(N)〉 &tr
µK 〈〈(N)〉〉.

Proof: To prove the thesis, we need to show that

< , { (C[H], C[K]) : 〈(N)〉 (
· / env
−−−−−→)∗ H (

· / env
−−−−−→)∗ K (

· / env
−−−−−→)∗ 〈〈(N)〉〉

∧ C[·] is a context translated via 〈(·)〉 }

is contained in &tr
µK . Let us pick up a pair (C[H], C[K]) ∈ < and prove that it satisfies

the requirements of the definition of &tr
µK .

Let C[H]
χ
−→ H̄ and let us reason by case analysis on χ.

χ = nil @ l . In this case, H̄ ≡ C[H]; moreover, since H and K have the same

addresses, it trivially holds that C[K]
χ
−→ C[K] and the thesis follows up-to ≡.

χ = (ν̃l) 〈t〉@ l . If the datum is provided by the context, then the thesis is

easy to prove. Otherwise, suppose that H
(ν̃l′) 〈t〉 @ l
−−−−−−−−→ H′ and let l̃ be ob-

tained from l̃′ by adding some names l̃′′ bound by C[·]. Then, by definition

of the encoding and of relation <, it must be that N
(ν̃l′) 〈t〉 @ l
−−−−−−−−→ N′ and that

〈(N′)〉 (
· / env
−−−−−→)∗ H′ (

· / env
−−−−−→)∗ K′ (

· / env
−−−−−→)∗ 〈〈(N′)〉〉, where K

(ν̃l′) 〈t〉 @ l
−−−−−−−−→ K′. In

conclusion, C[H] ≡ (ν̃l′′)C1[H]
χ
−→ C1[H′], where C1[·] is still a translated context;

moreover, C[K]
χ
−→ C1[K′] and C1[H′]< C1[K′], as required.

χ = τ. According to Lemma 2.9, we have six possible sub-cases, that we now ex-
amine separately.
(1) H

τ
−→ H′ and H̄ ≡ C[H′]. There are two possibilities for this τ-step: it can be

either generated by an action read over env or not.
(a) In the first case, by construction, it can be that K has been obtained

from H by firing also such an action read; hence, C[K]
ε
−→ C[K] and

C[H′]< C[K]. Otherwise, K can mimic this τ-step and reduce to a K ′

such that 〈(N)〉 (
· / env
−−−−−→)∗ H′ (

· / env
−−−−−→)∗ K′ (

· / env
−−−−−→)∗ 〈〈(N)〉〉 and the

thesis follows.
(b) On the other hand, if the τ-step of H did not involved any exchange

over env, it must be that K can perform the same action. Indeed, ac-
tions not involving env can only increase while passing from H to

23

K (no action over a locality different from env is touched and some
new action over a locality different from env could be enabled by the
removal of some prefixing read over env). Thus, K

τ
−→ K′ such that

H′ (
· / env
−−−−−→)∗ K′. We can conclude, once we prove that there exists a

K net M such that 〈(M)〉 (
· / env
−−−−−→)∗ H′ and K′(

· / env
−−−−−→)∗ 〈〈(M)〉〉. But

this is not difficult: if H performs a τ-step without involving env, this
means that N (that exists by definition of <) can perform a top-level
τ-step over l, see the definition of the encoding in Tables 8 and 9. Then,
the M we were looking for is the τ-reduct of N obtained from firing the
action whose encoding has been fired by H.

(2) C[·]
τ
−→ C ′[·] and H̄ ≡ C ′[H]. This case is trivial.

(3) H
. l
−−→ H′, C[·] ≡ C[· ‖ l :: nil] and H̄ ≡ C[H′]. Clearly, l , env, otherwise H

could have performed the τ-step without the contribution of the context. By
definition of the normalization and of the relation<, K has as many sending
actions as H (possibly, it has some more sending action resulting from the

removal of some prefix read); thus, K
. l
−−→ K′ such that H′(

· / env
−−−−−→)∗ K′ and

hence C[K]
τ
−→ C[K′]. Like in case 1.(b) above, we can find a net M such that

〈(M)〉 (
· / env
−−−−−→)∗ H′ and K′(

· / env
−−−−−→)∗ 〈〈(M)〉〉: indeed, it is the . l -reduct of N

obtained from firing the action whose encoding has been fired by H.

(4) H
nil @ l
−−−−−→ H′, C[·] ≡ C ′[· ‖ L], L

. l
−−→ L′ and H̄ ≡ C ′[H ‖ L′]. This case is

simpler.

(5) H
t / l
−−−→ H′, C[·] ≡ C ′[· ‖ l :: 〈t〉] and H̄ ≡ C ′[H′]. Again, l , env, otherwise

H could have performed the τ-step without the contribution of the context.
The proof is like in case 3. above.

(6) H
(ν̃l) 〈t〉 @ l
−−−−−−−→ H′, C[·] ≡ C ′[· ‖ L], L

t / l
−−−→ L′ and H̄ ≡ C ′[(ν̃l)(H′ ‖ L′)]. Like

before.

The converse, i.e. that each χ-move of C[K] can be properly replied to by C[H],
can be proved similarly. To prove closeness under translated contexts, let D[·] be
a translated context; we have to prove that D[C[H]] < D[C[K]], but this holds
by definition of <, once we consider the context D[C[·]] that is still a translated
context. �

Now, we can consider the operational correspondence. Throughout this proof, we
shall write ENVρl to indicate the tuples allocated at env to implement the allocation

environment ρ of node l, i.e. 〈l, l〉 |
x,self
Π

(x,l′)∈ρ
〈l, x, l′〉. To better understand the fol-

lowing proofs, notice that translated contexts comply with the expected interaction
protocol with env. In particular, they cannot count how many times a given datum
appears in env and cannot tell env :: ENVρl | 〈l

′, l〉 and env :: ENVρl | ENVρl′ apart.

24

Lemma 3.2 (Operational Correspondence) Let N be a K net. Then

(1) N 7−→ N′ implies that 〈〈(N)〉〉 7−→ ∗&tr
µK 〈〈(N

′)〉〉
(2) 〈〈(N)〉〉 7−→ N′ implies that N 7−→ N′′ and N′ &tr

µK 〈(N
′′)〉

Proof:

(1) The proof is by induction on the length of the inference for N 7−→ N ′. For the
base case, we just consider two representative cases, i.e. when N evolves by
exploiting rules (R-I) and (R-N); the other ones are similar or easier.

In the first case, we have that N , l ::ρ in(T)@u.P ‖ l′ ::ρ′ 〈t〉, and we
let V = fv(in(T)@u.P). By hypothesis, ρ(u) = l′ and E[[T]]ρ is defined and
yields T ′; thus, fv(T, u) ⊆ dom(ρ). By construction, we have that

〈〈(N)〉〉 , l :: in(T ′)@l′.〈(P)〉l;V ‖ l′ :: 〈t〉 ‖ env :: ENVρl | ENVρ
′

l′

Moreover, we also know that match(T ′, t) = σ. By using Lemma 3.1, we can
conclude that 〈〈(N)〉〉 7−→ 〈(l ::ρ Pσ ‖ l′ ::ρ′ nil)〉 , 〈(N′)〉 &tr

µK 〈〈(N
′)〉〉, as

required.
When N evolves exploiting rule (R-N), then N , l ::ρ new(l′).P and

N′ , (νl′)(l ::ρ P ‖ l′ ::ρ[l′/self] nil). It is easy to show that

〈〈(N)〉〉 7−→∗(νl′)(l :: 〈(P)〉l,fv(P) ‖ l′ :: nil ‖ env :: ENVρl | 〈l
′, l〉)

&tr
µK(νl

′)(l :: 〈(P)〉l,fv(P) ‖ l′ :: nil ‖ env :: ENVρl | ENVρl′) &
tr
µK 〈〈(N

′)〉〉

We now consider the inductive step; we only discuss the case in which the
last rule applied is (R-S). In this case, N 7−→ N ′ because N ≡ M,
M 7−→ M′ and M′ ≡ N′. It is easy to see that structurally equivalent nets have
encodings related by .tr

µK; thus, 〈〈(N)〉〉 &tr
µK 〈〈(M)〉〉 and 〈〈(M′)〉〉 &tr

µK 〈〈(N
′)〉〉. By

induction, we know that 〈〈(M)〉〉 7−→∗ M′′ &tr
µK 〈〈(M′)〉〉, for some M′′. These two

facts together imply that 〈〈(N)〉〉 7−→∗ N̄ for some N̄ such that N̄ &tr
µK M′′. By

transitivity of &tr
µK , we can conclude.

(2) The proof is by induction on the length of the inference for 〈〈(N)〉〉 7−→ N ′. We
only examine the base cases for (R-I) and (R-N). The key observation
is that, because of normalization, 〈〈(N)〉〉 can evolve via rule (R-I) only if

〈〈(N)〉〉 , l :: in(T ′)@l′.〈(P)〉l;V ‖ l′ :: 〈t〉 ‖ env :: ENVρl | ENVρ
′

l′

where V = fv(in(T ′)@l′.P) and match(T ′, t) = σ; moreover, we also have that

N′ ≡ l :: 〈(Pσ)〉l;V ‖ l′ :: nil ‖ env :: ENVρl | ENVρ
′

l′

Now, it must be that N , l ::ρ in(T)@u.P ‖ l′ ::ρ′ 〈t〉, where ρ(u) = l′ and
E[[T]]ρ = T ′. This suffices to infer N 7−→ l ::ρ Pσ ‖ l′ ::ρ′ nil , N′′ and
N′ ≡ 〈(N′′)〉.

25

The case for (R-N) is proved like before. Indeed, N , l ::ρ new(l′).P,
〈〈(N)〉〉 , 〈(N)〉 and N′ ≡ l :: read(l, !y)@env.out(l′, y)@env.〈(P)〉l,fv(P) ‖ l′ ::
nil ‖ env :: ENVρl | 〈l

′, l〉. Thus, N 7−→ (νl′)(l ::ρ P ‖ l′ ::ρ[l′/self] nil) , N′′

and

N′ &tr
µK (ν, l′)(l :: 〈(P)〉l,fv(P) ‖ l′ :: nil ‖ env :: ENVρl | 〈l

′, l〉)

&tr
µK (ν, l′)(l :: 〈(P)〉l,fv(P) ‖ l′ :: nil ‖ env :: ENVρl | ENVρ

′

l′) , 〈(N′′)〉

that can be easily proved. �

Theorem 3.3 (Full Abstraction w.r.t. Translated Barbed Congruence)
N �K M if and only if 〈(N)〉 �tr

µK 〈(M)〉.

Proof: We start with the ‘if’ part and prove that < , {(N,M) : 〈〈(N)〉〉 �tr
µK

〈〈(M)〉〉} is barb preserving, reduction closed and contextual. Indeed, by Lemma 3.1,
〈(·)〉 &tr

µK 〈〈(·)〉〉; hence, the hypothesis 〈(N)〉 �tr
µK 〈(M)〉 implies that 〈〈(N)〉〉 �tr

µK 〈〈(M)〉〉,
as needed.

• Let N ↓ l; since the encoding and the normalization preserve the barbs (this can
be easily seen by the definitions of 〈(·)〉 and 〈〈(·)〉〉), we have that 〈〈(N)〉〉 ↓ l. Then, by
hypothesis, 〈〈(M)〉〉 ⇓ l, i.e. 〈〈(M)〉〉 7−→∗ M′ ↓ l. Now, by Lemmata 3.2.2 and 3.1,
we have that there exists a net M′′ such that M 7−→∗ M′′ and M′ &tr

µK 〈〈(M′′)〉〉.
By Definition 2.3 and Proposition 2.8.2, we can conclude that M ′′ ↓ l and hence
M ⇓ l.

• Let N 7−→ N′; by Lemma 3.2.1 this implies that 〈〈(N)〉〉 7−→∗ &tr
µK 〈〈(N

′)〉〉. By
hypothesis, we have that 〈〈(M)〉〉 7−→∗ &tr

µK M′, for some M′ such that 〈〈(N′)〉〉 �tr
µK

M′. By Lemmata 3.2.2 and 3.1, we have that there exists a net M ′′ such that
M 7−→∗ M′′ and M′ &tr

µK 〈〈(M′′)〉〉. Now, since .tr
µK ⊆ �tr

µK (that can be easily
verified) and by transitivity of �tr

µK, we have that 〈〈(N′)〉〉 �tr
µK 〈〈(M′′)〉〉; thus,

N′ < M′′, as required.
• Let us pick up a translated context C[·]; this means that C[·] , 〈(D[·])〉. Now,

if either D[N] or D[M] are undefined (i.e. they give rise to a ill-defined
net) then we do not have to consider D[·] for context closure of <. Other-
wise, we have to prove that D[N] < D[M] by knowing that C[〈〈(N)〉〉] �

tr
µK

C[〈〈(M)〉〉]. By Lemma 3.1 (that can be easily extended to contexts) we have
that C[·] &tr

µK 〈〈(D[·])〉〉 and hence C[·] &tr
µK 〈〈(D)〉〉[·]; thus, 〈〈(D)〉〉[〈〈(N)〉〉] �

tr
µK

〈〈(D)〉〉[〈〈(M)〉〉], i.e. 〈〈(D[N])〉〉 �tr
µK 〈〈(D[M])〉〉. By definition, we obtain the required

D[N]< D[M].

Conversely, we can similarly prove that < , {(〈〈(N)〉〉, 〈〈(M)〉〉) : N �K M} is barb
preserving, reduction closed and contextual. We omit the details, since they are an
easy adaption of the above steps. The only tricky part is barb preservation when
〈〈(N)〉〉 ↓ env; however, since 〈〈(M)〉〉 always has at least one (possibly useless) datum
at env, we also have that 〈〈(M)〉〉 ↓ env, as required. �

26

To conclude this section, we want to stress that we need env not to be empty to
preserve, e.g., the equivalence 0 �K (νl)(l ::[self7→l] nil). Once translated, these two
nets become env :: 〈〉 and (νl)(l :: nil ‖ env :: 〈l, l〉) resp., that are equivalent w.r.t.
�
tr
µK exactly because translated contexts cannot tell 〈〉 and 〈l, l〉 apart when located

at env.

4 µK vs K

In this section, we develop a fully abstract but possibly divergent encoding of
µK in K. As we already stressed, the main differences between these
two dialects are due to presence/absence of action read and to polyadic/monadic
communications. Action read is trivial to encode in the more elementary calculus.
The encoding of polyadic communications into monadic ones is the most complex
part of this work and provide evidence of the expressive power of L’s pattern
matching mechanism.

We start with the easier task: proving that actions read can be implemented in
K.

Essentially, read behaves like in except for the fact that it does not remove the
accessed datum. It is easy to prove that

l :: read(T)@l′.P �µK l :: in(T)@l′.out(T̂)@l′.P

where l̂ , l, !̂x , x and T̂1, T2 , T̂1, T̂2. This implementation of action read can
be extended to complex nets in the obvious way, i.e. structurally; it can be then
easily proved that the resulting encoding enjoys semantical equivalence w.r.t. �µK .
We omit the details on this aspect to leave space to the second difference between
µK and K, namely the use of polyadic/monadic data.

To softly introduce the reader to our encoding, first let us examine Milner’s well-
known encoding of polyadic into monadic communication for synchronous π-
calculus [22]. We have that:

ā〈b, c〉 | a(x, y)

becomes
(νn) ā〈n〉. n̄〈b〉. n̄〈c〉 | a(n).n(x).n(y)

with n fresh. Hence, a fresh name (n) is exchanged by exploiting a common channel
(a); n is then used to pass the sequence of values. In asynchronous π-calculus [21],
Honda and Tokoro propose a slightly more complex encoding:

ā〈b, c〉 | a(x, y)

27

is rendered as

(νn)(ā〈n〉 | n(n1).(n̄1〈b〉 | n(n2). n̄2〈c〉))

| a(n).(νn1, n2)(n̄〈n1〉 | n1(x).(n̄〈n2〉 | n2(y)))

The schema is similar to the one for the synchronous calculus. However, since
output sequenzialization is not possible, different channels are needed to send the
different values in the sequence.

Our encoding somehow evolves Honda’s one because it also has to consider the
presence of pattern-matching. Hence, when encoding a polyadic communication
(of µK) into a monadic one (of K) we are faced with the problem of
starting to access a tuple and, while scanning it, finding out that it does not match
the specified template. The solution is to then put back the part of the tuple retrieved
and restart the process; of course, this introduces divergence in the encoding. The
full encoding is given in Table 10.

Remark 4.1 The encoding in Table 10 is defined only for nets in which each tu-
ple is located alone on a different clone of the node hosting it (thus, for example,
〈|l :: 〈t1〉|〈t2〉|〉 is not defined). To overcome this problem and let the encoding easy,
we let 〈|N |〉 to be 〈|N′|〉 where N′ ≡ N but 〈|N′ |〉 is defined. Notice that such N ′ can be
always found for each N by only using rule (C), but is not unique, in general
(indeed, we can also split processes located at the same locality). To overcome this
fact, we can consider the N ′ (unique up-to rearrangements of parallel components)
obtained from N by only using (C) to isolate located data.

The focus of the encoding is in the implementation of tuples and in the translation
of actions in/out. A tuple 〈t〉 is translated into a (monadic) reference to a fresh
locality l where a process, Rl(t), sequentially produces the fields of the tuple and
the length of the tuple plus one (this is used to properly implement the pattern
matching mechanism). The fields are requested sequentially by the (translation of
an) action in by using localities 1, 2, . . . , n, . . .; this is necessary to maintain the
order of the data in the tuple, since our calculus is asynchronous. Once the process
Rl(t) has accepted the requirement for the i-th field, it produces such a field together
with an acknowledgement implemented via the reserved locality go.

Once the process translating an action in acquires the reference to (the locality
hosting the process handling) a tuple, it first verifies whether the accessed tuple
and the template used to retrieve it have the same number of fields. If this is the
case, it sequentially asks for all the fields of the tuple. For the i-th tuple field ui, the
encoding of the input non-deterministically chooses whether accepting ui (because
it matches the i-th template parameter T i), thus proceeding with the tuple scanning,
or refusing it and re-establishing the original situation (with the reference put back
in its original location and the process handling the tuple rolled back). In the latter
case, notice that the input has not been fired and hence the process implementing

28

Encoding Nets:

〈|0|〉 , 0 〈|N1 ‖ N2|〉 , 〈|N1|〉 ‖ 〈|N2|〉 〈|(νl)N |〉 , (νl)〈|N|〉

〈|l :: C|〉 ,


(νl′)(l :: 〈l′〉 ‖ l′ :: Rl′ (t)) if C , 〈t〉 and l′ is fresh

l :: 〈|P|〉 if C = P

Encoding Processes:

〈|nil|〉 , nil 〈|X|〉 , X 〈|rec X.P|〉 , rec X.〈|P|〉 〈|P1|P2|〉 , 〈|P1|〉 | 〈|P2|〉

〈|new(l).P|〉 , new(l).〈|P|〉 〈|eval(Q)@l.P|〉 , eval(〈|Q|〉)@l.〈|P|〉

〈|out(t)@l.P|〉 , eval(nil)@l.new(l′).out(l′)@l.eval(Rl′ (t))@l′.〈|P|〉 with l′ fresh

〈|in(T)@l.P|〉 , rec X.in(!x)@l.Q0
l,x,X(T ; P) with x, X fresh

where:

• Rl(u1, . . . , un) , S l(u1, . . . , un) | Ln
l

• S l(u1, . . . , un) ,
n
Π
i=1

in(i)@l.new(li).out(go)@l.out(li)@l.out(ui)@li with li fresh

• Ln
l , in(len)@l.new(llen).out(go)@l.out(llen)@l.out(n + 1)@llen with llen fresh

• Qk
l,x,X(T1, . . . ,Tn; P) ,



out(len)@x.in(go)@x.in(!xlen)@x.(if k = 0
in(n + 1)@xlen.Q1

l,x,X(T1, . . . ,Tn; P)
| in(!y)@xlen.eval(Ln

l)@x.out(x)@l.X)

out(k)@x.in(go)@x.in(!xk)@x.(if 1 ≤ k ≤ n
in(Tk)@xk.Qk+1

l,x,X(T1, . . . ,Tn; P)
| in(!y)@xk.eval(Ln

x | S x(T̂1, . . . , T̂k))@x.out(x)@l.X)

〈|P|〉 if k = n + 1

with xlen, y and xk fresh variables

• T̂ ,


u if T = u

x if T = !x

• len, go, 1, . . . , n, . . . are pairwise distinct reserved localities

Table 10
Encoding The Polyadic Calculus into the Monadic Calculus

29

Tuple Consumer (with template T) Tuple Handler (for tuple t)

Acquire the lock over a tuple

Ask for t’s length −−−−−−−−→

←−−−−−−−−− Provide t’s length k
If k = |T | then proceed,

otherwise release the lock
and roll back the tuple handler

Ask for t’s first field −−−−−−−−→

←−−−−−−−−− Provide t’s first field f1

If the first field of T matches f1 and an ack go
then proceed, otherwise release the lock

and roll back the tuple handler

.

Ask for t’s last field −−−−−−−−→

←−−−−−−−−− Provide t’s the last field fk

If the last field of T matches fk and an ack go
then FINISH, otherwise release the lock

and roll back the tuple handler

Table 11
The Protocol to Encode Polyadic Communications

it recursively starts back its task. Clearly, this protocol is not divergent free; the
intuition underlying it is illustrated in Table 11.

We now prove some interesting properties of 〈|·|〉. In particular, we prove that a
polyadic net N and its encoding are semantically equivalent w.r.t. barbed bisimula-
tion (clearly, they cannot be equivalent w.r.t. any equivalence that is a congruence).
We also prove that the encoding is adequate w.r.t. barbed congruence, but it is not
fully abstract (at least, when considering all the possible monadic contexts in the
context closure). Like for π-calculus 3 , a fully abstract encoding seems very hard to
achieve. The problem is that putting two encoded terms in a generic context (i.e.,
a context not necessarily corresponding to the encoding of any term) can break the
equivalence. In our setting, consider the polyadic net N , l :: in(!x)@l.out(x)@l;
it easy is to prove that N �µK l :: nil. However, 〈|N |〉 �cK 〈|l :: nil|〉 does not hold:

3 [31] shows that Milner’s encoding (sketched before) is not fully abstract w.r.t. bisimula-
tion.

30

e.g., contestuality is broken by the context [] ‖ l :: 〈l〉|〈2〉 that provides a link
to an ‘unfair’ tuple handler (actually, it provides a non-restricted locality and the
handler only provides the length of a tuple but not its fields). Indeed, the protocol
of Table 11 cannot succeed because N gets blocked in Q1

... since no go will be ever
produced at l.

We believe that, by relying on sophisticated typing theories (like in [31]) to consider
in the context closure only those contexts that do not violate the exchange protocol
implemented by the encoding, a (restricted) fully abstraction result can be proved.
However, it seems us unreasonable for a tuple-based language to assume that the
repository of a node contains only data (i.e. tuples) of the same kind (i.e. with the
same shape). So, even if theoretically possible, fully abstraction (w.r.t. an equiva-
lence that is a congruence) would be in contrast with the principles underlying the
tuple-space paradigm.

We now give the theoretical results. They rely on some preliminary steps, de-
scribing the operational correspondence between polyadic nets and their encoded
monadic nets.

Proposition 4.2 The following facts hold.

(1) If N
nil @ l
−−−−−→ N′ then 〈|N |〉

nil @ l
−−−−−→ 〈|N′ |〉. Viceversa, if 〈|N |〉

nil @ l
−−−−−→ M then

N
nil @ l
−−−−−→ N′ and M , 〈|N′ |〉.

(2) If N
(ν̃l) 〈t〉 @ l
−−−−−−−→ N′ then 〈|N |〉

(νl′) 〈l′〉 @ l
−−−−−−−−→ (ν̃l)(〈|N′ |〉 ‖ l :: nil ‖ l′ :: Rl′(t)). Vicev-

ersa, if 〈|N |〉
(νl′) 〈l′〉 @ l
−−−−−−−−→ M then N

(ν̃l) 〈t〉 @ l
−−−−−−−→ N′ and M ≡ (ν̃l)(〈|N′ |〉 ‖ l :: nil ‖

l′ :: Rl′(t)).

(3) If N
. l
−−→ N′ then 〈|N |〉

. l
==⇒ 〈|N′|〉. Viceversa, if 〈|N |〉

. l
−−→ M, then N

. l
−−→ N′ and

M &cK 〈|N′ |〉.

(4) If N
t / l
−−−→ N′ then 〈|N |〉

l′ / l
−−−→ 〈|C |〉[l′′ :: Q0

l,l′,X(T ; P)[in(!x)@l.Q0
l,x,X(T ; P)/X]],

where N ≡ C[l′′ :: in(T)@l.P] for some C[·], l′′, T and P such that fn(l, t) ∩

bn(C[·]) = ∅ and match(T, t) = σ. Viceversa, if 〈|N |〉
l′ / l
−−−→ N1 then N ≡ C[l′′ ::

in(T)@l.P] for some C[·], l′′, T , and P such that l < bn(C[·]). Moreover, for

every t s.t. fn(t)∩bn(C[·]) = ∅ and match(T, t) = σ, it holds that N
t / l
−−−→ C[l′′ ::

Pσ].

Proof: All the statements can be proved by induction on the inference length. The
proof is long and standard, thus we omit it. �

Lemma 4.3 (Preservation of Execution Steps) If N is a polyadic net and N
τ
−→ N′

then 〈|N |〉 =⇒ &cK〈|N′|〉.

Proof: The proof is by induction on the length of the inference for
τ
−→ . There are

three base cases: when using (LTS-N), (LTS-S) and (LTS-C). The first

31

one is straightforward; we now inspect the other cases.

(LTS-S). We have that N , N1 ‖ N2
τ
−→ N′1 ‖ N′2 , N′ because N1

. l
−−→ N′1 and

N2
nil @ l
−−−−−→ N′2. In this case, we use Propositions 4.2.1 and .3 to conclude that

〈|N |〉 =⇒ 〈|N′1 |〉 ‖ 〈|N
′
2 |〉 ‖ l :: 〈|P|〉 ≡ 〈|N′|〉.

(LTS-C). We have that N , N1 ‖ N2
τ
−→ N′1 ‖ N′2 , N′ because N1

〈t〉 / l
−−−−→ N′1 and

N2
〈t〉 @ l
−−−−−→ N′2. Then, by using Propositions 4.2.2 and .4 and Proposition 2.16.5,

we can say that 〈|N |〉 =⇒ (νl′)(〈|N′ |〉 ‖ l′ :: nil) &cK〈|N′ |〉 because l′ < n(N) and, thus,
l′ < n(〈|N′ |〉).

For the inductive case, we analyse the last rule used, namely (LTS-P), (LTS-R)
and (LTS-S). All the cases are easy. �

Let us now focus on the converse; to this aim, we need a slightly more involved
result. We start with a definition needed to consider the intermediate states in the
execution of a communication. Recall that l ∈ fl(N) if and only if N ≡ N ′ ‖ l :: nil.

Definition 4.4 (1) A K net M is a partial reduct of a µK net N whenever

N ≡ l1 :: in(T)@l2.P ‖ l2 :: 〈t〉 and 〈|N |〉
τ
=⇒ M

τ
=⇒&cK 〈|N |〉.

(2) A K net M is a partial state of a µK net N whenever N ≡ (ν̃l)(N1 ‖

· · · ‖ Nn ‖ N̄), M ≡ (ν̃l)(M1 ‖ · · · ‖ Mn ‖ 〈|N̄ |〉) and for all i it holds that
fl(Ni) ⊆ fl(N̄) and that Mi is a partial reduct of Ni.

A pleasant property of partial reducts (that turns out to be crucial for the proof of
Theorem 4.8) now follows.

Lemma 4.5 If M is a partial reduct of N ≡ l1 :: in(T)@l2.P ‖ l2 :: 〈t〉 and M
τ
−→ M′,

then either M′ is a partial reduct of N, or M′ &cK 〈|N |〉, or M′ &cK l1 :: 〈|Pσ|〉 ‖ l2 ::
nil, where σ = match(T, t).

Proof: By definition of partial reduct and by an easy inspection of the possible
reductions. �

Lemma 4.6 (Reflection of Execution Steps) If N is a polyadic net and 〈|N |〉
τ
−→ M

then either N
τ
−→ N′ and M &cK 〈|N′ |〉, or M is a partial state of N.

Proof: The proof is by induction on the length of the inference for 〈|N |〉
τ
−→ M

having τ as label. There are three base cases:

(LTS-S). In this case it holds that 〈|N |〉 , 〈|N1 |〉 ‖ 〈|N2 |〉
τ
−→ M. Then, by definition,

〈|N1|〉
. l
−−→ M1, 〈|N2 |〉

nil @ l
−−−−−→ M2 and M , M1 ‖ M2. By Proposition 4.2.3, we know

that N1
. l
−−→ N′1 and M1 &cK 〈|N′1 |〉. Thus, N

τ
−→ N′1 ‖ N2 , N′ and M &cK 〈|N′|〉.

32

(LTS-C). In this case it holds that 〈|N |〉 , 〈|N1 |〉 ‖ 〈|N2 |〉
τ
−→ M1 ‖ M2 , M because

〈|N1|〉
l′ / l
−−−→ M1 and 〈|N2 |〉

〈l′〉 @ l
−−−−−→ M2. This case is not possible, since no encoding

of a net can directly offer a non-restricted datum.
(LTS-N). This case trivially falls in the first possibility of this Lemma.

For the inductive case, we reason by case analysis on the last rule used in the infer-
ence.

(LTS-P). In this case it holds that 〈|N |〉 , 〈|N1 |〉 ‖ 〈|N2 |〉
τ
−→ M′ ‖ 〈|N2 |〉 , M because

〈|N1|〉
τ
−→ M′. By induction, either N1

τ
−→ N′1 and M′ &cK 〈|N′1 |〉, or M′ is a partial

state of N1. In the first case, we have that N
τ
−→ N′1 ‖ N2 , N′ and M &cK 〈|N′ |〉. In

the second case, M is a partial state of N, by definition.
(LTS-R). We now isolate two sub-cases:
• 〈|N |〉 , 〈|(νl)N1 |〉 , (νl)〈|N1 |〉

τ
−→ (νl)M1 , M because 〈|N1 |〉

τ
−→ M1. This case

easily follows by induction.
• 〈|N |〉 , (νl)M1

τ
−→ (νl)M2 , M because M1

τ
−→ M2 but M1 is not the encoding of

any polyadic net. In this case, locality l is fresh for N and has been introduced
by the encoding. It is then easy to see that l is the reference for a datum located
in a node of N, i.e. M1 , l1 :: 〈l〉 ‖ l :: Rl(t), and N , l1 :: 〈t〉. But then no
τ-step can be performed by M1

(LTS-S). In this case we have that 〈|N |〉 ≡ M1
τ
−→ M2 ≡ M. Let AN , bn(〈|N |〉)−

n(N) be the (restricted) names introduced by the encoding; we then proceed by
induction on k, the number of names in AN touched by rules (RC) and (E)
in deriving 〈|N |〉 ≡ M1. We shall refer to this latter induction as the internal
induction, while the induction on the number of rules used to infer

τ
−→ will be

called the external one.
Base. If k = 0, then we can claim that M1 , 〈|N′′ |〉 for some N′′ ≡ N (this can

be proved by an easy induction on the length of 〈|N |〉 ≡ M1). By using this fact
and a straightforward external induction, the thesis holds easily.

Induction. Let l ∈ AN . Then 〈|N |〉 , C[(νl)(l′ :: 〈l〉 ‖ l :: Rl(t))] for some t and l′.
By using Lemma 2.9 and a simple analysis over the definition of the involved
processes, it can only be one of the following cases:
• C[0]

τ
−→ C ′[0] and M ≡ C ′[(νl)(l′ :: 〈l〉 ‖ l :: Rl(t))]. But then 〈|N |〉 ,

C[(νl)(l′ :: 〈l〉 ‖ l :: Rl(t))]
τ
−→ M can be inferred without touching l with

rules (RC) and (E) Hence, by internal induction, we can conclude.

• C[·] , C1[C2[·] ‖ H] where H
. l′
−−→ H′, l′ < bn(C2[·]) and M ≡

C1[(ν̃l)(C2[l′ :: 〈l〉 ‖ l :: Rl(t)] ‖ H′)]. Like in the previous case,
〈|N |〉 , C[(νl)(l′ :: 〈l〉 ‖ l :: Rl(t))]

τ
−→ M can be inferred without touch-

ing l with rules (RC) and (E) Hence, by internal induction, we can
conclude.

• C[·] , C1[C2[·] ‖ H] where H
l / l′
−−−→ H′ and M ≡ C1[C2[(νl)(l′ ::

nil ‖ l :: Rl(t)] ‖ H′)]. By Proposition 4.2.4, H , E[l′′ ::
rec X.in(!x)@l′.Q0

l′,x,X(T ; P)], for some E[·], l′′, T and P, where con-

33

text E[·] does not bind l and l′; moreover, H′ ≡ E[l′′ :: P′], where
P′ , Q0

l′,l,X(T ; P)[rec X.in(!x)@l′.Q0
l′,x,X(T ; P)/X]. Thus,

M ≡ C1[C2[(νl)(l′ :: nil ‖ l :: Rl(t)] ‖ l′′ :: P′) ‖ l′ :: nil ‖ E[l′′ :: nil]]

Now, we have that

N ≡ D[(l′ :: 〈t〉 ‖ l′′ :: in(T)@l′.P) ‖ l′ :: nil ‖ F[l′′ :: nil]]

for E[·] , 〈|F[·]|〉 and C1[C2[·]] , 〈|D |〉[·]. By definition, we have that M
is a partial state of N. �

The following Lemma relates the behaviour (both the barbs and the reductions) of
a partial state M of N to the behaviour of the encoding of N.

Lemma 4.7 Let M be a partial state of N.

(1) If N ↓ l then M ⇓ l; moreover, if N
τ
−→ N′ then M =⇒ 〈|N′ |〉.

(2) If M ↓ l then N ↓ l.

(3) If M
τ
−→ M′, then N

τ̂
−→ N′ for some N′ such that M′ &tr

cK M′′, where M′′ is a
partial state of N′.

Proof:

(1) By exploiting Proposition 4.2.3 and Lemma 4.3 respectively, this case is sim-
ple, once noticed that M =⇒&cK 〈|N |〉 (by definition of partial states).

(2) By definition, N ≡ (ν̃l)(N1 ‖ · · · ‖ Nn ‖ N̄) and M ≡ (ν̃l)(M1 ‖ · · · ‖ Mn ‖ 〈|N̄ |〉),
where Mi is a partial reduct of Ni. By construction, we know that Mi can only
host data on restricted locations; thus, Mi ↓ l cannot hold. This implies that
〈|N̄ |〉 ↓ l and l < l̃; because of Proposition 4.2.2, N̄ ↓ l and hence N ↓ l.

(3) We know that N ≡ (ν̃l)(N1 ‖ · · · ‖ Nn ‖ N̄), M ≡ (ν̃l)(M1 ‖ · · · ‖ Mn ‖ 〈|N̄ |〉),
and for all i = 1, . . . , n it holds that fl(Ni) ⊆ fl(N̄) and that Mi is a partial reduct
of Ni. The crucial observation is that there are only two possible cases:
Mi

τ
−→ M′

i and M′ ≡ (ν̃l)(M1 ‖ · · · ‖ Mi−1 ‖ M′
i ‖ Mi+1 ‖ · · · ‖ Mn ‖ 〈|N̄ |〉).

By Lemma 4.5 we have three possible sub-cases:
(a) M′

i is a partial reduct of Ni: in this case, M′ is still a partial state of N.
By construction, (N,M′) ∈ <.

(b) M′
i &cK 〈|Ni |〉: by contextuality of .cK , it holds that M′ &cK (ν̃l)(M1 ‖

· · · ‖ Mi−1 ‖ Mi+1 ‖ · · · ‖ Mn ‖ 〈|Ni ‖ N̄ |〉) , M′′. Now, M′′ is a partial
state of N and, hence, (N,M′) ∈ < up-to .µK .

(c) Ni ≡ l1 :: in(T)@l2.P ‖ l2 :: 〈t〉 and M′
i &cK l1 :: 〈|Pσ|〉 ‖ l2 :: nil , N′,

where σ = match(T, t): in this case, we can consider Ni
τ
−→ l1 :: Pσ ‖

l2 :: nil , N′i and have that M′
i &cK 〈|N′ |〉. Thus, N

τ
−→ (ν̃l)(N1 ‖ Ni−1 ‖

Ni+1 ‖ · · · ‖ Nn ‖ N′i ‖ N̄) and M′ &cK (ν̃l)(M1 ‖ · · · ‖ Mi−1 ‖ Mi+1 ‖

· · · ‖ Mn ‖ 〈|N′i ‖ N̄ |〉) , M′′. Since M′′ is a partial state for N′, we have

34

that (N′,M′) ∈ < up-to .µK .

〈|N̄ |〉
τ
−→ M̄ and M′ ≡ (ν̃l)(M1 ‖ · · · ‖ Mn ‖ M̄).

By Lemma 4.6, we have two possible sub-cases:
(a) N̄

τ
−→ N̄′ and M̄ &cK N̄′: in this case, N

τ
−→ (ν̃l)(N1 ‖ · · · ‖ Nn ‖ N̄′) , N′

and M′ &cK (ν̃l)(M1 ‖ · · · ‖ Mn ‖ 〈|N̄′ |〉); thus, (N′,M′) ∈ < up-to .µK.
(b) M̄ is a partial state of N̄: by definition, we have that N̄ ≡ (ν̃l′)(H1 ‖

· · · ‖ Hh ‖ H̄), M̄ ≡ (ν̃l′)(K1 ‖ · · · ‖ Kh ‖ 〈|H̄|〉), and for all j =
1, . . . , h it holds that fl(H j) ⊆ fl(H̄) and that K j is a partial reduct of
H j. Thus, N ≡ (ν̃l, l′)(N1 ‖ · · · ‖ Nn ‖ H1 ‖ · · · ‖ Hh ‖ H̄) and
M′ ≡ (ν̃l, l′)(M1 ‖ · · · ‖ Mn ‖ K1 ‖ · · · ‖ Kh ‖ 〈|H̄|〉), where Mi is a
partial reduct of Ni and K j is a partial reduct of H j. Moreover, we also
have that fl(H j) ⊆ fl(H̄) (by definition) and that fl(Ni) ⊆ fl(H̄) (this
easily follows from fl(Ni) ⊆ fl(N̄) and by definition of N̄). Thus, M′ is
a partial state of N; this suffices to conclude (N,M′) ∈ <. �

To conclude this section, we can formulate a limited full abstraction result, by fol-
lowing [5]. In particular, we shall consider for full abstraction the translated barbed
congruence.

Theorem 4.8 (Full Abstraction w.r.t. Translated Barbed Congruence)
N �µK M if and only if 〈|N |〉 �tr

cK 〈|M|〉.

Proof: For the ‘if’ direction, it suffices to prove that relation

< , <1 ∪ <2 ∪ <3

where
<1 , {(N,M) : 〈|N |〉 �cK 〈|M|〉}

<2 , {(N,M) : ∃M̄. 〈|N |〉 �cK M̄ ∧ M̄ partial state of M}
<3 , {(N,M) : ∃N̄ . N̄ �cK 〈|M|〉 ∧ N̄ partial state of N}

is barb preserving, reduction closed (up-to .tr
cK) and closed under translated con-

texts (again, up-to .tr
cK). Notice that <1 is symmetric, while <2 and<3 are mutu-

ally symmetric; thus,< is symmetric. We pick up (N,M) ∈ < and reason by case
analysis on whether (N,M) ∈ <1, (N,M) ∈ <2 or (N,M) ∈ <3.

(1) Let N ↓ l (the case for M ↓ l is similar). By definition and Proposition 4.2.2,
we have that 〈|N |〉 ↓ l that implies 〈|M|〉 ⇓ l, i.e. 〈|M|〉 7−→∗ M′ ↓ l. According to
Lemma 4.6, we have two possibilities:
(a) M 7−→∗ M′′ and M′ &tr

cK 〈|M
′′|〉. In this case, by definition of &tr

cK , we have
that 〈|M′′|〉 ↓ l and hence M ⇓ l.

(b) M′ is a partial reduct of M. By Lemma 4.7.2, M ↓ l.
Now, let N 7−→ N′; then, 〈|N |〉 7−→∗ N̄ &tr

cK 〈|N
′ |〉. By definition of reduction

closure, 〈|M|〉 7−→∗ M̄ and N̄ �trcK M̄. According to Lemma 4.6, we have two

35

possibilities:
(a) M 7−→∗ M′ and M̄ &tr

cK 〈|M
′|〉. In this case is simple: because of Proposi-

tion 2.12 and by transitivity, we can obtain 〈|N ′ |〉 �trcK 〈|M
′|〉 and, hence,

(N′,M′) ∈ <1.
(b) M′ is a partial reduct of M. By construction, (N ′,M) ∈ <2 (notice that,

if the starting move was from M instead of being from N, the inclusion
would have been in<3).

We are left with context closure; this case is simple because, if we take any
µK context C[·], by definition of <1 and because 〈|C |〉[〈|·|〉] = 〈|C[·]|〉, we
have that (C[N], C[M]) ∈ <1.

(2) Let (N,M) ∈ <2; by definition, there exists a partial reduct of M, M̄, such
that 〈|N |〉 �cK M̄. Let us start with N ↓ l; hence, M̄ ⇓ l, i.e. M̄ 7−→∗ M̄′ ↓ l.
Now, by using Lemma 4.7.3, we have that M 7−→∗ M′ for some M′ such that
M̄′ &tr

cK M̄′′, where M̄′′ is a partial state of M′. By definition of .tr
cK , we have

that M̄′′ ↓ l and, by Lemma 4.7.2, M′ ↓ l; this suffices to conclude M ⇓ l.
Now, let N 7−→ N′; then, by Lemma 4.3, 〈|N |〉 7−→∗ N̄ &tr

cK 〈|N
′ |〉. By reduc-

tion closure, M̄ 7−→∗ M̄′ and N̄ �
tr
cK M̄′, that implies 〈|N′|〉 �trcK M̄′. By

Lemma 4.7.3, M 7−→∗ M′ and M̄′ is an expansion of a partial state of M′,
say M̄′′. By Proposition 2.12 and transitivity, 〈|N ′|〉 �trcK M̄′′; this suffices to
conclude that (N′,M′) ∈ <2.
We are left with context closure; by definition, we have that 〈|C |〉[M̄] �trcK

〈|C[N]|〉. If we prove that 〈|C |〉[M̄] is a partial state of C[M], we can conclude
the desired (C[N], C[M]) ∈ <2. Since M̄ is a partial state of M, we have that
M ≡ (ν̃l)(M1 ‖ · · · ‖ Mn ‖ M̂), M̄ ≡ (ν̃l)(M̄1 ‖ · · · ‖ M̄n ‖ 〈|M̂|〉), and for
all i = 1, . . . , n it holds that fl(Mi) ⊆ fl(M̂) and that M̄i is a partial reduct of
Mi. Let l̃′ = bn(〈|C |〉[·]) ∩ fn(M̄1, . . . , M̄n) = bn(C[·]) ∩ fn(M1, . . . ,Mn); then,
C[·] ≡ (ν̃l′)D[·] and 〈|C |〉[·] ≡ (ν̃l′)〈|D |〉[·]. Thus, C[M] ≡ (ν̃l′)(M1 ‖ · · · ‖

Mn ‖ D[M̂]) and 〈|C |〉[M̄] ≡ (ν̃l′)(M̄1 ‖ · · · ‖ M̄n ‖ 〈|D |〉[M̄]); clearly, 〈|C |〉[M̄]
is a partial state of C[M].

(3) Finally, let (N,M) ∈ <3; by definition, there exists a partial reduct of N, N̄,
such that 〈|M|〉 �cK N̄. Let us start with barb preservation and let N ↓ l; by
Lemma 4.7.1, N̄ ⇓ l, i.e. N̄ 7−→∗ N̄′ ↓ l. Now, 〈|M|〉 ⇓ l that, like in case 1.
above, implies M ⇓ l, as required.
Now, let N 7−→ N′; then, Lemma 4.7.1, N̄ 7−→∗ N̄′ &tr

cK 〈|N
′ |〉. By reduction clo-

sure, 〈|M|〉 7−→∗ M̄ and N̄′ �trcK M̄, that implies 〈|N′ |〉 �trcK M̄. By Lemma 4.6,
we have two possibilities:
(a) M 7−→∗ M′ and M̄ &tr

cK 〈|M
′|〉. By Proposition 2.12 and transitivity, we can

conclude that (N′,M′) ∈ <1.
(b) M 7−→∗ M′ and M̄ is a partial state of M′. By construction, (N ′,M′) ∈ <2.
Context closure is proved like in case 2. above.

We are left with the ‘only if’ direction; this can be done similarly to the ‘if’ direc-
tion. We leave the details to the reader. �

36

Encoding Nets:

{[0]} , 0 {[(νl)N]} , (νl){[N]}

{[N1 ‖ N2]} , {[N1]} ‖ {[N2]} {[l :: C]} , l :: {[C]}l

Encoding Components:

{[〈l′〉]}u , 〈l′〉 {[C1 | C2]}u , {[C1]}u | {[C2]}u

{[nil]}u , nil {[X]}u , X

{[eval(Q)@u′.P]}u , eval({[Q]}u′)@u′.{[P]}u {[rec X.P]}u , rec X.{[P]}u

{[out(u2)@u1.P]}u , eval(out(u2))@u1.{[P]}u {[new(l).P]}u , new(l).{[P]}u

{[in(T)@u′.P]}u , eval(in(T).eval({[P]}u)@u)@u′

Table 12
Encoding K in K

5 K vs K

In this section we develop a semantically equivalent encoding of K in K-
. To the best of our knowledge, this is the first result that clearly shows that
remote (input and output) operations do not add expressiveness to a distributed
language with code mobility. Indeed, we have that the possibility of using remote
operations simplifies programming, however a calculus with migrations as the only
remote operation permits finer dynamic checks against incoming agents (see, e.g.,
[28,19]).

The encoding of K into K is given in Table 12. The only relevant cases
are those for the translation of actions in and out of K. In the first case, a
remote action out is replaced with a migration to the target locality and a local
action. In the second case, a remote action in is replaced with a migration to the
target locality, a local in and a migration back to the original node. The subscript
u in {[·]}u is needed to keep track of the original node where report the result of the
(remote) action.

In order to carry on the proofs, we introduce an auxiliary notion. We define a func-
tion between K nets nrmL(·), called the normalization w.r.t. a set of localities

37

L, as follows

nrmL(N1 ‖ N2) , nrmL(N1) ‖ nrmL(N2) nrmL((νl)N) , nrmL∪{l}(N)

nrmL(l :: C1 | C2) , nrmL(l :: C1) ‖ nrmL(l :: C2) nrmL(l :: 〈·〉) , l :: 〈·〉

nrmL(l :: P) ,



l :: P′ ‖ l′ :: Q if P = a.P′ and a = eval(Q)@l′ and

l′ ∈ L and Q = in(T).eval({[P]}l)@l

l :: P if P , |

Essentially, the normalisation of an encoding replaces all the encodings of actions
in occurring at top level (i.e., as the first action of a process) with the net resulting
from the execution of their first actions (i.e., the migration over the locality target of
the in), provided that this execution is possible (i.e., the target locality of the input
exists in the net).

Now, it is easy to prove the following Proposition. For the sake of readability, we
write nrmL({[N]}) as {{[N]}}L and {{[N]}}fl(N) as {{[N]}}.

Proposition 5.1 Let N be a K net and M be a K net. Then

(1) fl(M) = fl({{[M]}}L), whenever L ⊆ fl(M)
(2) M &lcK nrmL(M), whenever L ⊆ fl(M)
(3) {{[N]}}L ‖ l :: nil &lcK {{[N]}}L∪{l} ‖ l :: nil
(4) {[N]} &lcK {{[N]}}

Lemma 5.2 Let N be a K net and fl(N) ⊆ L. Then

(1) if N
(ν̃l) I @ l
−−−−−−→ N′ then {{[N]}}L

(ν̃l) I @ l
======⇒ {{[N′]}}L∪{̃l}

(2) if N
. l
−−→ N′ then {{[N]}}L

. l
==⇒ {{[N′]}}L

(3) if N
l2 / l1
−−−−→ N′ then either {{[N]}}L

l2 / l1
====⇒ {{[N′]}}L, or {{[N]}}L ≡ C[l ::

eval(in(T).eval({[P]}l)@l)@l1] where match(T, l2) = σ, l1 < L, {l1, l2} ∩

bn(C[·]) = ∅ and {{[N ′]}}L ≡ nrmL(C[l :: {[Pσ]}l])

(4) if {{[N]}}L
(ν̃l) I @ l
−−−−−−→ N′, then N

(ν̃l) I @ l
−−−−−−→ N′′ and N′ &lcK {{[N′′]}}L∪{̃l}

(5) if {{[N]}}L
l2 / l1
−−−−→ N′, then N

l2 / l1
−−−−→ N′′ and N′ &lcK {{[N′′]}}L

(6) if {{[N]}}L
. l
−−→ N′ then

(a) either N
. l
−−→ N′′ and N′ &lcK {{[N′′]}}L

(b) or N ≡ C[l′ :: in(T)@l.Q] for l < bn(C[·]) ∪ L and N ′ ≡
{{[C[l′ :: nil ‖ l :: in(T).eval({[P]}l)@l]]}}L

Proof: All the statements are proved by induction on the length of the inference
used to derive the transition; the proof is standard. �

38

Lemma 5.3 (Operational Correspondence) Let N be a K net. Then

(1) if N
τ
−→ N′, then {{[N]}} =⇒&lcK {{[N′]}}

(2) if {{[N]}}
τ
−→ N′, then N

τ
−→ N′′ and N′ &lcK {{[N′′]}}

Proof: Both the claims are proved by induction on the inference length. The in-
ductive steps are easy: they rely on the fact that .lcK is a pre-congruence and on the
observation that N ≡ M implies {{[N]}} ≡ {{[M]}}. Thus, we only give the base cases for
both the claims.

In the first case, the τ-step can be inferred by using rules (LTS-N), (LTS-S)
or (LTS-C). The first case is simple; hence, let us consider the other two.

(LTS-S): in this case, N , N1 ‖ N2
τ
−→ N′1 ‖ N′2 , N′, where N1

. l
−−→ N′1

and N2
nil @ l
−−−−−→ N′2. The key observation is that fl(Ni) ⊆ fl(N) = fl(N′1 ‖ N′2) =

fl(N′); let us call L the set fl(N). By Lemmata 5.2.1 and .2, we have that

{{[N2]}}L
nil @ l
=====⇒ {{[N′2]}}L and {{[N1]}}L

. l
−−→ {{[N′1]}}L. Thus, {{[N]}} =⇒ {{[N′1 ‖ N′2]}} , {{[N′]}}.

(LTS-C): in this case, N , N1 ‖ N2
τ
−→ N′1 ‖ N′2 , N′, where N1

l2 / l1
−−−−→ N′1

and N2
〈l2〉 @ l1
−−−−−−→ N′2. Again, we have that fl(Ni) ⊆ fl(N) = fl(N′); let us call L

the set fl(N). By Lemma 5.2.1 we have that {{[N2]}}L
〈l2〉 @ l1
======⇒ {{[N′2]}}L. Moreover,

according to Lemma 5.2.3, we have two cases. The case for {{[N1]}}L
l2 / l1
====⇒ {{[N′1]}}L

is simple. The case when {{[N1]}}L ≡ C[l :: eval(in(T).eval({[P]}l)@l)@l1] cannot
occur. Otherwise, we would have that l1 < L; but this cannot be the case since, by
Proposition 2.8.2, we know that N2 ≡ N′2 ‖ l1 :: 〈l2〉. Hence l1 ∈ fl(N2) ⊆ fl(N) ,
L.

The second claim is similar. We reason by case analysis on the possible base cases.
The case for rule (LTS-N) is simple and we only inspect the other two. In what
follows, we let L to be fl(N).

(LTS-S): in this case, {{[N]}} , M1 ‖ M2
τ
−→ N′1 ‖ N′2 , N′, where M1 ,

{{[N1]}}L
. l
−−→ N′1 and M2 , {{[N2]}}L

nil @ l
−−−−−→ N′2. By Lemma 5.2.1 we have that

N2
nil @ l
−−−−−→ N′′2 and N′2 &lcK {{[N′′2]}}L. We now isolate two sub-cases:

(a) C = {[P]}l. Then, by Lemma 5.2.6(a) we have that N1
. l
−−→ N′′1 and

N′1 &lcK {{[N′′1]}}L. Thus, N , N1 ‖ N2
τ
−→ N′1 ‖ N′2 , N′′ and

N′ &lcK {{[N′′1 ‖ N′′2]}} , {{[N′′]}}.
(b) C , in(T).eval({[Q]}l′)@l′. By Lemma 5.2.6(b) we know that N1 ≡ C[l′ ::

in(T)@l.Q], with l < bn(C[·]) ∩ L. This case cannot occur because, by By
Proposition 2.8.1, we know that N2 ≡ N′2 ‖ l :: nil; hence, l ∈ L.

(LTS-C): in this case, {{[N]}} , M1 ‖ M2
τ
−→ N′1 ‖ N′2 , N′, where M1 ,

{{[N1]}}L
l2 / l1
−−−−→ N′1 and M2 , {{[N2]}}L

〈l2〉 @ l1
−−−−−−→ N′2. By Lemma 5.2.4 we have that

39

N2
〈l2〉 @ l1
−−−−−−→ N′′2 and N′2 &lcK {{[N′′2]}}L; by Lemma 5.2.5 we have that N1

l2 / l1
−−−−→ N′′1

and N′1 &lcK {{[N′′1]}}L. Thus, N , N1 ‖ N2
τ
−→ N′′1 ‖ N′′2 , N′′ and N′ &lcK {{[N′′1]}}L ‖

{{[N′′2]}}L , {{[N′′]}}. �

Theorem 5.4 Let N be a K net. Then, N �cK {{[N]}}.

Proof: By Lemma 2.15.1, it suffices to prove that

< , {(C[N], C[{{[N]}}]) : N is a K net and C[·] is a K context}

is barb preserving, reduction closed (up-to .cK) and context closed. Clearly, we
consider here the restriction of �µK and .µK to K nets; all the proofs devel-
oped in Section 2.6 for µK can be faithfully rephrased to deal with the sub-
relations containing only K nets.

Barb preservation and context closure are simple. Let us consider C[N] 7−→ N̄.
According to Lemma 2.9, we have six possible sub-cases:

(1) N 7−→ N′ and N̄ ≡ C[N′]. Because of Lemma 5.3.1, we know that
{{[N]}} =⇒ &cK {{[N′]}}; thus, we can conclude up-to .cK .

(2) C[·] 7−→ C ′[·] and N̄ ≡ C ′[N]. This case is trivial.

(3) N
. l
−−→ N′, C[·] ≡ C[· ‖ l :: nil] and N̄ ≡ C[N′]. Because of Lemma 5.2.2, we

know that {{[N]}}
. l
==⇒ &cK {{[N′]}} and we can easily conclude.

(4) N
nil @ l
−−−−−→ N′, C[·] ≡ C ′[· ‖ H], H

. l
−−→ H′ and N̄ ≡ C ′[N′ ‖ L′]. This case

relies on Lemma 5.2.1 and is simple.

(5) N
l′ / l
−−−→ N′, C[·] ≡ C ′[· ‖ l :: 〈l′〉] and N̄ ≡ C ′[N′]. The proof relies on

Lemma 5.2.3 to show that C[{{[N]}}] =⇒ C ′[{{[N′]}}]; now it is easy to conclude.

(6) N
(ν̃l) 〈l′〉 @ l
−−−−−−−−→ N′, C[·] ≡ C ′[· ‖ H], H

l′ / l
−−−→ H′ and N̄ ≡ C ′[(ν̃l)(N′ ‖ H′)]. This

case relies on Lemma 5.2.1 and is simple.

To conclude, let us consider C[{{[N]}}] 7−→ N̄. According to Lemma 2.9, we still have
six possible sub-cases:

(1) {{[N]}} 7−→ N′ and N̄ ≡ C[N′]. Because of Lemma 5.3.3, we know that N 7−→ N ′′

and N′ &lcK {{[N]}}; this suffices to conclude up-to .cK (indeed, by considering
both N′ and {{[N]}} as K nets, we have that N ′ &cK {{[N]}}).

(2) C[·] 7−→ C ′[·] and N̄ ≡ C ′[{{[N]}}]. This case is trivial.

(3) {{[N]}}
. l
−−→ N′, C[·] ≡ C[· ‖ l :: nil] and N̄ ≡ C[N′]. Because of Lemma 5.2.6,

we have two possible sub-cases:

(a) N
. l
−−→ N′′ and N′ &cK {{[N′′]}}. In this case it is easily to conclude.

(b) N ≡ D[l′ :: in(T)@l.P], for l < bn(D[·]) ∪ fn(N), and
N′ ≡ {{[D]}}[l′ :: nil ‖ l :: in(T).eval({[P]}l′)@l′]. Now,
C[{{[N]}}] 7−→ C[{{[D]}}[l′ :: nil ‖ l :: in(T).eval({[P]}l′)@l′]] ,

40

p =α p′
µ
−→ q′ =α q

p
µ
−→ q

a(b).p
ac
−→ p[c/b] āb

āb
−→ 0

p
āb
−→ p′ q

ab
−→ q′

p | q
τ
−→ p′ | q′

(∗)

p
µ
−→ p′ a < fn(µ)

(νb)p
µ
−→ (νb)p′

p
āb
−→ p′ a , b

(νb)p
ā(b)
−−→ p′

p
ā(b)
−−→ p′ q

ab
−→ q′ b < fn(q)

p | q
τ
−→ (νb)(p′ | q′)

(∗)

p
µ
−→ p′

[a = a]p
µ
−→ p′

p
µ
−→ p′

!p
µ
−→ !p | p′

p
µ
−→ p′ bn(µ) ∩ fn(q) = ∅

p | q
µ
−→ p′ | q

(∗)

and the symmetric versions of the rules marked with (*)

Table 13
A LTS for πa-calculus

N̄ &cK C[{{[D[l′ :: nil ‖ l :: in(T).eval({[P]}l′)@l′]]}}] , C[{{[N ‖ l :: nil]}}] (the
last inequality holds by Proposition 5.1.3). Now, since C[N] ≡ C[N ‖ l ::
nil], we have that (C[N], N̄) ∈ < up-to .cK , as required.

(4) {{[N]}}
nil @ l
−−−−−→ N′, C[·] ≡ C ′[· ‖ H], H

. l
−−→ H′ and N̄ ≡ C ′[N′ ‖ L′]. This case

relies on Lemma 5.2.4 and is simple.

(5) {{[N]}}
l′ / l
−−−→ N′, C[·] ≡ C ′[· ‖ l :: 〈l′〉] and N̄ ≡ C ′[N′]. The proof relies on

Lemma 5.2.5 and is simple.

(6) {{[N]}}
(ν̃l) 〈l′〉 @ l
−−−−−−−−→ N′, C[·] ≡ C ′[· ‖ H], H

l′ / l
−−−→ H′ and N̄ ≡ C ′[(ν̃l)(N′ ‖ H′)].

This case relies on Lemma 5.2.4 and is simple. �

Corollary 5.5 (Semantical Equivalence w.r.t. �cK) Let N be a K net. Then,
N �cK {[N]}.

Proof: By Propositions 5.1.4 and 2.12, Theorem 5.4 and by transitivity of �cK . �

6 A Comparison with πa-calculus

In this section, we want to compare asynchronous π-calculus, that we write
πa-calculus, with our languages. In particular, we develop a fully abstract and
divergence-free encoding of πa-calculus in K and a fully abstract but diver-
gent encoding of K in πa-calculus.

The variant of πa-calculus that we consider in this paper is adapted from [1]. Its

41

syntax is

p ::= 0
∣∣∣∣ āb

∣∣∣∣ a(b).p
∣∣∣∣ p1|p2

∣∣∣∣ (νa)p
∣∣∣∣ [a = b]p

∣∣∣∣ !p

while its operational semantics is given in Table 13. On top of that LTS, barbed
equivalence is defined as follows (see also [1]).

Definition 6.1 (Asynchronous Barbed Equivalence) Asynchronous barbed
equivalence, �πa , is the largest symmetric relation between πa-calculus processes
such that p �πa q implies that

(1) whenever p ↓ ā, it holds that q ⇓ ā, where p ↓ ā , (∃b . p
āb
−→ ∨ p

ā(b)
−→) and

p ⇓ ā , (p =⇒↓ ā)
(2) whenever p

τ
−→ p′, it holds that q =⇒ q′ and p′ �πa q′

(3) for all names ñ and πa-calculus process r, it holds that (ν̃n)(p|r) �πa (ν̃n)(q|r).

6.1 Encoding πa-calculus in K

We now provide an encoding of πa-calculus in K; it is given in Table 14. Like
in the previous section, we need a normalization function between K nets that
makes the encoding prompt. It is defined as follows:

nrmL((νl)N) , nrmL∪{l}(N) nrmL(N1 ‖ N2) , nrmL(N1) ‖ nrmL(N2)

nrmL(l :: 〈·〉) , l :: 〈·〉 nrmL(l :: C1 | C2) , nrmL(l :: C1) ‖ nrmL(l :: C2)

nrmL(l :: P) ,



l :: P′ ‖ l′ :: 〈l′′〉 if P = out(l′′)@l′.P′ and l′ ∈ L

(νl′) (nrmL∪{l′}(l :: P′)) if P = new(l′).P′

l :: P if P , | and no previous case holds

Essentially, the normalisation replaces all actions new with the net resulting from
the creation of the new nodes and all actions out over existing localities with the
net containing the datum produced by the action. When a net is the encoding of
a πa-calculus process, the continuation of each action out is nil and function nrm
does not need to be iterated on it.

For the sake of readability, we write nrmL([[p]]L) as [[[p]]]L. Some simple but crucial
properties of nrmL(·) are given in the following proposition, whose proof is simple.

Proposition 6.2 Let P be a K process and p be a πa-calculus process. Then

(1) if l , l′ then nrmL((νl′)(l :: P)) = nrmL(l :: new(l′).P)

42

Top-level Encoding:

[[p]]L , proc :: [[p]] ‖ Π
n∈L

n :: nil if fn(p) ⊆ L and proc is a reserved name

Encoding πa-calculus processes:

[[0]] , nil [[(νa)p]] , new(a).[[p]]

[[āb]] , out(b)@a.nil [[a(b).p]] , in(!b)@a.[[p]]

[[p1|p2]] , [[p1]] | [[p2]] [[!p]] , rec X.([[p]] | X)

[[[a = b]p]] , new(l).out(a)@l.in(b)@l.[[p]]

Table 14
Encoding πa-calculus in K

(2) [[[p]]]L ‖ l :: nil &cK [[[p]]]L∪{l}

(3) [[p]]L &lcK [[[p]]]L

We now prove a tight correspondence between πa-calculus processes and their en-
codings. We start with a correspondence between the labelled semantics of the two
calculi and then give their operational correspondence.

Lemma 6.3 Let p be a πa-calculus process and fn(p) ⊆ L. Then

(1) if p
āb
−→ p′ then [[[p]]]L

〈b〉 @ a
=====⇒ [[[p′]]]L

(2) if p
ā(b)
−→ p′ then [[[p]]]L

(νb) 〈b〉 @ a
========⇒ [[[p′]]]L∪{b}

(3) if p
ab
−→ p′ then [[[p]]]L

b / a
===⇒ N and [[[p′]]]L∪{b} ≡ N ‖ b :: nil

(4) if [[[p]]]L
〈b〉 @ a
−−−−−→ N then p

āb
−→ p′ and N ≡ [[[p′]]]L

(5) if [[[p]]]L
(νb) 〈b〉 @ a
−−−−−−−−→ N then p

ā(b)
−→ p′ and [[[p′]]]L∪{b} ≡ N ‖ b :: nil

(6) if [[[p]]]L
b / a
−−−→ N then p

ab
−→ p′ and [[[p′]]]L∪{b} .cK N ‖ b :: nil

Proof: By induction on the length of the inferences. �

Lemma 6.4 (Operational Correspondence) Let p be a πa-calculus process and
fn(p) ⊆ L. Then

(1) p
τ
−→ p′ implies that [[[p]]]L =⇒ [[[p′]]]L

(2) [[[p]]]L
τ
−→ N implies that p

τ
−→ p′ and N &cK [[[p′]]]L

Proof: Both the claims are proved by induction on the inference occurring in the
premise. The first statement is quite simple. We give the base cases for the second

43

statement. We want to remark that, thanks to the normalization procedure, the only
possible base case is when using rule (LTS-C). Thus, [[[p]]]L , N1 ‖ N2

τ
−→ N′1 ‖

N′2 , N, because N1
b / a
−−−→ N′1 and N2

〈b〉 @ a
−−−−−→ N′2. By definition, it must be that

Ni , [[[pi]]]L, for i = 1, 2; moreover, {a, b} ⊆ fn(N2) ⊆ L. By Lemmata 6.3.6 and .4,

we have that p1
ab
−→ p′1 and [[[p′1]]]L .cK N′1 ‖ b :: nil, and p2

āb
−→ p′2 and N′2 ≡ [[[p′2]]]L.

Thus, p , p1|p2
τ
−→ p′1|p

′
2 , p′. Moreover, N ≡ N′1 ‖ b :: nil ‖ N′2 &cK [[[p′1]]]L ‖

[[[p′2]]]L , [[[p′]]]L, as required. �

We now prove that full abstraction can be obtained when considering only the fol-
lowing subset of K contexts, called translated:

C[·] ::= [·]
∣∣∣∣ C[·] ‖ [[p]]L

∣∣∣∣ (νl)C[·]

Basically, we only permit parallel components resulting from the encoding of πa-
calculus processes. This ensures that each free name occurring in any parallel com-
ponent is also the address of a node in the component itself and is essential to prove
full abstraction.

Theorem 6.5 Let fn(p, q) ⊆ L. Then p �πa q if and only if [[[p]]]L �
tr
cK [[[q]]]L.

Proof: We start with proving that [[[p]]]L �
tr
cK [[[q]]]L implies p �πa q. Let < ,

{(p , q) : [[[p]]]L �
tr
cK [[[q]]]L}; we prove that < ⊆ �πa . Let p < q. For reduction

closure, we take p
τ
−→ p′; by Lemma 6.4.1 it holds that [[[p]]]L =⇒ [[[p′]]]L. Thus,

[[[q]]]L =⇒ N and [[[p′]]]L �
tr
cK N. Then, by using Lemma 6.4.2, it can be easily verified

that q =⇒ q′ and [[[q′]]]L .cK N. This suffices to conclude that p′ < q′ since, by the
fact that .cK ⊆ �cK ⊆ �

tr
cK and by transitivity of �trcK , it holds that [[[p′]]]L �

tr
cK [[[q′]]]L

(notice that, as it is standard in π-calculus, fn(p′) ⊆ fn(p) and, thus, fn(p′) ⊆ L –
and similarly for q and q′).

We now consider barb preservation; let p ↓ ā because p
āb
−→ . By Lemma 6.3.1 it

holds that [[[p]]]L
b @ a
====⇒ ; thus, [[[q]]]L

b @ a
====⇒ . Hence, by Lemma 6.3.4 and reduction

closure (just proved), it holds that q
āb
=⇒ ; thus, by definition, q ⇓ ā. The case for

p ↓ ā because p
ā(b)
−→ is similar, but relies on Lemmata 6.3.2 and .5.

Finally, we have to prove closure under parallel composition and restriction. Let us
examine the two conditions separately.

• We want to prove that (ν̃n)p < (ν̃n)q by knowing that (ν̃n)([[[p]]]L) �trcK
(ν̃n)([[[q]]]L). By definition, we have that (ν̃n)([[[·]]]L) , [[[(ν̃n) ·]]]L−{̃n} and
fn((ν̃n) ·) , fn(·) − {̃n}. Thus, fn((ν̃n)p, (ν̃n)q) ⊆ L − {̃n} and hence
[[[(ν̃n)p]]]L−{̃n} �

tr
cK [[[(ν̃n)q]]]L−{̃n}. By definition of<, this suffices to conclude.

• We want to prove that p|r < q|r by knowing that [[[p]]]L ‖ [[[r]]]L′ �
tr
cK [[[q]]]L ‖

[[[r]]]L′ . By definition of [[·]]· and by Proposition 6.2.2, it holds that [[[·]]]L ‖

44

[[[r]]]L′ &cK [[[·]]]L∪L′ ‖ [[[r]]]L∪L′ , [[[· ‖ r]]]L∪L′ . Thus, [[[p ‖ r]]]L∪L′ �
tr
cK [[[q ‖ r]]]L∪L′

and fn(p|r, q|r) = fn(p, q) ∪ fn(r) ⊆ L ∪ L′. This suffices to conclude.

We are left with proving the converse, i.e. p ≈πa q implies that [[[p]]]L �
tr
cK [[[q]]]L.

Let < , {([[[p]]]L , [[[q]]]L) : p ≈πa q}; we prove that < is a barbed congruence,

up-to .cK . For reduction closure, we let [[[p]]]L
τ
−→ N; by Lemma 6.4.2 it holds that

p
τ
−→ p′ and N &cK [[[p′]]]L. Then, q =⇒ q′ and p′ �πa q′. By Lemma 6.4.1, we know

that [[[q]]]L =⇒ [[[q′]]]L; this suffices to conclude up-to .cK . Barb preservation can

be proved easily. By Proposition 2.8.2, [[[p]]]L ↓ a implies that [[[p]]]L
(ν̃b) 〈b〉 @ a
−−−−−−−−→ ;

by Lemma 6.3.4 (or .5) and by definition of barbs in πa-calculus, this implies that
p ↓ ā. Then, q ⇓ ā; by using Lemmata 6.3.1 (or .2) and 6.4.1, we obtain the desired
[[[q]]]L ⇓ a.

To conclude, we have to prove that, for every translated context C[·], it holds that
C[[[[p]]]L] < C[[[[q]]]L]. The key observation is that, by definition of translated con-
text, it holds that C[·] ≡ (ν̃n)([·] ‖ [[r]]L′). Moreover, by hypothesis, we know that
(ν̃n)(p|r) �πa (ν̃n)(q|r). Hence,

C[[[[·]]]L] ≡ (ν̃n)([[[·]]]L ‖ [[r]]L′)

&cK (ν̃n)([[[·]]]L ‖ [[[r]]]L′) by Prop. 6.2.3

&cK (ν̃n)([[[·]]]L∪L′ ‖ [[[r]]]L∪L′) by Prop. 6.2.2

, (ν̃n)(nrmL∪L′([[· |r]]L∪L′))

, nrmL′′((ν̃n)[[· |r]]L∪L′) for L′′ , (L ∪ L′) − {̃n}

, nrmL′′((ν̃n)(proc :: [[· |r]] ‖ Π
l′∈L∪L′

l′ :: nil))

≡ nrmL′′((ν̃n)(proc :: [[· |r]])) ‖ Π
l′∈L′′

l′ :: nil

= nrmL′′(proc :: [[(ν̃n)(· |r)]]) ‖ Π
l′∈L′′

l′ :: nil by Prop. 6.2.1

≡ [[[(ν̃n)(· |r)]]]L′′

Notice that, if fn(·) ⊆ L and fn(r) ⊆ L′ (these hold by definition of the encod-
ing), then fn((ν̃n)(· |r)) ⊆ (L ∪ L′) − {̃n} , L′′. Thus, C[[[[p]]]L] &cK [[[(ν̃n)(p|r)]]]L′′

< [[[(ν̃n)(q|r)]]]L′′ .cK C[[[[q]]]L]. This suffices to conclude, up-to .cK . �

Corollary 6.6 (Full Abstraction w.r.t. Translated Barbed Equivalence) Let
fn(p, q) ⊆ L. Then p �πa q if and only if [[p]]L �

tr
cK [[q]]L.

Proof: Trivial, by Theorem 6.5, Proposition 6.2.3 and by observing that .cK ⊆ �cK

⊆ �trcK . �

Remark 6.7: On full abstraction w.r.t. barbed equivalence. We have already
said that translated full abstraction seems us the best possible result for the encod-

45

ing of Table 14. Indeed, there is a key design issue that breaks full abstraction: in
π-calculus, knowing a name implies that communication actions can be performed
upon a channel with that name and these actions succeed whenever a parallel com-
ponent performs a complementary action. This is not the case in K (and in the
calculi derived from it). Indeed, it is not necessarily the case that each free name
is associated to a locality (while each name in a π-calculus process is associated
to a channel). This aspect can break full abstraction: e.g., consider the following
πa-calculus equivalence

p , a(x).(x̄ | x.̄b) �πa a(x).((x̄ | x.̄b) ⊕ b̄) , q

where ⊕ denotes internal choice. However,

[[p]]L �cK [[q]]L

does not hold. Indeed, [[q]]L can produce a datum at node b, while [[p]]L cannot: if
the name received in the input (that replaces x) is not a node of the net, the encoding
of the output over x will never produce a datum. Thus, the input from x is blocked
and the following output on b will never produce a datum.

We think that no ‘reasonable’ encoding of πa-calculus in K (nor in any other
calculus derived from K) can be given: checking the existence of nodes before
firing an output is a too low-level feature that cannot be implemented in such an
abstract setting as π-calculus. There are two ways in which we can recover full
abstraction.

(1) We can make K higher-level: a simple way to do this is to add the fol-
lowing structural rule to those given in Table 3

l :: nil ≡ 0

In this way, we recover π-calculus’ philosophy that each name is always asso-
ciated to a communication medium (up-to ≡).

Another possibility is to consider a typed language, where types ensure
that, if a locality name is eventually used as target of an operation, then a node
whose address is that name is present in the net. This possibility strongly
resembles Dπ’s framework [20].

(2) We can make πa-calculus lower-level: some names are channels, while the
other ones are just communicable objects. This can be formalized by structur-
ing the syntax of πa-calculus as follows:

Systems S ::= ∃a
∣∣∣∣ (νa)S

∣∣∣∣ S 1 | S 2

∣∣∣∣ p

Processes p ::= . . .

where the particle ∃a implements the presence of a channel with name a.
The operational semantics of Table 13 must be then modified by following the

46

Encoding Nets:

([0]) , ex〈〉 ([l :: C]) , ([C])l | ! ex l

([(νl)N]) , (νl)(([N]) | ! ex l) ([N1 ‖ N2]) , ([N1]) | ([N2])

Encoding Processes:

([nil])u , 0 ([〈l〉])u , ū l

([X])u , X ([rec X.P])u , rec X.([P])u

([C1|C2])u , ([C1])u | ([C2])u ([new(l).P])u , (νl)(([P])u | ! ex l)

([out(u′).P])u , ū u′ | ([P])u ([in(!x).P])u , u(x).([P])u

([in(u′).P])u , rec X.u(x).(νc)(c̄ | [x = u′]c.([P])u | c.(ū x | X)) (∗)

([eval(Q)@u′.P])u , rec X.ex(x).(νc)(c̄ | [x = u′]c.(([P])u | ([Q])u′) | c.X) (∗)

(∗) for x, X fresh

Table 15
Encoding K in πa-calculus

lines of the LTS in Table 7 (by adding a check of existence of a channel before
firing an output action).

6.2 Encoding K in πa-calculus

We now present an encoding of the simplest K-based calculus, namely K-
, in πa-calculus. The encoding is somehow inspired from the encoding of K
in µK (for the handling of names) and of µK in K (for the encoding
of the name matching construct of K).

We can follow the correspondence between channels and localities that we pointed
out in Section 6.1 and translate each locality to a channel. Output actions performed
at l, as well as data located at l, can be translated to output particles of πa-calculus
l̄ . Similarly, input actions performed at l can be translated to input prefixes of πa-
calculus l(x). . Finally, any action new(l′) is translated to a restriction (νl′). Thus,
the correspondence between the two calculi is quite straightforward up to now.

A first feature that distinguish K from πa-calculus is the communication
paradigm and, mainly, the name matching of K (that happens while retriev-

47

ing a datum). This issue can encoded quite easily, if we accept divergence: process
in(l′).P running at l can be translated into a process that first retrieves a datum at l
and then checks if it is l′; if the check succeeds, the process continues, otherwise it
places back the accessed datum and looks for another one.

A second feature that distinguish K from πa-calculus is the allocation of pro-
cesses and their movements, together with the check of locality existence before
migration. Process distribution is relevant in K to establish where actions
out and in have to take place. Thus, we can define a parameterized encoding for
processes, ([P])u, where u is the locality where P runs. Then, if P is of the form
out(u′).Q, we translate it to ūu′ | ([Q])u, while, if P is of the form in(!x).Q, we
translate it to u(x).([Q])u. A process P of the form eval(Q)@u′.R running at u is
translated to the parallel composition of ([R])u and ([Q])u′ , if existence of locality u′

is ascertained.

The last feature we have to model is the distinction between names that are ad-
dresses of network nodes and raw names. The former ones can be then used as
target of remote operations (in the case of K only actions eval), while the
latter ones cannot. By using a π-calculus terminology, only the first ones are Names
(we intentionally used the capital letter), while the latter ones are just values. How-
ever, the status of a name (without the capital letter) can change according to the
context: a Name will always remain such in any context, while a value l can become
a Name if the context provides a node with address l.

To deal with this sophisticated feature (that, as we have already discussed in Re-
mark 6.7, creates a relevant gap between πa-calculus and K-based calculi), we
use a reserved channel ex to record existence of localities. Thus, if l is a Name in
the K net considered for translation, then channel ex will repeatedly offer l
in the encoded net, i.e. the encoding will contain a process of the form

! ex l , (νc)(c̄ l | !c(x)(c̄ x | ex x))

The encoding is summarized in Table 15. There, we also assume the possibility
of writing πa-calculus processes with recursion – that can be implemented through
replication, as usual – and we write c̄ and c to mean output and input of dummy
data. In the translation of actions in(l) and eval, the fresh restricted channel c is
used to implement a form of internal choice. In both cases, the first addendum
can evolve only if the name matching succeeds. On the other hand, the second
addendum can always be executed: this fact introduces divergence in the encoding.
Notice, however, that exactly one of the two addenda can evolve. Finally, like in the
encoding of K in µK, the fact that ex always provides data is necessary to
obtain a fully abstraction result w.r.t. translated contexts. Again, translated contexts
do not have a full discriminating power over this channel.

The proof of soundness somehow follows proofs already given in the paper; we

48

only sketch the main steps and leave the details to the interested reader. First, the
translated barbed expansion in πa-calculus, written .tr

πa
, can be defined by following

Definition 2.11. By following Proposition 2.12, it can be proved that .tr
πa
⊂�tr
πa

and,
by following Lemma 2.15, that translated barbed congruence up-to .tr

πa
is contained

in �tr
πa

. Then, we can prove that each K reduction is preserved by its encoding.

Lemma 6.8 If N 7−→ N′, then ([N]) =⇒ &tr
πa

([N′]).

Now, since the encoding ([·]) is divergent, we can follow the ideas of Section 4 and
define partial reducts and partial states. Notice that, since divergence can originate
both from the encoding of name matching and of migrations, we have two possible
cases for partial reducts.

Definition 6.9 (1) A πa-calculus process p is a partial reduct of a K net N
whenever
• N ≡ l :: in(l′).P | 〈l′〉 and

p �tr
πa

(νc)(c̄ | [x = l′]c.([P])u | c.(l̄ x | ([in(T).P])l)) | ! ex l, or
• N ≡ l :: eval(Q)@l′.P ‖ l′ :: nil and

p �tr
πa

(νc)(c̄ | [x = l′]c.(([P])l | ([Q])l′) | c.([eval(Q)@l′.P])l) | ! ex l | ! ex l′.
(2) A πa-calculus process p is a partial state of a K net N whenever N ≡

(ν̃l)(N1 ‖ · · · ‖ Nn ‖ N̄), p ≡π (ν̃l)(p1 ‖ · · · ‖ pn ‖ ([N̄])) and for all indexes
i it holds that pi is a partial reduct of Ni (where ≡π is Milner’s structural
equivalence, see [22]).

The pleasant property of µK’s partial reducts is here stronger.

Lemma 6.10 Let p be a partial reduct of N. Then,

• N ≡ l :: in(l′).P | 〈l′〉 and p
τ
−→ p′ imply that either p′ &tr

πa
([N]), or p′ &tr

πa

([P])l | ! ex l.
• N ≡ l :: eval(Q).P ‖ l′ :: nil and p

τ
−→ p′ imply that either p′ &tr

πa
([N]), or

p′ &tr
πa

([P])l | ([Q])l′ | ! ex l | ! ex l′.

We can now state the reflection of reduction steps.

Lemma 6.11 If 〈|N |〉
τ
−→ p, then either N

τ
−→ N′ and p &tr

πa
〈|N′|〉, or p is a partial

state of N.

Finally, it is easy to see that the encoding faithfully translates the barbs; it only adds
new barbs on ex but no translated context can fully observe them. Hence, the proof
of the following concluding theorem can be carried on easily.

Theorem 6.12 (Full Abstraction w.r.t. Translated Barbed Congruence) N �lcK

M if and only if ([N]) �tr
πa

([M]).

49

Proof: For the ‘if’ direction, it suffices to prove that relation

< , {(N,M) : ([N]) �tr
πa

([M])}

∪ {(N,M) : ∃ p̄. ([N]) �trπa
p̄ ∧ p̄ partial state of M}

∪ {(N,M) : ∃ p̄. 〈|M|〉 �trπa
p̄ ∧ p̄ partial state of N}

is barb preserving, reduction closed (up-to .lcK) and closed under translated con-
texts (again, up-to .lcK). For the ‘only if’ direction, it suffices to prove that relation

< ,
⋃

N �lcK M {(([N]), ([M]))}

∪ {(([N]), p) : p partial state of M}

∪ {(p, ([M])) : p partial state of N}

is barb preserving, reduction closed (up-to .tr
πa

) and closed under translated contexts
(again, up-to .tr

πa
). �

7 Concluding Assessment

In this section we discuss the quality of the presented encodings, which should be
measured by considering how faithful the target terms are to the source ones.

According to [26], each ‘reasonable’ encoding enc(·) should have a number of im-
portant features aiming at guaranteeing the same degree of parallelism, a close
correspondence between the names of the used channels and the same semantics.
In particular, an encoding has to:

(1) be homomorphic w.r.t. the parallel operator, i.e. enc(N ‖ M) = enc(N) ‖
enc(M) ;

(2) preserve renaming, i.e. for every permutation of names σ in the source lan-
guage there exists a permutation of names θ in the target language such that
enc(Pσ) = (enc(P))θ;

(3) preserve the basic observables, i.e. it has to preserve the visible behaviours of
the encoded terms;

(4) preserve termination, i.e. it has to turn terminating terms in terminating terms.

All the encodings presented in this paper enjoy properties 2. and 3. . Property 4. is
not enjoyed by the encodings of µK in K and of K in πa-calculus.
This is related to the fact that the kind of name matching used in K-based cal-
culi (borrowed from L [17]) is very powerful: it permits performing boolean
tests on names while retrieving them. Property 1. (i.e. [[P |Q]] ≡ [[P]] | [[Q]]) is not
enjoyed by the encoding of πa-calculus in K and by the encoding of K

50

in µK. In this case, we needed to have a centralized entity (locality env) that
coordinates the translation of names. According to [24], the presence of such cen-
tralized authorities does not necessarily imply that the encoding developed is weak
– the resolution of names in the Internet (through the so called DNS) requires some
form of centralized knowledge to turn logical names in IP addresses – and we
believe that in this scenario property 1. could be relaxed. However, we have that
homomorphic translations are guaranteed for nets (i.e. [[N ‖ M]] ≡ [[N]] ‖ [[M]]).

Now consider the properties put forward in [26], the facts that �tr is coarser than
� and that semantical equivalence implies full abstraction (w.r.t. the same equiva-
lence). By considering the results summarised in Table 1, we can order the different
kinds of encodings obtained in this paper as follows:

S .E. w.r.t. �
−−−−−−−−→ �

F.A. w.r.t. �tr

−−−−−−−−−→ �
F.A. w.r.t. �tr

− − − − − →

where ‘�’ can be interpreted as ‘better than’.

Thus, the encoding of K in K is the best we can imagine: it does not
introduce divergence and translates nets into barbed congruent ones. Hence, the
two calculi have exactly the same expressive power; remote communications are
just a mean to simplify programming.

The encodings of K in µK and of πa-calculus in K are satisfactory.
Indeed, they enjoy the four properties of [26], the very same properties enjoyed by
Milner’s encoding of polyadic π-calculus into the monadic one [22]. The generated
code (especially in the case of the second encoding) is quite simple. These consid-
eration lead us to conclude that source and target languages of the two encodings
have similar expressive power.

The encodings of µK in K and of K in πa-calculus are less satisfac-
tory. The two encodings may introduce divergence, and the encoding of polyadic
communication (µK) in monadic communication (K) is neither simple
nor efficient. Table 10 substantiates this claim: a lot of monadic exchanges are nec-
essary to implement each polyadic communication. While this could be acceptable
from a theoretical point of view, it is hardly usable in practice. Therefore, we con-
clude that, in a L-like framework, these two forms of communication seem not
interchangeable, and that µK appears to be more expressive than K.

Clearly, the results in this paper do not prove that µK and K are more
powerful than K and πa-calculus, respectively. To that aim, we should ex-
hibit some impossibility results similar to that of [26]. We are currently working on
proving the impossibility of encoding K into πa-calculus. We conjecture that,
due to the check of existence of the target of a communication, that is performed
in K and not in πa-calculus, this result should hold. About the encodability
of a polyadic communication through monadic communications (µK into K-
), we think that a divergence-free encoding does not exist. Indeed, the fields of

51

a polyadic datum can only be accessed sequentially and one is forced to split the
atomic activity of function match into a field-by-field compliance checking. Such
checking must be aborted as soon as the accessed datum does not match the tem-
plate used to retrieve it, and the inputting process must be rolled back, to try with
another datum. The possibility of repeatedly accessing the same (non-matching)
datum clearly leads to divergence.

8 Conclusions

In this paper, we have presented a family of process description languages for
network-aware programming. The starting point has been K, an experimental
language combining the process algebra approach with the coordination-oriented
one. We have distilled from K some more and more foundational calculi
(namely, µK, K and K) and have studied the encoding of each of
them into a simpler one. The expressive power of K-based calculi has been
finally tested by a comparison with asynchronous π-calculus. In the development
of the last part, we choose a monadic version of πa-calculus; this choice was only
driven by the sake of simplicity. Indeed, the encoding presented in Section 6.1 can
be readily accommodated to yield an encoding of polyadic πa-calculus into µK.

In our view, the present work throws light on the expressiveness of K and vin-
dicates the design choices that make it significantly different from standard process
calculi. The results presented here can be exploited also for assessing expressive-
ness of other calculi with a similar communication paradigm. In particular, we in-
tend to assess more deeply the expressive power of pattern-matching, by studying
‘reasonable’ encodings of calculi with communication based on pattern matching
into calculi with simple channel-based communications. Moreover, this work also
stimulated us to find other variants of K that better model more sophisticated
settings. For example, in [13,15] we have extended µK with two typical fea-
tures of global computers, namely dynamic inter-node connections and failures,
while in [16] we have developed more flexible (but still easily implementable)
forms of pattern matching. Of course, a lot of work remains to be done: e.g., the
formal study of the expressive power of all these variants is still missing.

We have discussed throughout the paper the works on encodings of process calculi
that are strictly related to ours. Here, we touch upon the impact on expressiveness
of the three different semantics for the output operation studied in [7] in the setting
of a simple Linda-based process calculus: instantaneous output (an output prefix
immediately unleashes the corresponding tuple in the TS), ordered output (a re-
duction is needed to turn an output prefix into the corresponding tuple in the TS)
and unordered output (two reductions are needed to turn an output into an avail-
able tuple, one sends the tuple to the TS and another makes the tuple available in
the TS). According to this terminology, the semantics of K output operation is

52

ordered. In [7] it is proved that the instantaneous semantics yields the most expres-
sive setting. We believe that the instantaneous semantics would simplify the theory
developed in this paper. For example, the proofs for the encoding of πa-calculus
into K would be simpler because any top-level action a target term intends
to perform would correspond to an analogous action in the source term. However,
instantaneous tuple emission is unrealistic, especially in a network-aware scenario
where remote operations are possible. On the other hand, unordered outputs are
very close to the practice of network-aware programming (consider, e.g., sending
e-mail messages). We believe that the theory presented in this paper can be tailored
to deal with such semantics. However, in [8] it is proved that the simple Linda-based
process calculus considered in [7] is Turing powerful under the instantaneous and
ordered semantics but not with the unordered semantics. The output operation of
K represents a compromise between expressiveness and implementability.

Acknowledgements. We would like to thank Jos Baeten and Flavio Corradini for
the invitation to present our results at the EXPRESS’04 workshop; it was the main
stimulus for this work. Many thanks also to Diletta Cacciagrano for suggestions and
comments on an earlier draft. The anonynmous referees also helped in improving
the overall presentation.

References

[1] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science, 195(2):291–324, 1998.

[2] L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in
X-K. In Proc. of 7th WETICE, pages 110–115. IEEE Computer Society, 1998.

[3] L. Bettini, R. De Nicola, and R. Pugliese. K: a Java Package for Distributed and
Mobile Applications. Software – Practice and Experience, 32:1365–1394, 2002.

[4] L. Bettini and R. D. Nicola. Mobile distributed programming in x-klaim. In
M. Bernardo and A. Bogliolo, editors, SFM, volume 3465 of LNCS, pages 29–68.
Springer, 2005.

[5] M. Boreale. On the expressiveness of internal mobility in name-passing calculi.
Theoretical Computer Science, 195(2):205–226, 1998.

[6] G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA
Sophia-Antipolis, May 1992.

[7] N. Busi, R. Gorrieri, and G. Zavattaro. Comparing three semantics for linda-like
languages. Theoretical Computer Science, 240(1):49–90, 2000.

[8] N. Busi, R. Gorrieri, and G. Zavattaro. On the expressiveness of linda coordination
primitives. Information and Computation, 156(1-2):90–121, 2000.

53

[9] D. Cacciagrano and F. Corradini. On synchronous and asynchronous communication
paradigms. In Proc. of ICTCS’01, volume 2202 of LNCS, pages 256–268. Springer.

[10] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[11] R. De Nicola, G. Ferrari, and R. Pugliese. K: a Kernel Language for Agents
Interaction and Mobility. IEEE Trans. on Software Engineering, 24(5):315–330, 1998.

[12] R. De Nicola, G. Ferrari, and R. Pugliese. Programming Access Control: The Klaim
Experience. In Proc. of CONCUR’00, volume 1877 of LNCS, pages 48–65. Springer.

[13] R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for
global computing. Tech. Rep. 07/2004, Dip. di Informatica, Università di Roma “La
Sapienza”. To appear in the Proc. of ICALP’05.

[14] R. De Nicola, D. Gorla, and R. Pugliese. On the expressive power of KLAIM-based
calculi. In Proc. of EXPRESS’04, ENTCS 128(2):117–130. Elsevier, 2004.

[15] R. De Nicola, D. Gorla, and R. Pugliese. Global computing in a dynamic network of
tuple spaces. In Proc. of COORDINATION’05, volume 3454 of LNCS, pages 157–172.
Springer, 2005.

[16] R. De Nicola, D. Gorla, and R. Pugliese. Pattern matching over a dynamic network of
tuple spaces. In Proc. of FMOODS’05, volume 3535 of LNCS, pages 1–14. Springer.

[17] D. Gelernter. Generative communication in linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

[18] D. Gorla. Semantic Approaches to Global Computing Systems. PhD Thesis, Dip.
Sistemi ed Informatica, Univ. di Firenze, 2005.

[19] D. Gorla and R. Pugliese. Resource access and mobility control with dynamic
privileges acquisition. In Proc. of ICALP’03, volume 2719 of LNCS, pages 119–132.
Springer, 2003.

[20] M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents.
Information and Computation, 173:82–120, 2002.

[21] K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
Proc. of ECOOP’91, volume 512 of LNCS, pages 133–147. Springer, 1991.

[22] R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Specification,
volume 94 of Series F. NATO ASI, Springer, 1993.

[23] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Information and Computation, 100:1–77, Sept. 1992.

[24] U. Nestmann. What is a ‘good’ encoding of guarded choice? Information and
Computation, 156:287–319, 2000.

[25] U. Nestmann and B. C. Pierce. Decoding choice encodings. Information and
Computation, 163:1–59, 2000.

54

[26] C. Palamidessi. Comparing the expressive power of the synchronous and the
asynchronous π-calculi. Mathematical Structures in Computer Science, 13(5):685–
719, 2003.

[27] J. Parrow. An introduction to the pi-calculus. In Handbook of Process Algebra, pages
479–543. Elsevier, 2001.

[28] J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile agents.
In Proc. of POPL ’99, pages 93–104. ACM, 1999.

[29] D. Sangiorgi. Bisimulation in higher-order process calculi. Information and
Computation, 131:141–178, 1996.

[30] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001. To appear.

[31] N. Yoshida. Graph types for monadic mobile processes. In Proc. of FST–TCS’96,
volume 1180 of LNCS, pages 371–386. Springer, 1996.

55

