
���������	��
��������������� �������������� "!$#�%'&)(�*,+.-�#�/�!102-43
c©

��5�68789�:;72<43

Synchrony vs Asynchrony
in Communication Primitives

Daniele Gorla1

Dip. di Informatica, Univ. di Roma “La Sapienza”, Italy

Abstract

We study, from the expressiveness point of view, the impact of synchrony in the communication primitives that arise when
combining together some common and useful programming features like arity of data, communication medium and possibil-
ity of pattern matching. For some primitives, we show how their synchronous version can be encoded in their asynchronous
counterpart via a fully abstract encoding, thus proving that the two versions have the same expressive power. For the re-
maining primitives, we prove that no ‘reasonable’ encoding can exist, thus proving that synchrony adds expressiveness to
the language.

Keywords: Expressiveness, Encodings, Communication Primitives, Process Calculi.

1 Introduction

One distinguishing feature of languages for concurrent systems is the choice of the com-
munication primitives they use for inter-process exchange. These primitives can range
from very skeletal ones [15,7] to more sophisticated and powerful programming constructs
[12,17,3,8]. It is then natural to formally study and compare these primitives from the
expressive power perspective. As a consequence, results in this research line show the pe-
culiarities of every primitive and, thus, they can be exploited to choose the ‘right’ primitive
when designing new languages and formalisms.

In [13], we studied asynchronous communication primitives and the impact that some
very common and useful programming features (like arity of data, communication medium
and possibility of pattern-matching) have on their expressiveness. As a result, we came out
with:

• eight languages (that, for the sake of uniformity, were small variants of the π-calculus
[21]), whose communication primitives were obtained by combining the above men-
tioned features;

• and with a hierarchy of such languages, based on their relative expressive power.

1 Email: gorla@di.uniroma1.it

mailto:gorla@di.uniroma1.it

�����������

�������
	��

s→ a

����������
: s↔ a

������
	��
: s→ a

	��
�������

	��
���
	��

	���������

	�����
	��

s↔ a

Fig. 1. The Impact of Synchrony in Communication Primitives

In this paper, we extend the results presented in [13] to assess, from the expressiveness
point of view, the impact of synchrony on such primitives. Indeed, as we shall prove, the
claim “for many purposes, synchronous message passing can be regarded as a special case
of asynchronous message passing” [25] strongly relies on the accessory features that equip
the communication primitives. In particular, for each of the eight languages studied in [13],
we shall see whether their synchronous version has the same expressive power as their
asynchronous counterpart or not. In the first case, we can freely implement the primitives
asynchronously, since asynchrony usually poses fewer implementative problems; in the
second case, asynchronous implementations are less innocuous.

Our results are summarised in Figure 1. There,
�

and
	

denote monadic/polyadic data
exchanges;

and

�
denote channels/dataspaces;

	��
and

���
denote presence/absence

of pattern matching; s and a denote synchrony/asynchrony; finally, s → a means that
the synchronous version of the primitive is strictly more expressive than its asynchronous
counterpart, whereas s↔ a means that the two versions have the same expressive power.

To study the expressive power of a programming language, several techniques can be
exploited. A first, very rough, test is to determine whether a language is Turing complete
or not; however, since almost all ‘useful’ languages are Turing complete, this criterion is
too coarse to compare different languages. A second, more informative, approach to show
that a language is more expressive than another one is to find a problem that can be solved
in the former under some conditions that cannot be met by any solution in the latter.

Another interesting approach to compare two languages consists in encoding one in the
other (where an encoding is a function that translates terms of one language in terms of the
other language) and studying the properties of the encoding functions. This is the approach
we shall follow in this paper and it is very appealing for at least two reasons. First, it is a
natural way to show how the key features of a language can be rendered in the other one.
Second, it allows us to also carry out quantitative measures on language expressiveness:
we can consider aspects like the size and the complexity of the encoding of a term w.r.t. the
source term and, consequently, quantitatively assess the encoding proposed.

This paper is organised as follows. In Section 2, we start by comparing the impact
of synchrony in the π-calculus [17]; in this way, we gently introduce the reader to the
problem and sum up the main related achievements. In Section 3, we present the sixteen
concurrent languages arising from the combination of the four features studied (synchrony,
arity of data, communication medium and presence of pattern-matching). In Section 4,
we present some criteria that an encoding should satisfy to be a good means for language
comparison. Then, in Section 5, we prove the results depicted in Figure 1; more precisely,
we shall provide (i) a fully abstract encoding for all those languages whose synchronous
and asynchronous versions have the same expressive power, and (ii) a formal proof of the

impossibility for a ‘reasonable’ encoding for all those languages where synchrony improves
expressiveness. Finally, Section 6 concludes the paper by discussing the results in Figure 1.

2 Synchrony and Asynchrony in the π-calculus

The π-calculus was originally equipped with synchronous, monadic and channel-based
communication primitives [17]; a few years later, its asynchronous version appeared in
literature [14,2] and became a reference point for its simplicity of distributed implementa-
tion [11,22]. Some effort has been spent to prove that the two formalisms have the same
expressive power [14,2,23,5]; nowadays, it is widely believed that this is the case.

The idea underlying these encodings is that a synchronous exchange can be simulated
by a sequence of asynchronous exchanges. As an example, consider the encodings from
[14,2]:

Honda and Tokoro’s Boudol’s

[[a〈b〉.P]] a(y).(y〈b〉 | [[P]]) (νc)(a〈c〉 | c(y).(y〈b〉 | [[P]]))

[[a(x).P]] (νc)(a〈c〉 | c(x).[[P]]) a(z).(νd)(z〈d〉 | d(x).[[P]])

where a〈b〉.P denotes the output prefix (send b along a and, after reception, behave like
P), a(x).P denotes the input prefix (receive something from a and use it to replace x in the
continuation P), (νc)P denotes the restriction of c to P (c is accessible only from within P)
and P | Q denotes the parallel composition of processes P and Q.

These encodings are proved sound by exploiting some ad hoc techniques; e.g., Boudol
only proves that his encoding is adequate w.r.t. a Morris-like preorder. On the other hand,
[23,5] aim at stronger results for such an encoding: in particular, the first paper shows
that it enjoys full abstraction w.r.t. a typed version of barbed equivalence [18], whereas
the second paper proves full abstraction w.r.t. to may and fair testing [10,19] restricted
to the translation of synchronous contexts. In both cases, it is necessary to reduce the
observational power of the contexts since a context that does not abide by the protocol
put forward by the encoding can easily break full abstraction. 2 In the first case, the type
system characterises the respectful contexts, whereas in the second case the encoding itself
yields them. Of course, the first alternative entails a stronger full abstraction result, because
in general it accepts more contexts than the translated ones; however, it is usually much
more complex. Thus, for the sake of simplicity, in this paper we shall adopt the second
alternative; we strongly believe that all our full abstraction results could be also formulated
in terms of typed equivalences, instead of translated equivalences.

Recently [6], it has been proved that there is no encoding of the synchronous π-calculus
in its asynchronous version preserving must testing [10] and enjoying a few minimal prop-
erties. 3 This raises the problem of which equivalence should be adopted when defining the
full abstraction property to assess expressiveness of two languages. As testified by the case
of the π-calculus, such a choice is crucial, mainly when proving that a language L1 is more

2 For example, processes a〈b〉.a〈b〉 and a〈b〉 | a〈b〉 are equated both by barbed equivalence and by may/fair testing; nev-
ertheless, [[a〈b〉.a〈b〉]] and [[a〈b〉 | a〈b〉]] are not equivalent anymore. The problem is that [[a〈b〉 | a〈b〉]] can exhibit two
top-level outputs, whereas [[a〈b〉.a〈b〉]] only one; if the receiving context sends no acknowledgement back, the second output
of [[a〈b〉.a〈b〉]] (that is blocked by the encoding of the first prefix) is never unleashed. The same problem holds for Honda
and Tokoro’s encoding, but with processes a(x).a(y) and a(x) | a(y).
3 Another impossibility result is [20], but it relies on the interplay between output prefixes and non-deterministic choice.

expressive than another language L2: every separation result based on a fixed equivalence
could be criticised by saying that it actually compares not the expressive power of the lan-
guages, but the discriminating power of the equivalences. For this reason, to prove that L1

is at least as expressive as L2, we shall fix a set of minimal properties that every encoding
should satisfy and prove that no encoding of L2 in L1 satisfying such properties exists.

3 A Family of Process Languages

Syntax. We assume a countable set of names, N , ranged over by a, b, x, y, n,m, · · · . Nota-
tionally, when a name is used as a channel, we shall prefer letters a, b, c, · · · ; when a name
is used as an input variable, we shall prefer letters x, y, z, · · · ; to denote a generic name, we
shall use letters n,m, · · · . The (parametric) syntax of our languages is given in the upper
part of Figure 2. The different languages are obtained by plugging into this basic syntax a
proper definition for input prefixes (IN) and output processes (OutProc). As usual, 0 and
P|Q denote the terminated process and the parallel composition of two processes, resp.;
(νn)P restricts to P the visibility of n; finally, if n = m then P and !P are the standard
constructs for name matching and process replication. 4

In this paper, we study the synchronous/asynchronous versions of the primitives arising
by the possible combinations of three features: arity (monadic vs. polyadic data), commu-
nication medium (channels vs. shared dataspaces) and pattern-matching. As a result, we
have a family of sixteen languages, denoted as L β1

β2, β3, β4
, where

• β1 = � , if we have synchronous communications, and β1 = � , otherwise;
• β2 = � , if we have polyadic data, and β2 =

�
, otherwise;

• β3 = � , if we have channel-based communications, and β3 = � , otherwise;
• β4 = �

�
, if we have pattern-matching, and β4 = �

�
, otherwise.

Now, the full syntax of every language is obtained from the productions in the lower
part of Figure 2. There, ˜ denotes a (possibly empty) sequence of elements of kind .
Whenever useful, we shall write a tuple ˜ as the sequence of its elements, separated by a
comma; sometimes, we shall also consider tuples simply as sets. Templates of kind x are
called formal and can be replaced by every name upon withdrawal of a datum; templates
of kind pnq are called actual and impose that the datum withdrawn contains exactly name
n. As usual, a(· · · , x, · · ·).P and (νx)P bind x in P; the corresponding notions of free and
bound names of a process,

� � (P) and ��� (P), and of alpha-conversion, =α, are assumed.
We let

�
(P) denote

� � (P) ∪ ��� (P).
Notice that in L

, , � � the if-then construct is redundant because it can be implemented
via pattern matching; we kept it for the sake of uniformity with the other languages. Finally,
notice that L � , , can be seen as the sub-language of L � , , where every output prefix is
followed by a 0 continuation. Thus, the non-trivial contribution of this work is in giving a
converse encoding, or in proving that this cannot exist.

Operational semantics. The operational semantics of the languages is given by means of
a labelled transition system (LTS) describing the actions a process can perform to evolve.

Judgements take the form P
α
−−→ P′, meaning that P can become P′ upon exhibition of label

4 Notice that, for the sake of simplicity, we used here replication and a if-then construct instead of recursion and the more
powerful if-then-else used in [13]; this choice does not undermine all our results that still hold also with the other operators.

Basic Processes:

P,Q,R ::= 0
∣∣∣∣∣ OutProc

∣∣∣∣∣ IN.P
∣∣∣∣∣ (νn)P

∣∣∣∣∣ P|Q
∣∣∣∣∣ if n = m then P

∣∣∣∣∣ !P

L � , , : OutProc ::= OUT

L � , , : OutProc ::= OUT.P

L � � �
�
�
� : P,Q,R ::= . . . IN ::= (x) OUT ::= 〈b〉

L � � �
�
�
� : P,Q,R ::= . . . IN ::= (T) OUT ::= 〈b〉

L � � �
�
�
� : P,Q,R ::= . . . IN ::= a(x) OUT ::= a〈b〉

L � � �
�
�
� : P,Q,R ::= . . . IN ::= a(T) OUT ::= a〈b〉

L �
�
�
�
�
� : P,Q,R ::= . . . IN ::= (x̃) OUT ::= 〈̃b〉

L �
�
�
�
�
� : P,Q,R ::= . . . IN ::= (T̃) OUT ::= 〈̃b〉

L �
�
�
�
�
� : P,Q,R ::= . . . IN ::= a(x̃) OUT ::= a〈̃b〉

L � � � � � � : P,Q,R ::= . . . IN ::= a(T̃) OUT ::= a〈̃b〉

where T ::= x
∣∣∣∣∣ pnq (Template)

Fig. 2. Syntax of the 16 Languages

α. Labels take the form

α ::= τ
∣∣∣∣∣ a?̃b

∣∣∣∣∣ (ν̃c)a!̃b
∣∣∣∣∣ ?̃b

∣∣∣∣∣ (ν̃c)!̃b

Traditionally, τ denotes an internal computation; a?b̃ and (ν̃c)a!̃b denote the recep-
tion/sending of a sequence of names b̃ along channel a; when channels are not present,
?̃b and (ν̃c)!̃b denote the withdrawal/emission of b̃ from/in the shared dataspace. In (ν̃c)a!̃b
and (ν̃c)!̃b, some of the sent names, viz. c̃ (⊆ b̃), are restricted. Notationally, (ν̃c) !̃b
stands for either (ν̃c)a!̃b or (ν̃c)!̃b; similarly, ?̃b stands for either a?̃b or ?̃b. As usual,
��� ((ν̃c) !̃b) , c̃;

� � (α) and
�

(α) are defined accordingly.
The LTS provides some rules shared by all the languages; the different semantics are

obtained from the axioms for input/output actions. The LTS relies on π-calculus structural
equivalence, ≡, that rearranges a process to let it evolve according to the rules of the LTS
and that is defined by the following standard axioms [21]:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

!P ≡ P | !P if n = n then P ≡ P P ≡ P′ if P =α P′

(νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P P | (νn)Q ≡ (νn)(P |Q) if n<
� � (P)

The common rules of the LTS are reported below (since they are an easy adaptation of an
early-style LTS for the π-calculus, we do not comment on them and refer the interested

reader to [21]):

P
?̃b
−−→ P′ Q

!̃b
−−→ Q′

P | Q
τ
−→ P′ | Q′

P
a?̃b
−−−→ P′ Q

a!̃b
−−−→ Q′

P | Q
τ
−→ P′ | Q′

P
α
−−→ P′ n <

�
(α)

(νn)P
α
−−→ (νn)P′

P
(ν̃c) !̃b
−−−−−→ P′ n ∈ b̃ \ { , c̃}

(νn)P
(νn,̃c) !̃b
−−−−−−−→ P′

P
α
−−→ P′ ��� (α) ∩

�
� (Q) = ∅

P | Q
α
−−→ P′ | Q

P ≡ P1
α
−−→ P2 ≡ P′

P
α
−−→ P′

The rules for output actions in languages L �
, � , , L �

, � , , L �
, � , and L �

, � , are, respectively,

〈̃b〉
!̃b
−−→ 0 a〈̃b〉

a!̃b
−−−→ 0 〈̃b〉.P

!̃b
−−→ P a〈̃b〉.P

a!̃b
−−−→ P

On the other hand, to define the semantics for the input actions, we must specify when a
template matches a datum. Intuitively, this happens whenever both have the same length
and corresponding fields match (i.e., pnq matches n and x matches every name). This can
be formalised via a partial function, called pattern-matching and written

� ��� ��� , that also
returns a substitution σ; the latter will be applied to the process that performed the input
to replace formal templates with the corresponding names of the datum retrieved. These
intuitions are formalised by the following rules:

� ��� ��� (;) = ε
� ��� ��� (pnq; n) = ε

� ��� ��� (x; n) = {n/x}

� ��� ��� (T ; b) = σ1
� ��� ��� (T̃ ; b̃) = σ2

� ��� ��� (T, T̃ ; b, b̃) = σ1 ◦ σ2

where ‘ε’ denotes the empty substitution and ‘◦’ denotes substitution composition. Now,
the operational rules for input actions in languages L

, � , and L
, � , are

(T̃).P
?̃b
−−→ Pσ a(T̃).P

a?̃b
−−−→ Pσ

whenever
� ��� ��� (T̃ ; b̃) = σ.

Notation: A substitution σ is a finite partial mapping of names for names; Pσ denotes
the (capture avoiding) application of σ to P. As usual, we let =⇒ stand for the reflexive

and transitive closure of
τ
−→ ,

α
==⇒ stand for =⇒

α
−−→=⇒ and

τ
−→k denote a sequence of k

τ-steps. We shall write P
α
−−→ to mean that there exists a process P′ such that P

α
−−→ P′;

a similar notation is adopted for P =⇒ and P
α
==⇒ . Moreover, we let φ range over visible

actions (i.e. labels different from τ) and ρ to range over (possibly empty) sequences of
visible actions. Formally, ρ ::= ε | φ · ρ, where ‘ε’ denotes the empty sequence of

actions and ‘·’ represents concatenation; then, N
ε
==⇒ is defined as N =⇒ and N

φ·ρ
===⇒ is

defined as N
φ
==⇒

ρ
==⇒ .

We conclude this part with a proposition collecting together some properties of the
LTSs we have just defined, that will be useful in the sequel; the proof of these results easily
follows from the definition of the LTSs.

Proposition 3.1 The following facts hold:

(i) if P ∈ L
, , �
� and P

?̃b
−−−→ , then P

?̃c
−−−→ for every c̃ of the same length as b̃;

(ii) if P
τ
−→ P′ then P ≡ (ν̃c)(P1 | P2) and P′ ≡ (ν̃c)(P′1 | P

′
2), where either P1

?̃b
−−→ P′1 and

P2
!̃b
−−→ P′2, or P1

a?̃b
−−−→ P′1 and P2

a!̃b
−−−→ P′2;

(iii) if P ∈ L � , , and P
(ν̃c) !̃b
−−−−−→

α
−−→ P′, for c̃∩

�
(α) = ∅, then P

α
−−→

(ν̃c) !̃b
−−−−−→ P′; moreover,

if α = ?̃b, then P
τ
−→ (ν̃c)P′.

4 Quality of an Encoding

We now compare the synchronous and the asynchronous version of the communication
primitives just presented by trying to encode every synchronous language in its asyn-
chronous version. Formally, an encoding [[·]] is a function mapping terms of the source
language into terms of the target language. As already said, the relative expressive power
of our languages can be established by defining some criteria to evaluate the quality of the
encodings or to prove impossibility results.

Roughly speaking, the encoding must not change the semantics of a source term, i.e.
it must preserve the observable behaviour of the term without introducing new behaviours.
This means that the encoded term and the source one should be engageable in the same
kinds of interactions and that aspects like deadlock and divergence are either present in
both terms or in neither of them. We now discuss two possible ways of formalising this
requirement. The first one, called full abstraction, is usually exploited for encodability
results; the second one, called reasonableness, is usually exploited in the impossibility
results.

Full abstraction. When a language can be encoded in another one, we shall prove that the
encoding function enjoys full abstraction w.r.t. barbed equivalence restricted to translated
contexts. This is a satisfying result since (weak) barbed equivalence is often considered
to be the ‘touchstone’ semantic theory for several process languages. Barbed equivalence
is obtained by closing under name restriction and parallel composition a relation called
barbed bisimilarity, that equates two terms that offer the same observable behaviour along
all possible computations.

In our framework, a context C[·] is a process built up from a hole [·] (to be filled with
any process) by using parallel composition and restriction. Formally,

C[·] ::= [·]
∣∣∣∣∣ P | C[·]

∣∣∣∣∣ (νn)C[·]

Definition 4.1 [Barbs] 5

• P ↓OUT k holds true iff P
(ν̃c)!̃b
−−−−−→ and |̃b| = k; P ↓OUTa holds true iff P

(ν̃c)a!̃b
−−−−−−→ .

• P ↓INk holds true iff P
?̃b
−−→ and |̃b| = k; P ↓INa holds true iff P

a?̃b
−−−→ .

• Let o range over {OUT k,OUTa, INk, INa}; then, P ⇓o stands for ∃P′.P =⇒ P′ ↓o.

Definition 4.2 [Barbed Bisimilarity and Equivalence] A symmetric relation < between
processes is a barbed bisimulation if, for every (P,Q) ∈ <, it holds that

(i) P ↓o implies Q ⇓o, and
(ii) P

τ
−→ P′ implies Q =⇒ Q′, for some Q′ such that (P′,Q′) ∈ <.

Barbed bisimilarity,
•

�, is the largest barbed bisimulation. P and Q are barbed equivalent,
written P � Q, if and only if C[P]

•

� C[Q], for every context C[·].

As already said in Section 2, a good form of full abstraction for a given encoding
[[·]] : L1 → L2 is w.r.t. translated observers, i.e. observers that abide by the schema
imposed by the encoding function. Thus, we now restrict the equivalences introduced so far
to keep this choice into account: first, not all the barbs from Definition 4 can be observed by
a translated observer; second, we only need to consider translated contexts when defining
barbed equivalence. The following definition formalises these ideas; there, we say that an
action α performed by a L2-process can be consumed by the translation of a L1-process R

if [[R]]
ρ
==⇒

α′

−−→ , with α′ synchronisable with α (i.e., with α′ = ?̃b and α = (ν̃c) !̃b, or
vice versa) and ��� (ρ) ∩

�
(α) = ∅.

Definition 4.3 [Translated Barbed Bisimilarity and Equivalence] Fix an encoding [[·]] :
L1 → L2.

• Let P be a L2-process; P ↓tr
o holds true iff P ↓o with an action that can be consumed by

the translation of some L1-process; P ⇓tr
o is defined accordingly.

• A symmetric relation < between L2-processes is a translated barbed bisimulation if,
for every (P,Q) ∈ <, it holds that

(i) P ↓tr
o implies Q ⇓tr

o , and

(ii) P
τ
−→ P′ implies Q =⇒ Q′, for some Q′ such that (P′,Q′) ∈ <.

Translated barbed bisimilarity,
•

�
tr, is the largest translated barbed bisimulation.

• P and Q are translated barbed equivalent, written P� trQ, if and only if C[P]
•

�
trC[Q],

for every context C[·] resulting from the translation of a L1-context via [[·]] extended
with [[[·]]] , [·].

Reasonable Encoding. To prove that two languages have different expressive power, we
shall leave full abstraction out (since it requires to fix an equivalence relation): instead, we
shall collect together some ‘reasonable’ requirements and prove that no encoding function
satisfying them exists. The main requirement is faithfulness: the encoding must preserve
and reflect the barbs (i.e., the encoding should maintain all the original barbs without intro-
ducing new ones); moreover, it should also preserve and reflect divergence. However, these

5 In order to obtain meaningful equivalences, barbs in L M,D, should be defined by also specifying the argument of the
action. However, since we shall not give full abstraction results for such languages, we ignore this aspect. By the way, notice
that for languages L P,D, the arguments of the action are not strictly necessary, since the barbed equivalence arising from this
different kind of barbs would coincide with � defined here.

two requirements alone are not enough to control deadlock. Thus, we shall also require
that the computations of a process correspond to the computations of its encoding, and
vice versa; this property is usually known as operational correspondence. Furthermore,
a good encoding cannot depend on the particular names involved in the source process,
since we are dealing with a family of name-passing languages; we call this property name
invariance. Finally, the encoding should not decrease the degree of parallelism in favour
of centralised entities that control the behaviour of the encoded term; we express this last
property as homomorphism w.r.t. ‘|’.

Definition 4.4 [Reasonable Encoding] An encoding [[·]] is reasonable if it enjoys the fol-
lowing properties:

(i) (homomorphism w.r.t. ‘|’): [[P1|P2]] , [[P1]] | [[P2]].

(ii) (name invariance): [[Pσ]] , [[P]]σ, for every permutation of source language
names σ.

(iii) (faithfulness): P ⇓o iff [[P]] ⇓o′ ; P diverges iff [[P]] diverges.

(iv) (operational correspondence):
(a) if P =⇒ P′ then [[P]] =⇒ [[P′]];
(b) if [[P]] =⇒ Q then there exists a P′ such that P =⇒ P′ and Q =⇒ [[P′]].

Evaluation criteria. To sum up, for our encodability results we aim at proving that the
encoding function does not introduce divergence and that it enjoys full abstraction w.r.t.
translated barbed equivalence; on the other hand, we shall establish our impossibility re-
sults by proving that no reasonable encoding exists. Usually, the latter proofs are by con-
tradiction: we assume that a reasonable encoding exists and show that it cannot be reason-
able. This can require a lot of work. However, in this paper, we shall exploit the simple
proof-technique developed in [13]: exhibit a process that cannot reduce but whose encod-
ing reduces. This fact, together with operational correspondence, implies that the encoding
introduces divergence.

Proposition 4.5 Let P be a process such that P
τ
−→/ but [[P]]

τ
−→ ; then, [[·]] is not reason-

able.

5 The Impact of Synchrony in Communication Primitives

In this section, we first consider those languages in which synchrony does not play a cru-
cial rôle, i.e. those primitives whose synchronous and asynchronous versions have the
same expressive power. We then analyse those primitives in which the presence of syn-
chrony matters, i.e. those primitives whose asynchronous version is less expressive than
the synchronous one.

L �� � � � � � and L � � � � � � � have the same expressive power. Easily, Boudol’s encoding

[2] can be used to prove that L �� � � � � � is encodable in L � � � � � � � with an encoding function
that does not introduce divergence (trivially) and that enjoys full abstraction w.r.t. translated
barbed equivalence (see [23]).

L �� � � � � � and L � � � � � � � have the same expressive power. To prove that L �� � � � � � can be

reasonably encoded in L � �
�
�
�
�
� , it suffices to impose that the first name of every datum is

a restricted channel used to unleash the continuation of the output prefix; conversely, every
template starts with a new variable over which an acknowledgement is sent upon reception
of the datum. This discipline is rendered by the following encoding:

[[a〈̃b〉.P]] , (νc)(a〈c, b̃〉 | c().[[P]]) for c fresh

[[a(T̃).P]] , a(x, T̃).(x〈〉 | [[P]]) for x fresh

The encoding just presented is satisfying because it does not introduce divergence and
enjoys full abstraction, as proved in the following theorem.

Theorem 5.1 The encoding [[·]] : L ��
�
�
�
�
� −→ L � �

�
�
�
�
� does not introduce divergence;

moreover, P � Q if and only if [[P]]� tr[[Q]].

Proof. See Appendix A. �

L ��
�
�
�
�
� and L � �

�
�
�
�
� have the same expressive power. This result is an easy corollary

of the encodability of L �� � � � � � in L � � � � � � � : it suffices to restrict both the domain and the

range of the encoding function to the sub-calculi of L �� � � � � � and L � � � � � � � with templates
made up only by formal fields.

L �� � � � � � and L � � � � � � � have the same expressive power. To prove that L �� � � � � � can be

encoded in L � � � � � � � , consider the following translation:

[[〈b1, . . . , bk〉.P]] , (νc)(〈c, c, b1, . . . , bk〉 | (pcq).[[P]]) for c fresh

[[(T1, . . . ,Tk).P]] , (x, y,T1, . . . ,Tk).(〈x〉 | [[P]]) for x and y fresh

Intuitively, data of length one in a translated term are ‘auxiliary’ messages used as acknowl-
edgements (ack, for short), to activate the continuation of an output action. The translation
of output prefixes guarantees that ‘actual’ data in the source term are translated to data
whose length is at least two; this clear distinction ensures us that no interference between
an ‘actual’ data exchange and an ‘auxiliary’ ack exchange can ever happen. Moreover, the
fact that acks rely on restricted names rules out interferences between different acks.

Theorem 5.2 The encoding [[·]] : L �� � � � � � −→ L � � � � � � � does not introduce divergence;
moreover, P � Q if and only if [[P]]� tr[[Q]].

Proof. The proof is similar to the one for Theorem 5.1; all details are in Appendix A. �

L �� � � � � � and L � � � � � � � have the same expressive power. Let us define the following

notation: 〈
k
. . .〉 denotes 〈b1, . . . , bk〉, where the bi’s are any names; similarly, (

k
. . .) denotes

(x1, . . . , xk), where the xi’s are pairwise and distinct names. Now, consider the following

encoding of L ��
�
�
�
�
� in L � �

�
�
�
�
� :

[[〈b1, . . . , bk〉.P]] , 〈
4k+1
. . .〉 | (

4k+2
. . .).(〈b1, b1, b1, b1, · · · , bk, bk, bk, bk〉 | (

4k+3
. . .).[[P]])

[[(x1, . . . , xk).P]] , (
4k+1
. . .).(〈

4k+2
. . .〉 | (x1, y1,w1, z1, · · · , xk, yk,wk, zk).(〈

4k+3
. . .〉 | [[P]]))

for y1,w1, z1, . . . , yk,wk, zk fresh and pairwise distinct names and with the input variables in
(

4k+1
. . .), (

4k+2
. . .) and (

4k+3
. . .) fresh for the continuation process. Intuitively, data of arity 4k within

translated terms correspond to actual source data; data of arity 4k + 1, 4k + 2 and 4k + 3
are, instead, only used for synchronisation purposes. In particular, an exchange of arity
4k + 1 (that, from now on will be called preliminary) intuitively means “a datum of arity k
is available”; an exchange of arity 4k+2 (that, from now on will be called initial) intuitively
means “a datum of arity k is going to be consumed”; finally, an exchange of arity 4k + 3
(that, from now on will be called final) intuitively means “a datum of arity k has been
consumed”. Consumption of a k-ary source level datum happens within a 4k-ary exchange
(that, from now on will be called consumptive).

Of course, it is easy to have interferences between the auxiliary data introduced by the
encoding of different processes, but this does not create any problem since such data only
depend on the length of the translated actions. Consider, e.g., the encoding of the L �� � � � � � -
process (x).P | 〈b〉 | (y).Q | 〈c〉 and the reduction that replaces x with b in P and y with c in
Q. It is immaterial which of the two 5-ary ‘preliminary’ data (either the one from [[〈b〉]]
or the one from [[〈c〉]]) is accessed by [[(x).P]], since these are top-level asynchronous
outputs and the names appearing in it are irrelevant. A similar argument holds also for the
‘initial’ 6-ary and the ‘final’ 7-ary data.

We believe that also this encoding enjoys full abstraction w.r.t. translated barbed equiv-
alence; however, because of the interferences just discussed, we have still not been able to
prove this result, though no counter-example against this conjecture has emerged yet. We
leave this aspect for future work; for the moment, we prove the (not trivial) reasonable-
ness of this encoding and argue that L �� � � � � � and L � � � � � � � have a comparable expressive
power.

Lemma 5.3 If [[P]]
τ
−→np+ni+nc+n f Q, where np/ni/nc/n f are the number of prelimi-

nary/initial/consumptive/final steps in the reduction from [[P]] into Q, then n p ≥ ni ≥ nc ≥

n f .

Proof. Trivial, by construction of the encoding. �

Lemma 5.4 Let [[P]]
τ
−→np+ni+nc+n f Q, where np/ni/nc/n f are the number of prelimi-

nary/initial/consumptive/final steps in the reduction from [[P]] into Q. Then,

Q ≡ (ν̃n)(
∏np−ni

h=1 ((
4kh+2
. . .).(〈

4kh. . .〉 | (
4kh+3
. . .).[[P1

h]]) | 〈
4kh+2
. . . 〉 | (

4kh. . .).(〈
4kh+3
. . . 〉 | [[Q1

h]])) |
∏ni−nc

j=1 (〈
4k j
. . .〉 | (

4k j+3
. . .).[[P2

j]] | (
4k j
. . .).(〈

4k j+3
. . . 〉 | [[Q2

j]])) |
∏nc−n f

m=1 ((
4km+3
. . .).[[P3

m]] | 〈
4km+3
. . . 〉) | [[R]])

where
∏k

i=1 Pi denotes P1 | . . . | Pk, if k > 0, and denotes 0, otherwise.

Proof. Let n = np + ni + nc + n f ; the proof is by induction on n. The base case (n = 0) is

trivial. For the inductive case, let [[P]]
τ
−→n Q′

τ
−→ Q; by induction,

Q′ ≡ (ν̃n)(
∏np−ni

h=1 ((
4kh+2
. . .).(〈

4kh. . .〉 | (
4kh+3
. . .).[[P1

h]]) | 〈
4kh+2
. . . 〉 | (

4kh. . .).(〈
4kh+3
. . . 〉 | [[Q1

h]])) |
∏ni−nc

j=1 (〈
4k j
. . .〉 | (

4k j+3
. . .).[[P2

j]] | (
4k j
. . .).(〈

4k j+3
. . . 〉 | [[Q2

j]])) |
∏nc−n f

m=1 ((
4km+3
. . .).[[P3

m]] | 〈
4km+3
. . . 〉) | [[R]])

where np + ni + nc + n f = n. We consider two sub-cases, according to whether the step

Q′
τ
−→ Q is preliminary or not.

• if Q′
τ
−→ Q is preliminary, then it must be (by construction) that [[R]]

τ
−→ R′, where

R′ ≡ (ν̃c)((
4k+2
. . .).(〈b1, b1, b1, b1, . . . , bk, bk, bk, bk〉 | (

4k+3
. . .).[[R1]])

| 〈
4k+2
. . .〉 | (x1, y1,w1, z1, . . . , xk, yk,wk, zk).(〈

4k+3
. . .〉 | [[R2]]) | [[R3]])

Then,

Q ≡ (ν̃n, c̃)(
∏np+1−ni

h=1 ((
4kh+2
. . .).(〈

4kh. . .〉 | (
4kh+3
. . .).[[P1

h]]) | 〈
4kh+2
. . . 〉 | (

4kh. . .).(〈
4kh+3
. . . 〉 | [[Q1

h]])) |
∏ni−nc

j=1 (〈
4k j
. . .〉 | (

4k j+3
. . .).[[P2

j]] | (
4k j
. . .).(〈

4k j+3
. . . 〉 | [[Q2

j]])) |
∏nc−n f

m=1 ((
4km+3
. . .).[[P3

m]] | 〈
4km+3
. . . 〉) | [[R3]])

by letting knp+1−ni = k, 〈
4knp+1−ni. . . 〉 = 〈b1, b1, b1, b1, . . . , bk, bk, bk, bk〉, P1

np+1−ni
= R1,

(
4knp+1−ni. . .) = (x1, y1,w1, z1, . . . , xk, yk,wk, zk) and Q1

np+1−ni
= R2.

• Otherwise, it must be that either
∏np−ni

h=1 · · · , or
∏ni−nc

j=1 · · · , or
∏nc−n f

m=1 · · · perform the τ-

step, according to whether Q′
τ
−→ Q is initial, consumptive or final. We then work like

in the previous case. �

Lemma 5.5 If [[P]]
τ
−→n Q, then P

τ
−→np P′ and Q

τ
−→4np−n [[P′]], where np is the

number of preliminary steps in the reduction from [[P]] into Q.

Proof. By induction on n; the base case is trivial. For the inductive case, let

[[P]]
τ
−→n Q′

τ
−→ Q with

Q′ ≡ (ν̃n)(
∏np−ni

h=1 ((
4kh+2
. . .).(〈

4kh. . .〉 | (
4kh+3
. . .).[[P1

h]]) | 〈
4kh+2
. . . 〉 | (

4kh. . .).(〈
4kh+3
. . . 〉 | [[Q1

h]])) |
∏ni−nc

j=1 (〈
4k j
. . .〉 | (

4k j+3
. . .).[[P2

j]] | (
4k j
. . .).(〈

4k j+3
. . . 〉 | [[Q2

j]])) |
∏nc−n f

m=1 ((
4km+3
. . .).[[P3

m]] | 〈
4km+3
. . . 〉) | [[R]])

by Lemma 5.4. It is then easy to see that Q′
τ
−→4np−n [[P′]], where

[[P′]] ≡ (ν̃n)(
∏np−ni

h=1 ([[P1
h]] | [[Q1

hσ
1
h]]) |

∏ni−nc
j=1 ([[P2

j]] | [[Q2
jσ

2
j]]) |

∏nc−n f

m=1 [[P3
m]] | [[R]])

for some substitutions σ1
h’s and σ2

j ’s. If Q′
τ
−→ Q is not preliminary, then it cannot have

been performed by [[R]]; thus, Q
τ
−→4np−n−1 [[P′]], i.e. Q

τ
−→4np−(n+1) [[P′]]. Otherwise,

R ≡ (ν̃c)(〈̃b〉.R1 | (x̃).R2 | R3)

for |̃b| = |x̃| = k. Now, consider

P′′ , (ν̃n, c̃)(
∏np−ni

h=1 (P1
h | Q1

hσ
1
h) |

∏ni−nc
j=1 (P2

j | Q2
jσ

2
j) |

∏nc−n f

m=1 P3
m | R1 | R2{̃b/̃x} | R3)

Trivially, P′
τ
−→ P′′ and Q

τ
−→4np−n+3 [[P′′]], i.e. Q

τ
−→4(np+1)−(n+1) [[P′′]]. �

Proposition 5.6 The encoding [[·]] : L ��
�
�
�
�
� −→ L � �

�
�
�
�
� is reasonable.

Proof. By Lemma 5.5, operational correspondence is easy to prove; divergence freedom is
a corollary of Lemmata 5.3 and 5.5; the remaining requirements are trivial. �

L �� � �
�
�
� is more expressive than L � � � �

�
�
� .

Theorem 5.7 There exists no reasonable encoding of L �� � � � � � in L � � � � � � � .

Proof. Consider the processes P , 〈b〉.(x).if x = b thenΩ and Q , (x).〈a〉.if x = a thenΩ,
where Ω denotes a divergent process. Clearly, P|Q does not diverge while, as we shall now
prove, its encoding diverges. First, observe that in the evolution of [[P|Q]] to [[0]] (that
must happen, because of operational correspondence), both [[P]] and [[Q]] must perform
an input and an output action: [[P]] must send b and [[Q]] must send a. Then, consider
the sequence of actions performed by [[P]], say ρ, and its first input label, say ?n; thus,
ρ = ρ1·?n · ρ2. Notice that, by barb preservation, ρ1 cannot be empty and must contain

at least an output label, say (νm̃)!m; by Proposition 3.1(3,1), [[P]]
?m
−−−→ that, again by

Proposition 3.1(3), implies that [[P]]
τ
−→ . By Proposition 4.5, [[·]] cannot be reasonable.�

L �� � � � � � is more expressive than L � � � � � � � . The impossibility proof relies on a prelimi-
nary Lemma.

Lemma 5.8 Let [[·]] be a reasonable encoding of L �� � � � � � in L � � � � � � � . Then,

1. [[〈b〉.P]]
!b
−−→ and [[(pbq)]]

?b
−−→ , with the input action relying on an actual input prefix;

2. [[〈b〉.P]]
!k
−−→ implies that k = b.

Proof. Easy derivable from the more complex proof of Lemma 5.10 later on. �

Theorem 5.9 There exists no reasonable encoding of L �� � � � � � in L � � � � � � � .

Proof. Consider [[〈b〉.Ω | (pbq)]]; by operational correspondence, such a process must
evolve in [[Ω]] that diverges, because of faithfulness. Since [[〈b〉.Ω]] cannot perform a
τ-step, [[〈b〉.Ω]] must exhibit at least an input label in every trace. Moreover, by using
Proposition 3.1(2) and Lemma 5.8(1), we can say that

[[(pbq)]]
?b
−−→

ρ1
==⇒

!m
−−−→

ρ2
==⇒ P1 and [[〈b〉.Ω]]

!b
−−→

ρ3
==⇒

?m
−−−→

ρ4
==⇒ P2

where ρ1 and ρ2 are synchronisable with ρ3 and ρ4, resp., (ν̃n)(P1 | P2) is structurally
equivalent to [[Ω]], where ñ = ��� (ρ1, ρ2, ρ3, ρ4), and ?m is the first input in the trace from
[[〈b〉.Ω]]. Moreover, m , b and the input ?m relies on an actual template (otherwise, by

Proposition 3.1(1) and (3), [[〈b〉.Ω]]
τ
−→ and [[·]] would not be reasonable). Finally, by

construction, ρ3 is only made up by output labels that, by Lemma 5.8(2), are either of the
form !b or (νd)!d.

Now, choose a < {b,m} and consider the process

P , 〈a〉 | (paq) | 〈b〉.Ω | !〈a〉 | !〈b〉

Clearly, P does not diverge while, as we shall now prove, [[P]] diverges. Let ρ′i be ρi with
a and b swapped, for i = 1, . . . , 4. Now, synchronise

• ?a · ρ′1 of [[(paq)]] with !a · ρ′3 of [[〈a〉]];

• !m of the prosecution of [[(paq)]] with ?m of [[〈b〉.Ω]];

• ρ′2 of the prosecution of [[(paq)]] with ρ4 of the prosecution of [[〈b〉.Ω]]; this can be freely
done except when the action involves a or b. In such cases, synchronise
· every ?a in ρ′2 with one of the !a from the encoding of !〈a〉, and
· every ?b in ρ4 with one of the !b from the encoding of !〈b〉.

This yields a process containing the component

P′ , P′1 | P2 | [[!〈a〉]] | [[!〈b〉]]

where P′1 is P1 with a and b swapped. Since (ν̃n)(P1 | P2) diverges, we also have that P′

diverges: every time that P′1 or P2 need a ?a or a ?b to evolve, we can synchronise such
actions with a corresponding !a or !b from the encoding of the replicated processes. �

L �� � � � � � is more expressive than L � � � � � � � . Intuitively, communications in L �� � � � � �
atomically verify the channel and the sent value (if pattern matching is involved) and si-
multaneously activate the continuation of the sending process. Thus, L � � � � � � � should
provide the possibility of atomically verifying the channel and the sent value as well, but
this excludes any information for synchronisation purposes.

The impossibility proof relies on a preliminary Lemma, that generalises Lemma 5.8.

Lemma 5.10 Let a, b and c be pairwise distinct names and [[·]] be a reasonable encoding
of L �� � � � � � in L � � � � � � � . Then,

1. [[a〈b〉.a〈c〉]]
a!b
−−−→ and [[a(pbq).a(pcq)]]

a?b
−−−→ , with the input action relying on an ac-

tual input prefix;

2. [[a〈b〉.a〈c〉]]
h!k
−−−→ implies that h = a and k = b;

3. [[a(x)]]
a?b
−−−→ , with the input action relying on a formal input prefix;

4. [[a〈b〉.a〈c〉]]
(νk)h!k
−−−−−−→ implies that h = a;

or the same claims with a and b swapped in every label.

Proof.

1. By barb preservation, [[a〈b〉.a〈c〉]]
(νm̃)n!m
−−−−−−−→ and [[a(pbq).a(pcq)]]

n?m
−−−−→ . We prove

that m̃ = ∅ and that {n,m} = {a, b}; let us reason by contradiction. If m̃ , ∅,

then the input label n?m must come from a formal input action in [[a(pbq).a(pcq)]];

thus, [[a(pbq).a(pcq)]]
n?m′
−−−−→ , for every name m′, and this would imply that

[[c〈b〉.c〈a〉]] | [[a(pbq).a(pcq)]]
τ
−→ , if n , a, and [[a〈c〉.a〈b〉]] | [[a(pbq).a(pcq)]]

τ
−→ ,

otherwise. Now, assume that {n,m} , {a, b}; we have three possible cases:
(a) {n,m} ∩ {a, b} = ∅: pick up any d < {a, b, c, n,m} and the permutation swapping a

and d; then, [[d〈b〉.d〈c〉]]
n!m
−−−→ and so [[d〈b〉.d〈c〉]] | [[a(pbq).a(pcq)]]

τ
−→ .

(b) {n,m} ∩ {a, b} = {n}: if n = b we work like in case (a); otherwise, pick up
d < {a, b, c, n,m}, consider the permutation swapping b and d and conclude that

[[a〈d〉.a〈c〉]] | [[a(pbq).a(pcq)]]
τ
−→ .

(c) {n,m} ∩ {a, b} = {m}: similar to case (b).
This proves that [[a〈b〉.a〈c〉]] must exhibit either label a!b or label b!a and, conse-
quently, that [[a(pbq).a(pcq)]] must exhibit either label a?b or label b?a.

2. By point 1 of this Lemma, we have that [[a〈b〉.a〈c〉]]
a!b
−−−→ and [[a(pbq)]]

a?b
−−−→ (the

other case is similar). By name invariance, we have that [[h(pkq)]]
h?k
−−−→ ; this fact,

together with the hypothesis [[a〈b〉.a〈c〉]]
h!k
−−−→ , would be in contradiction with rea-

sonableness of [[·]] whenever h , a or k , b.

3. Consider now the process a〈b〉.a〈c〉 | a(x); like before, [[a〈b〉.a〈c〉]]
(ν̃k)h!k
−−−−−−→ and

[[a(x)]]
h?k
−−−→ but, as we shall now prove, the input label h?k must come from a formal

input action in [[a(x)]]. Indeed, if k̃ , ∅, the input must be formal. If k̃ = ∅, because of
point 2 of this Proposition, it must be that h = a and k = b, or vice versa; in both cases,
the input cannot rely on an actual template, otherwise [[a(x)]] would have an infinite

number of parallel components (one for every name n, since a〈n〉.a〈c〉 | a(x)
τ
−→).

4. By contradiction, let h , a; then, we would have that [[a(x)]]
h?k
−−−→ (since the input

is formal, see point 3 of this Proposition) and so [[d〈b〉.d〈c〉]] | [[a(x)]]
τ
−→ , for any

d < {a, b, c, h, k}. �

Theorem 5.11 There exists no reasonable encoding of L �� � � � � � in L � � � � � � � .

Proof. From Lemma 5.10(1,2,4), we know that the process [[a〈b〉.a〈c〉]] (with a, b and c
pairwise distinct) must exhibit the label a!b and, possibly, some bound outputs over a (the
case for a and b swapped is similar). Moreover, by a reasoning similar to the proof of
Theorem 5.7, we have at least a trace of [[a〈b〉.a〈c〉]] with at least an input action; let n?m
be the first of such input actions. If n = a and m = b, then, by Proposition 3.1(3), we would

have that [[a〈b〉.a〈c〉]]
τ
−→ . Then, it must be that n , a or m , b; if we now prove that no

bound output can be produced from [[a〈b〉.a〈c〉]], then [[a〈b〉.a〈c〉]] | [[n〈m〉.n〈b〉]]
τ
−→ ,

since [[n〈m〉.n〈b〉]]
n!m
−−−→ .

Let us consider the process [[a〈b〉.a〈c〉 | a(x)]] and assume, for the sake of simplic-
ity, that only one a!b and one bound output action can be produced before n?m, i.e.

[[a〈b〉.a〈c〉]]
a!b
−−−→ P1

(νk)a!k
−−−−−−→ P2

n?m
−−−−→ P3 and [[a(x)]]

a?b
−−−→ Q1

a?k
−−−→ Q2

(νm̃)n!m
−−−−−−−→ Q3, for

(νk, m̃)(P3 | Q3) =⇒ [[a〈c〉]]. Notice that both the a?b and the a?k labels must have been
originated from formal input actions: the first one because of Lemma 5.10(3), the second
one because k was restricted in P1. Now, consider the process [[a〈b〉.a〈c〉 | a(x) | a(x)]] and

the computation [[a〈b〉.a〈c〉 | a(x) | a(x)]]
τ
−→ P1 | Q1 | [[a(x)]]

τ
−→ (νk)(P2 | Q1 | Q1{k/b}).

Clearly, Q1
a?
−−−→ and Q1{k/b}

a?
−−−→ , whereas P2

a!
−−−→/ . Then, by Definition 4.4(4).b, it must

be that either Q1{k/b} =⇒ Q′
a!k
−−−→ Q′′ =⇒ [[a(x)]] or Q1 =⇒ Q′

a!b
−−−→ Q′′ =⇒ [[a(x)]]; let us

consider the second case, since the first one is similar. It is easy to prove that Q′ ≡ a〈b〉 |Q′′;

so, Q1 =⇒ a〈b〉 | [[a(x)]]
τ
−→ Q1. Hence, by assuming that [[a〈b〉.a〈c〉]] exhibits one bound

output we have proved that [[a〈b〉.a〈c〉 | a(x) | a(x)]] diverges, whereas a〈b〉.a〈c〉 | a(x) | a(x)
does not; thus, [[·]] is not reasonable. �

6 Concluding Assessment

We have studied the impact of synchrony in the eight communication primitives that arise
when combining three common and useful programming features: arity of data, commu-
nication medium and presence of pattern matching. Our results have been summarised in
Figure 1; we now briefly discuss them.

It is evident that polyadicity is the only feature that alone ensures fully abstract encod-
ings of synchrony in asynchrony: this is related to the possibility of equipping polyadic
data exchanges with auxiliary information (either a restricted channel that will be exploited
for acknowledgement purposes, or the length of the data) used to synchronise the sending
and the receiving process.

For monadic and channel-based communications, we have that absence of pattern
matching makes synchrony encodable asynchronously, whereas presence of pattern match-
ing rules out any such (reasonable) encoding. The problem is that pattern matching intro-
duces the possibility of atomically matching the name transmitted in the communication;
this leaves no space for any auxiliary synchronisation information.

Finally, monadic and dataspace-based communications are too weak to ensure any rea-
sonable encoding: the problem is that there is no way to associate a datum with the process
that emitted it. The latter fact entails that those languages that exploit such primitives (e.g.,
Ambient [7] or CCS [15]) cannot freely interchange their synchronous and asynchronous
versions, though the latter ones are still Turing powerful [7,4].

Acknowledgements. We would like to thank the EXPRESS’06 reviewers for their positive
attitude and for several fruitful comments that improved the presentation of the work.

A Omitted Proofs

To prove full abstraction results for the encodings of L �� � � � � � in L � � � � � � � and of L �� � � � � �

in L � � � � � � � , we rely on a well-know up-to proof-technique for weak (barbed) bisimulation
[24], i.e. the up-to expansion technique. Intuitively, an expansion relates two weakly barbed
equivalent processes by taking into account the number of their τ-steps; roughly speaking,
if P % Q, then P � Q but P ‘has more’ τ-steps than Q.

However, we are interested in proving relations closed only under translated contexts
for a fixed encoding function [[·]] : L1 → L2; moreover, we want to precisely count the
difference between the τ-steps of the processes related by an expansion. Thus, we shall
slightly adapt the definition of the expansion preorder [1], as follows. There, we use ' tr to

denote the strong version of translated barbed equivalence, i.e. the relation defined like in

Definition 4.2 with ↓ in place of ⇓ and
τ
−→ in place of =⇒ everywhere.

Definition A.1 [Translated one-step expansion] Given an encoding function [[·]] : L1 →

L2, % tr is the largest preorder between L2-processes such that, whenever P% trQ, it holds
that

• P
τ
−→ P′ implies that either Q

τ
−→ Q′ for some Q′ such that P′ % trQ′ or P′ ' trQ;

• P
α
−−→ P′, where α can be consumed by a translated process, implies that Q

α
−−→ Q′ for

some Q′ such that P′ % trQ′;

• Q
τ
−→ Q′ implies that either P

τ
−→ P′ for some P′ such that P′ % trQ′ or P

τ
−→

τ
−→ P′ for

some P′ such that P′ ' trQ′;

• Q
α
−−→ Q′, where α can be consumed by a translated process, implies that either P

α
−−→ P′

for some P′ such that P′ % trQ′ or P
τ
−→

α
−−→ P′ for some P′ such that P′ ' trQ′.

When notationally convenient, P% trQ could be also written as Q- trP. The first crucial
property of % tr is that it preserves and reflects divergence, as proved below.

Proposition A.2 If P% trQ then P diverges if and only if Q diverges.

Proof. The proof simply follows from Definition A.1, once observed that ' tr preserves
and reflects divergence. �

The second crucial property of % tr is that translated barbed bisimilarity and equivalence
up-to translated expansion (defined below) coincide with translated barbed bisimilarity and
equivalence, respectively.

Definition A.3 Fix an encoding [[·]] : L1 → L2.

• A symmetric relation < betweenL2-processes is a translated barbed bisimulation up-to
expansion if, for every (P,Q) ∈ <, it holds that

(i) P ↓tr
o implies Q ⇓tr

o , and

(ii) P
τ
−→ P′ implies Q =⇒ Q′, for some Q′ such that P′ % tr<- trQ′.

Translated barbed bisimilarity up-to expansion,
•

�
% tr

, is the largest translated barbed
bisimulation up-to expansion.

• P and Q are translated barbed equivalent up-to expansion, written P � %
tr

Q, if and only

if C[P]
•

�
% tr

C[Q], for every context C[·] resulting from the translation of a L1-context
via [[·]] extended with [[[·]]] , [·].

Proposition A.4 (i) If P
•

�
% tr

Q, then P
•

�
trQ;

(ii) if P �%
tr

Q, then P� trQ.

Proof. For the first claim, it suffices to prove that relation {(P,Q) : P% trP′
•

�
trQ′ - trQ}

is a translated barbed bisimulation; this follows straightforwardly from Definitions A.1
and 4.2. The second claim is an easy corollary of the first one. �

We are now ready to prove full abstraction and divergence freedom for the encodings

presented in the body of the paper. They rely on a slightly enhanced version of the opera-
tional correspondence property presented in Definition 4.4.

Lemma A.5 Consider the encoding [[·]] : L ��
�
�
�
�
� −→ L � �

�
�
�
�
� and a L ��

�
�
�
�
� -process

P. Then,

1. P
τ
−→ P′ implies that [[P]]

τ
=⇒ [[P′]];

2. [[P]]
τ
−→ Q implies that P

τ
−→ P′ for some P′ such that Q% tr[[P′]].

Proof. Both claims are proved by a simple induction over the inference of the
τ
−→ in their

premise. For the second claim, it is crucial to note that (νc)(c〈〉 | c().P) % tr P, whenever
c <

�
� (P). �

Theorem A.6 Consider the encoding [[·]] : L ��
�
�
�
�
� −→ L � �

�
�
�
�
� and a L ��

�
�
�
�
� -

process P. Then, P
•

�
tr[[P]].

Proof. We prove that {(P, [[P]])} is a translated barbed bisimulation up-to translated ex-

pansion. By definition of [[·]], it holds that P ↓o if and only if [[P]] ↓o. If P
τ
−→ P′ then,

by Proposition A.5(1), [[P]]
τ
=⇒ [[P′]]. Finally, if [[P]]

τ
−→ Q, then, by Proposition A.5(2),

P
τ
−→ P′ and Q% tr[[P′]]; because of Proposition A.4, this suffices to conclude. �

Corollary A.7 (completing Theorem 5.1) The encoding [[·]] : L �� � � � � � −→ L � � � � � � �
enjoys full abstraction w.r.t. translated barbed equivalence and does not introduce diver-
gence.

Proof. Full abstraction w.r.t. translated barbed equivalence easily holds by Theorem A.6
and transitivity of

•

�
tr. The fact that [[·]] does not introduce divergence is proved by build-

ing up a divergent computation for every P such that [[P]]
τ
−→ω. This is an easy task, thanks

to Lemma A.5(2): indeed, if [[P]] diverges, then [[P]]
τ
−→ Q, for some Q that diverges.

Then, we can find a P′ such that P
τ
−→ P′ and Q% tr[[P′]]; because of Proposition A.2, also

[[P′]] diverges. Thus, P reduces to a process whose encoding diverges; by iterating this
reasoning arbitrarily, we can conclude that also P diverges. �

We now prove similar results for the encoding of L �� � � � � � in L � � � � � � � ; however, since
the encoding changes the barbs of any translated process (remember that every source lan-
guage input/output of arity k is translated in a (k + 2)-ary input/output), an analogous of
Theorem A.6 cannot hold. This makes the proof of full abstraction slightly more complex;
on the contrary, divergence freedom is proved exactly in the same way (thus, we shall not
mention it anymore).

Lemma A.8 Consider the encoding [[·]] : L �� � � � � � −→ L � � � � � � � and a L �� � � � � � -process
P. Then,

1. P
τ
−→ P′ implies that [[P]]

τ
=⇒ [[P′]];

2. [[P]]
τ
−→ Q implies that P

τ
−→ P′ for some P′ such that Q% tr[[P′]].

Proof. Like the proof of Lemma A.5, but relying on the fact that (νc)(〈c〉 | (pcq).P) % tr P,

whenever c <
� � (P). Indeed, (νc)(〈c〉 | (pcq).P)

?c
−−→/ , whereas (νc)(〈c〉 | (pcq).P)

(νc)!c
−−−−−→ ;

however, there exists no translated process able to exhibit a trace ρ·?c without having c ∈
��� (ρ). Thus, (νc)(〈c〉 | (pcq).P) ↓tr

o cannot hold and this suffices to conclude. �

Theorem A.9 Consider the encoding [[·]] : L ��
�
�
�
�
� −→ L � �

�
�
�
�
� ; then, [[·]] is fully

abstract w.r.t. translated barbed bisimilarity, i.e. P
•

� Q if and only if [[P]]
•

�
tr [[Q]].

Proof. For the “only if” part, we prove that

< , {([[P]], [[Q]]) : P
•

� Q }

is a translated barbed bisimulation up-to % tr. Let [[P]] ↓tr
OUT k (the case for [[P]] ↓tr

INk is
similar); by definition of [[·]], k = h+2 and P ↓tr

OUT h ; then, Q ⇓tr
OUT h and hence [[Q]] ⇓tr

OUT k .

Let [[P]]
τ
−→ P1; then, by Lemma A.8(2), P

τ
−→ P′ and P1 %

tr [[P′]]. Then, Q =⇒ Q′ and
P′

•

� Q′; by Lemma A.8(1), this implies that [[Q]] =⇒ [[Q′]] and (P1, [[Q′]]) ∈ < up-to
% tr .

For the “if” part, we prove that

< , {(P,Q) : [[P]]
•

�
tr [[Q]] }

is a barbed bisimulation. Let P ↓tr
OUT k (the case for P ↓tr

INk is similar); then, [[P]] ↓tr
OUT k+2

and, hence, [[Q]] ⇓tr
OUT k+2 . Let [[Q]]

τ
−→n ↓tr

OUT k+2; by induction on n, we now prove that
Q ⇓tr

OUT k , as desired. The base case is trivial: [[Q]] ↓tr
OUT k+2 implies Q ↓tr

OUT k . For the

inductive case, let [[Q]]
τ
−→ R

τ
−→n ↓tr

OUT k+2; by Lemma A.8(2), Q
τ
−→ Q′ and R% tr [[Q′]].

By definition of % tr, [[Q′]]
τ
−→m ↓tr

OUT k+2 , for m ≤ n, that, by induction, allows us to
conclude.

Finally, let P
τ
−→ P′; by Lemma A.8(1), this implies that [[P]] =⇒ [[P′]] that in turn

entails [[Q]] =⇒ R and [[P′]]
•

�
trR. Let [[Q]]

τ
−→nR; by induction on n we now prove that

R% tr [[Q′]], for some Q′ such that Q =⇒ Q′. This suffices to conclude, since (P′,Q′) ∈ <
(thanks to % tr ⊆

•

�
tr and transitivity of

•

�
tr). The base case is trivial, since R = [[Q]]. For

the inductive case, let [[Q]]
τ
−→ R′

τ
−→nR; by Lemma A.8(2), Q

τ
−→ Q′′ and R′ % tr [[Q′′]].

By definition of % tr, [[Q′′]]
τ
−→mR, for m ≤ n, that, by induction and transitivity of % tr,

allows us to conclude. �

Corollary A.10 (completing Theorem 5.2) The encoding [[·]] : L �� � � � � � −→ L � � � � � � �
enjoys full abstraction w.r.t. translated barbed equivalence and does not introduce diver-
gence.

References

[1] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta Informatica, 29(8):737–760, 1992.

[2] G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA Sophia-Antipolis, May 1992.

[3] A. Brown, C. Laneve, and G. Meredith. πduce: a process calculus with native XML datatypes. In Proc. of 2nd Int.
Workshop on Services and Formal Methods, volume 3670 of LNCS. Springer, 2005.

[4] N. Busi, R. Gorrieri, and G. Zavattaro. A process algebraic view of Linda coordination primitives. Theoretical
Computer Science, 192(2):167–199, 1998.

[5] D. Cacciagrano and F. Corradini. On synchronous and asynchronous communication paradigms. In Proc. of ICTCS’01,
number 2202 in LNCS, pages 256–268. Springer, 2001.

[6] D. Cacciagrano, F. Corradini, and C. Palamidessi. Separation of synchronous and asynchronous communication via
testing. In Proc. of EXPRESS, ENTCS. Elsevier, 2005.

[7] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–213, 2000.

[8] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the π-calculus. In Proc. of LICS, pages 92–101.
IEEE Computer Society, 2005.

[9] R. De Nicola, D. Gorla, and R. Pugliese. On the expressive power of KLAIM-based calculi. Theoretical Computer
Science, 356(3):387–421, 2006.

[10] R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical Computer Science, 34:83–133, 1984.

[11] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-calculus. In Proceedings of POPL
’96, pages 372–385. ACM, Jan. 1996.

[12] D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming Languages and Systems,
7(1):80–112, 1985.

[13] D. Gorla. On the relative expressive power of asynchronous communication primitives. In Proc. of FoSSaCS’06,
volume 3921 of LNCS, pages 47–62. Springer, 2006.

[14] K. Honda and M. Tokoro. An object calculus for asynchronous communication. In Proc. of ECOOP ’91, volume 512
of LNCS, pages 133–147. Springer, 1991.

[15] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[16] R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Specification, volume 94 of Series F. NATO
ASI, Springer, 1993.

[17] R. Milner, J. Parrow, and J. Walker. A Calculus of Mobile Processes, I and II. Information and Computation, 100(1):1–
40, 41–77, 1992.

[18] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. of ICALP ’92, volume 623 of LNCS, pages 685–695.
Springer, 1992.

[19] V. Natarajan and R. Cleaveland. Divergence and fair testing. In Proc. of ICALP’95, volume 944 of LNCS, pages
648–659. Springer, 1995.

[20] C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous π-calculi. Mathematical
Structures in Computer Science, 13(5):685–719, 2003.

[21] J. Parrow. An introduction to the pi-calculus. In Handbook of Process Algebra, pages 479–543. Elsevier Science, 2001.

[22] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus. In Proof, Language and
Interaction: Essays in Honour of Robin Milner, Foundations of Computing. MIT Press, May 2000.

[23] P. Quaglia and D. Walker. On synchronous and asynchronous mobile processes. In Proceedings of FoSSaCS 2000,
volume 1784 of LNCS, pages 283–296. Springer, 2000.

[24] D. Sangiorgi and R. Milner. The problem of “weak bisimulation up to”. In Proc. of CONCUR, volume 630 of LNCS,
pages 32–46. Springer, 1992.

[25] G. Tel. Introduction to distributed algorithms. Cambridge University Press, 1995.

	Introduction
	Synchrony and Asynchrony in the -calculus
	A Family of Process Languages
	Quality of an Encoding
	The Impact of Synchrony in Communication Primitives
	Concluding Assessment
	Omitted Proofs
	References

