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Abstract

In this paper, we comparatively analyze some mainstream calculi for mobility: asynchronous π-calculus,
distributed π-calculus and Mobile/Boxed/Safe ambients. In particular, we focus on their relative expressive
power, i.e. we try to encode one in the other while respecting some reasonable properties. According to the
possibility or the impossibility for such results, we set up a hierarchy of these languages.
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1 Introduction

In the last ten years, one of the main research lines in the field of concurrency theory
has been the development of new formalisms, paradigms and environments that bet-
ter model distributed and mobile systems. Several terms have been coined to name
this fortunate research line (network-aware programming, WAN/global/ubiquitous
computing, ...) that has attracted many computer scientists around the world. In
this scenario, the term mobility has become the reference keyword to denote several
possible dynamic evolutions of systems, ranging from name mobility to mobile com-
putation and mobile computing. A lot of efforts have been spent to define more and
more sophisticated type theories, behavioural equivalences and implementations for
these calculi. What is still missing is, from the practical side, real-life applications
where the distinctive features of such formalisms are essential and, from the theoret-
ical side, an exhaustive comparative analysis of all these proposals, from a linguistic
perspective.

In this paper, we approach the last issue by comparing some mainstream calculi
for mobility: asynchronous π-calculus (written πa) [15,1], distributed π-calculus
(written Dπ) [14], and Mobile/Boxed/Safe ambients (written MA/BA/SA) [7,2,17].
Our results formally prove some claims informally appeared in the literature or
differently prove results already known. Moreover, for the sake of systematization,
we also consider and compare languages that, to the best of our knowledge, have
never been contrasted, neither informally.



To this aim, we compare languages via their relative expressive power, i.e. we
try to encode one language in another, while respecting some reasonable properties.
Of course, the definition of such properties is crucial for the meaningfulness of our
study: too liberal properties would lead to poorly informative results (most of the
encodings would be possible), whereas too stringent properties would be fruitless
(very few encodings would be possible).

In principle, a good encoding should satisfy at least two properties: composition-
ality (the encoding of a compound term must be expressed in terms of the encoding
of its components) and faithfulness (the encoding of a term must have exactly the
same functionalities as the original term). There are different ways to formalize
these notions; mainly for the second one, a number of different proposals have been
considered in the literature (e.g., sensitiveness to barbs/divergence/deadlock, op-
erational correspondence, full abstraction, ...). Here, we take the proposal in [13]
and consider only encodings that satisfy the following properties: compositionality,
name invariance (i.e., the encodings of two source processes that differ only in their
free names must only differ in the associated free names), operational correspondence
(i.e., computations of a source term must correspond to computations in the en-
coded term, and vice versa), divergence reflection (i.e., terminating processes must
be translated into terminating processes) and success sensitiveness (i.e., successful
terms – for some notion of success – must be translated into successful terms, and
vice versa). In [13] we show that these criteria form a valid proposal for language
comparison: most of the encodings in the literature respect them (so our notion is
consistent with the common understanding of the community), but there still exist
encodings that do not satisfy them (so our notion is non-trivial); moreover, the best
known separation results can be proved (in a much easier and uniform way) by rely-
ing on our proposal. Here, we furthermore vindicate the validity of our proposal by
showing that some widely believed (but never formally proved) separation results
can be established by relying on the above mentioned criteria.

Our results are summarized in the side
figure. There, we put an arrow from L1 to
L2 if L1 can be encoded in L2 but not vice
versa (the dashed arrow denotes an encod-
ability result slightly weaker than the solid
arrow). We say that L2 is more expressive
than L1 if there is a sequence of arrows from
L1 to L2; L1 and L2 are incomparable if nei-
ther L1 is more expressive than L2 nor vice
versa.

Some of our results are expectable:
for example, we confirm that πa is the
minimal common denominator of calculi
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Figure 1

for mobility, since it can be encoded in all the languages considered. However,
though expectable, some results turned out very difficult to prove. For example, to
encode πa in MA we had to develop quite a complex encoding since one of our criteria
is operational correspondence: what we propose is, to the best of our knowledge, the
first encoding that does not introduce any ‘spurious’ computation in the encoding of



a πa process. Ruling out computations that are not present in the source process is a
sensible task when dealing with MA, because of the high possibility of interferences
between MA processes. A simpler encoding of πa is possible, e.g., in SA (see [17]),
because the latter language is “more controlled” than MA. Another issue that
turned out surprisingly difficult to prove is the encodability of MA in BA, that we
believe not to hold; this is the only conjecture that this paper leaves open.

This paper is organized as follows. In Section 2, we formally present the syntax
and operational semantics of the languages considered. In Section 3, we recall from
[13] the properties that encodings should satisfy. In Section 4, we formally build up
our hierarchy: for every pair of languages, we give an encodability/separation result.
Finally, in Section 5 we conclude the paper by also mentioning some related work.
In this extended abstract we have omitted the motivations behind the languages;
for more details, see the original papers where such languages were introduced.

2 The Languages

A process calculus is a triple L = (P, 7−→,'), where

• P is the set of language terms, usually called processes and ranged over by
P,Q,R, . . .. All the process calculi we are going to consider have a common
core syntax given by:

P ::= 0
∣∣∣ (νn)P

∣∣∣ P1|P2

∣∣∣ !P
∣∣∣ √

As usual, 0 is the terminated process, whereas
√

denotes success (see the discus-
sion on Property 5 in Section 3); P1|P2 denotes the parallel composition of two
processes; (νn)P restricts to P the visibility of n and binds n in P ; finally, !P
denotes the replication of process P . We have assumed here a very simple way
of modeling recursive processes; all what we are going to prove does not rely on
this choice and can be rephrased under different forms of recursion.

• 7−→ is the operational semantics, needed to specify how a process computes;
following common trends in process calculi, we specify the operational semantics
by means of reductions, whose inference rules shared by all our process calculi
are:

P 7−→ P ′

E(P ) 7−→ E(P ′)

P ≡ P ′ P ′ 7−→ Q′ Q′ ≡ Q

P 7−→ Q

where E(·) denotes an evaluation context and ‘≡’ denotes structural equivalence
(used to equate different ways of writing the same process). Of course, the op-
erational axioms, the evaluation contexts and structural equivalence are peculiar
to every language. As usual, Z=⇒ denotes the reflexive and transitive closure of
7−→.

• ' is a behavioural equivalence/preorder, needed to describe the abstract be-
haviour of a process; usually, ' is a congruence/precongruence at least with
respect to parallel composition.

We now present the syntax and reduction-based operational semantics of the
specific calculi considered in this paper. In what follows, we assume a countable



set of names, N , ranged over by a, b, c, . . . , l, k, . . . ,m, n, . . . , u, v, w, . . . , x, y, z, . . .

and their decorated versions. To simplify reading, we shall use a, b, c, . . . to denote
channels, l, k, . . . to denote localities, m,n, . . . to denote ambients and x, y, z, . . . to
denote input variables; u, v, w, . . . are used to denote generic names (channels and
variables in πa; channels, localities and variables in Dπ; ambients and variables in
MA, SA and BA).

2.1 The asynchronous π-calculus (πa)

We consider the asynchronous version of the π-calculus, as defined in [1]. This
language is nowadays widely considered the minimal common denominator of calculi
for mobility, it is a good compromise between expressiveness and simplicity, and it
also has a good implementation [24]. Its syntax extends the common syntax of
processes by letting

P ::= . . .
∣∣∣ ū〈v〉 ∣∣∣ u(x).P

Intuitively, ū〈v〉 represents message v unleashed along channel u. Dually, u(x).P
waits for some message from channel u and, once received, replaces with such a
message every occurrence of variable x in P . Processes u(x).P and (νa)P bind x

and a in P , respectively; a name occurring in P that is not bound is called free.
Consequently, we define the free and bound names of a process P , written f n(P )
and bn(P ); alpha-conversion is then defined accordingly.

Evaluation contexts are defined as follows:

E(·) ::= ·
∣∣∣ E(·) |P

∣∣∣ P | E(·)
∣∣∣ (νn)E(·)

The structural equivalence relation, ≡, is the least equivalence on processes closed by
evaluation contexts, including alpha-conversion and satisfying the following axioms:

P |0 ≡ P P1|P2 ≡ P2|P1 P1|(P2|P3) ≡ (P1|P2)|P3

!P ≡ P |!P (νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P

P1|(νa)P2 ≡ (νa)(P1|P2) if a 6∈ f n(P1)

The reduction relation, 7−→, is the least relation on processes closed by the inference
rules described above and satisfying the following axiom:

a(x).P | ā〈b〉 7−→ P{b/x}

where P{b/x} denotes the capture-avoiding substitution of each occurrence of x in
P with an occurrence of b.

2.2 Distributed π-calculus (Dπ)

We present a slightly simplified version of [14]; mainly, we elided typing information
from the syntax. The main syntactic entity are nets, that are collections of located



processes, possibly sharing restricted names:

N ::= 0
∣∣∣ l :P

∣∣∣ N |N ∣∣∣ (νu)N

Processes are obtained from the common syntax by letting

P ::= . . .
∣∣∣ u(x).P

∣∣∣ ū〈v〉.P ∣∣∣ go u.P

The main differences between Dπ and πa are: processes and channels are located
at a specified locality; communication can only happen between co-located processes
and, hence, there is a primitive to let processes migrate between localities (viz.
action go u); finally, communication is synchronous (i.e., it blocks both the sending
and the receiving process).

Since the main syntactic entity is the set of nets, evaluation contexts, reductions
and structural equivalence will be given for nets.

E(·) ::= ·
∣∣∣ E(·) |N

∣∣∣ N | E(·)
∣∣∣ (νn)E(·)

The structural axioms are:

l :P |0 ≡ l :P l :P1|P2 ≡ l :P1 | l :P2 l : !P ≡ l :P |!P

N |0 ≡ N N1|N2 ≡ N2|N1 N1|(N2|N3) ≡ (N1|N2)|N3

(νu)(νw)N ≡ (νw)(νu)N (νn)0 ≡ 0 l : (νu)P ≡ (νu)l :P if u 6= l

(νl)N ≡ (νl)(N | l : 0) N1|(νu)N2 ≡ (νu)(N1|N2) if u 6∈ f n(N1)

The reduction axioms are:

l : a(x).P | l : ā〈b〉.Q 7−→ l : P{b/x} | l : Q

l : go l′.P | l′ : 0 7−→ l : 0 | l′ : P

Notice that a migration at l′ is legal only if l′ is an existing locality of the net. In
the original paper [14], this check was carried out, among other tasks, by the type
system. We prefer the present formulation for the sake of simplicity; however, all
what are going to prove does not rely on this choice.

2.3 Mobile Ambients (MA)

We consider the Ambient calculus as presented in [7].

P ::= . . .
∣∣∣ (x).P

∣∣∣ 〈M〉 ∣∣∣ M.P
∣∣∣ u[P ]

M ::= u
∣∣∣ in u

∣∣∣ out u
∣∣∣ open u

∣∣∣ M.M



MA is somewhat related to Dπ in the sense that processes are located within
ambients (viz. u[P ]) and only co-located processes can communicate via a monadic,
asynchronous and anonymous communication: (x).P represents the anonymous in-
put prefix, whereas 〈M〉 represents the asynchronous and anonymous output parti-
cle, where message M can be not only a raw name but also a sequence of actions.
However, differently from Dπ, entire ambients can move: an ambient n can enter
into a sibling ambient m via the in m action or exit from the enclosing ambient
m via the out m action. Moreover, an ambient n can be opened via the open n

action.
Evaluation contexts are defined as follows:

E(·) ::= ·
∣∣∣ E(·) |P

∣∣∣ P | E(·)
∣∣∣ (νn)E(·)

∣∣∣ n[E(·)]

The structural equivalence relation extends structural equivalence of πa with the
following axioms:

(M.M ′).P ≡M.(M ′.P ) m[(νn)P ] ≡ (νn)m[P ] if n 6= m

The reduction axioms are:

n[in m.P1|P2] | m[P3] 7−→ m[P3 | n[P1|P2]] open n.P1 | n[P2] 7−→ P1 | P2

m[n[out m.P1|P2] | P3] 7−→ n[P1|P2] | m[P3] (x).P | 〈M〉 7−→ P{M/x}

MA, like all the following Ambient-like languages, strongly relies on a type
system to avoid inconsistent processes like, e.g., m.P or in n[P ]; these two processes
can arise after the (ill-typed) communications (x).x.P | 〈m〉 and (x).x[P ] | 〈in n〉.
For MA, like for SA and BA, we shall always consider the sub-language formed by
all the well-typed processes, as defined in [6,17,2].

2.4 Safe Ambients (SA)

We consider the Safe Ambient calculus as presented in [17]. SA extends MA by
adding co-actions, though which ambient movements/openings must be authorized
by the target ambient. Hence, the syntax of SA is the same as MA’s, with

M ::= . . .
∣∣∣ in u

∣∣∣ out u
∣∣∣ open u

Evaluation contexts and structural equivalence are the same as for MA; the reduc-
tion axioms are:

(x).P | 〈M〉 7−→ P{M/x} open n.P1 | n[open n.P2|P3] 7−→ P1 | P2 | P3

n[in m.P1|P2] | m[in m.P3|P4] 7−→ m[P3 | P4 | n[P1|P2]]

m[n[out m.P1|P2] | out m.P3 | P4] 7−→ n[P1|P2] | m[P3|P4]



2.5 Boxed Ambients (BA)

We consider the Boxed Ambient calculus as presented in [2]. BA evolves MA by
removing the open action that is considered too powerful and, hence, potentially
dangerous. To let different ambients communicate, BA allows a restricted form
of non-local communication: in particular, every input/output action can be per-
formed locally (if tagged with direction ?), towards the enclosing ambient (if tagged
with direction � ) or towards an enclosed ambient n (if tagged with direction n).

P ::= . . .
∣∣∣ (x)η.P

∣∣∣ 〈M〉η.P ∣∣∣ M.P
∣∣∣ u[P ]

M ::= u
∣∣∣ in u

∣∣∣ out u
∣∣∣ M.M η ::= ?

∣∣∣ � ∣∣∣ u
Evaluation contexts and structural equivalence are the same as for MA; the reduc-
tion axioms are:

n[in m.P1|P2] | m[P3] 7−→ m[P3 | n[P1|P2]]

m[n[out m.P1|P2] | P3] 7−→ n[P1|P2] | m[P3]

(x)?.P1 | 〈M〉?.P2 7−→ P1{M/x} | P2

(x)?.P1 | n[〈M〉�.P2|P3] 7−→ P1{M/x} | n[P2|P3]

(x)n.P1 | n[〈M〉?.P2|P3] 7−→ P1{M/x} | n[P2|P3]

〈M〉?.P1 | n[(x)�.P2|P3] 7−→ P1 | n[P2{M/x}|P3]

〈M〉n.P1 | n[(x)?.P2|P3] 7−→ P1 | n[P2{M/x}|P3]

3 Properties of Encodings

A translation of L1 = (P1, 7−→1,'1) into L2 = (P2, 7−→2,'2), written J · K : L1 →
L2, is a function from P1 to P2. We shall call encoding any translation that satisfies
the five properties we are going to present now. There, to simplify reading, we let
S range over processes of the source language (viz., L1) and T range over processes
of the target language (viz., L2).

As already said in the introduction, an encoding should be compositional. To for-
mally define this notion, we exploit the notion of k-ary context, written C( 1; . . . ; k),
that is a term where k occurrences of 0 are replaced by the k holes 1, . . . , k.

Property 1 A translation J · K : L1 → L2 is compositional if, for every k-
ary L1-operator op and finite subset of names N , there exists a k-ary con-
text CNop[ 1; . . . ; k] such that J op(S1, . . . , Sk) K = CNop[JS1 K; . . . ; JSk K], for every
S1, . . . , Sk with f n(S1, . . . , Sk) = N .

Moreover, a good encoding should reflect in the encoded term all the name
substitutions carried out in the source term. However, it is possible that an encoding



fixes some names to play a precise rôle or it can map a single name into a tuple of
names. In general, every encoding assumes a renaming policy ϕJ K : N −→ N k that
is a function such that ∀u, v ∈ N with u 6= v, it holds that ϕJ K(u) ∩ ϕJ K(v) = ∅
(where ϕJ K(·) is simply considered a set here). We extend the application of a
substitution to sequences of names in the expected way.

Property 2 A translation J · K : L1 → L2 is name invariant if, for every substi-
tution σ, it holds that

JSσ K

 = JS Kσ′ if σ is injective

'2 JS Kσ′ otherwise

where σ′ is the substitution such that ϕJ K(σ(a)) = σ′(ϕJ K(a)).

Injectivity of σ must be taken into account because non-injective substitutions can
fuse two distinct names, and this matters because compositionality also depends on
the free names occurring in the encoded terms. For more discussion, see [13].

A source term and its encoding should have the same operational behaviour, i.e.
all the computations of the source term must be preserved by the encoding without
introducing “new” computations. This intuition is formalized as follows.

Property 3 A translation J · K : L1 → L2 is operationally corresponding if
• for every S and S′ such that S Z=⇒1 S

′, it holds that JS K Z=⇒2'2 JS′K;
• for every S and T such that JS K Z=⇒2 T , there exists S′ such that S Z=⇒1 S

′

and T Z=⇒2'2 JS′ K.

An important semantic issue that an encoding should avoid is the introduction
of infinite computations, written 7−→ω.

Property 4 A translation J · K : L1 → L2 is divergence reflecting whenever
JS K 7−→ω

2 implies that S 7−→ω
1 , for every S.

Finally, we require that the source and the translated term behave in the same
way with respect to success, a notion that can be used to define sensible semantic
theories [9,25]. To formulate our property in a simple way, we follow the approach in
[25] and assume that all the languages contain the same success process

√
; then, we

define the predicate ⇓, meaning reducibility (in some modality, e.g. may/must/fair-
must) to a process containing a top-level unguarded occurrence of

√
. Clearly,

different modalities in general lead to different results; in this paper, proofs will be
carried out in a ‘may’ modality. Finally, for the sake of coherence, we require the
notion of success be caught by the semantic theory underlying the calculi, viz. ';
in particular, we assume that ' never relates two processes P and Q such that P ⇓
and Q 6⇓.

Property 5 A translation J · K : L1 → L2 is success sensitive if, for every S, it
holds that S ⇓ iff JS K ⇓.

3.1 Derived Properties

The results we are going to prove (both negative and positive) rely on the choice of
equivalence/preorder in the target language, viz. ‘'2’. Some translations become



encodings (i.e., they satisfy all the properties just listed) only under some choices
of ‘'2’: a representative sample is given in Theorem 4.5. Similarly, some separation
results can be proved under specific assumptions on ‘'2’, in the sense that the proof
we provide only works under such assumptions. Indeed, in [13] we show that some
separation results can be proved in the general framework but, to carry out more
proofs, we have to slightly specialize the framework. In particular, in loc.cit. we
have considered three alternative settings:

(i) '2 is exact, i.e. T '2 T
′ and T performs an action imply that T ′ can (weakly)

perform the same action as well; moreover, parallel composition must be trans-
lated homomorphically, i.e. for every N ⊂ N it holds that CN| [ 1; 2] = 1 | 2;

(ii) '2 is reduction sensitive, i.e. T '2 T
′ and T ′ 7−→2 imply that T 7−→2;

(iii) the occurrences of '2 in Property 3 are restricted to pairs of kind
((νñ)(JS′ K | T ′), JS′ K), for any ñ and T ′ such that (νñ)(JS′ K | T ′) '2 JS′ K.

All these assumptions are discussed and justified at length in [13]. By relying on
them, we can prove a number of auxiliary results that will be useful in carrying out
the main proofs of the paper.

Proposition 3.1 Let J · K be an encoding and assume that we are in setting (ii) or
(iii); then, S 7−→/ 1 implies that JS K 7−→/ 2.

Proposition 3.2 Let J · K be an encoding and assume that we are in setting (ii) or
(iii); if there exist two source terms S1 and S2 such that S1 | S2 ⇓, S1 6⇓ and S2 6⇓,
then JS1 | S2 K 7−→2.

Proposition 3.3 Let J · K : L1 → L2 be an encoding and assume that we are in
setting (ii) or (iii). If there exists two source terms S1 and S2 that do not reduce
but such that JS1 | S2 K 7−→2, then

(i) if L2 ∈ {πa, Dπ}, it can only be that JS1 K | JS2 K 7−→2;

(ii) if L2 ∈ {MA, BA, SA}, it can only be that C1(JS1 K) | C2(JS2 K) 7−→2, where
Cf n(S1,S2)
| [ 1; 2], i.e. the context used to compositionally translate S1 |S2, is of

the form E(C1( 1) | C2( 2)) for some evaluation context E(·) and two contexts
C1(·) and C2(·) that are either empty (viz., · ) or a single top-level ambient
containing a top-level hole (viz., m[ · |R]).

Theorem 3.4 Assume that there is a L1-process S such that S 7−→/ 1, S 6⇓ and
S | S ⇓; moreover, assume that every L2-process T that does not reduce is such that
T | T 7−→/ 2. Then, there cannot exist any encoding J · K : L1 → L2 under none of the
settings (i), (ii) and (iii).

To state the following proof-technique, let us define the matching degree of a
language L, written Md(L), as the greatest number of names that must be matched
to yield a reduction in L. For example, the matching degree of MA is 1, whereas
the matching degree of Dπ is 2.

Theorem 3.5 If Md(L1) > Md(L2), then there exists no encoding J · K : L1 → L2

under settings (ii) nor (iii).

A new derived property, not needed for the results in [13], is the following one.



Proposition 3.6 Let J · K : L1 → L2 be a translation that satisfies Property 2; for
every S and n 6∈ f n(S), it holds that ϕJ K(n) ∩ f n(JS K) = ∅.

Proof. By contradiction, let n′ ∈ ϕJ K(n)∩f n(JS K). Let m be such that m 6∈ f n(S)
and ϕJ K(m) ∩ f n(JS K) = ∅; moreover, let σ be the permutation that swaps m
and n. Trivially, S = Sσ and, hence, JS K = JSσ K. However, by Property 2,
JSσ K = JS Kσ′, for σ′ that swaps ϕJ K(m) and ϕJ K(n) component-wise. The only
possible way to have that JS K = JS Kσ′ (that holds because of transitivity) is to
have dom(σ′) ∩ f n(JS K) = ∅ that, however, does not hold, because dom(σ′) =
ϕJ K(n) ∪ ϕJ K(m) and n′ ∈ ϕJ K(n) ∩ f n(JS K): contradiction. 2

It is worth noting that all negative results we are going to prove hold under
settings (ii) and (iii); on the contrary, only some of them also hold in setting (i). All
the three settings have advantages and disadvantages. In our opinion, the better
compromise is setting (iii) that, in spite of being very ‘syntactical’, exactly captures
the intuition underlying the occurrences of ‘'2’ in Property 3: to garbage collect
junk processes left by the encodings. Indeed, it is the only setting that is satisfied
by all the encodings we are aware of. Clearly, a challenging direction for future
work consists in finding other settings that enable proofs but are more liberal than
the present ones.

4 The Hierarchy, bottom-up

We now give the results underlying the hierarchy of calculi for mobility depicted in
Figure 1.

Theorem 4.1 There exists no encoding of MA, SA and BA in Dπ and πa.

Proof. Corollary of Theorem 3.4:

• On one hand, notice that
· if T is a πa-process such that T | T 7−→2, then T ≡ (νñ)(a(x).P | ā〈b〉 | T ′), for

some a not in ñ. Thus, trivially, T 7−→2; hence, every πa-process T that does
not reduce is such that T | T 7−→/ 2.
· if T is a Dπ-net such that T | T 7−→2, then either T ≡ (νñ)(l : a(x).P | l :
ā〈b〉.Q | T ′) or T ≡ (νñ)(l : go l′.P | l′ : 0 | T ′), for some a, l and l′ not in
ñ. Thus, trivially, T 7−→2; hence, every Dπ-net T that does not reduce is such
that T | T 7−→/ 2.

• On the other hand, we can find in MA, SA and BA a process S that does not
reduce and does not report success, but such that S | S reports success: it suffices
to let S be
· (νp)(open p.

√
| n[in n.p[out n.out n]]). in MA and BA;

· (νp)(open p.
√
| n[in n.p[out n.out n.open p] | in n | out n]) in SA.

2

Theorem 4.2 There exists no encoding of Dπ in SA, BA, MA and πa.

Proof. Corollary of Theorem 3.5, since Md(Dπ) = 2 whereas Md(MA) =
Md(SA) = Md(BA) = Md(πa) = 1. 2



Theorem 4.3 Dπ and BA are more expressive than πa.

Proof. Because of Theorems 4.1 and 4.2, it suffices to encode πa in Dπ and BA.
Clearly, πa can be trivially encoded in Dπ: it suffices to co-locate the πa process

in a pre-defined locality hosting all the channels needed. This translation is an
encoding under any choice of '2.

BA can encode πa: [2] provides an encoding of πa in BA that satisfies all the
properties of Section 3, with operational correspondence that holds up to any
(pre)congruence that satisfies the law (νn)n[P ] ' 0 whenever k 6∈ f n(P ) (e.g.,
strong barbed equivalence). It is defined as a homomorphism w.r.t. all the opera-
tors, except for

Ju(x).P K , (x)u.JP K J ū〈v〉 K , (νk)(u[〈v〉?.in k] | k[0]) for k fresh

2

Theorem 4.4 MA is more expressive than πa.

Proof. Because of Theorem 4.1, MA cannot be encoded in πa. We are left with
proving that πa can be encoded in MA; this is not a trivial task, if we want to
satisfy all the properties in Section 3 with operational correspondence that holds
up to strong barbed equivalence. Indeed, in several papers [7,6,5] there are attempts
to encode πa in MA, but none of them satisfies Property 3.

The encoding relies on a renaming policy that maps every name a to a triple of
pairwise distinct names (a1, a2, a3); it is a homomorphism w.r.t. all the operators,
except for restrictions, inputs and outputs, that are translated as follows:

J (νa)P K , (ν a1, a2, a3)JP K

J ā〈b〉 K , a1[a2[open a3.〈b1, b2, b3〉]]

J a(x).P K , open a1.(νp, q)(open p

| a3[in a2.open rest | (x1, x2, x3).in q.p[out q.JP K]]

| q[open a2.rest[! rest[in a3.out q.in a2.open rest]]])

for p and q fresh

where (x1, x2, x3) is a shortcut for (x1).open pol.(x2).open pol.(x3) and 〈b1, b2, b3〉
is a shortcut for 〈b1〉 | pol[〈b2〉 | pol[〈b3〉]], with pol a reserved name for implement-
ing polyadic communications. The proof that the translation just presented satis-
fies all the properties listed in Section 3 is omitted for space reasons; the interested
reader can find it in [10]. 2

Our encoding follows the philosophy underlying the encoding of πa in BA; how-
ever, MA misses the parent-child communication of BA, used to translate an input
action. Thus, for every communication along a, the ambient named a3 is used as
a ‘pilot’ ambient to enter a2 and consume the datum associated to b. To reflect



the fact that an output along a can be consumed only once, we exploit the outer
ambient a1 and the corresponding open a1 action. However, interferences can still
arise from independent communications along channel a: several a3-ambients can
enter into the same a2-ambient. In this case, only one of them is opened and the re-
maining ones must be rolled back, i.e. reappear at top-level, ready to enter another
a2-ambient. Such a rolling back is done by opening a2 in a restricted ambient q and
by leading all the not consumed a3-ambients out from q via the reserved ambient
rest, that also restores the in a2 capability.

Theorem 4.5 SA is more expressive than MA: SA can be encoded in MA, whereas
there exists no encoding of SA in MA.

Proof. In [17] MA is translated into SA by mapping all the operators homomor-
phically, except for Ju[P ] K , u[! in u | ! out u | ! open u | JP K]. Such an encod-
ing enjoys operational correspondence up to (strong/weak) barbed equivalence re-
stricted to translated contexts (written 'tr). Indeed, the MA process open n | n[0]
reduces to 0, whereas its encoding can only reduce to ! in n | ! out n | ! open n and
the latter process is only translated barbed equivalent 1 to the encoding of 0 (viz.,
0 itself).

On the contrary, SA cannot be encoded in MA; this is proved by con-
tradiction. Consider the pair of SA processes P , n[in n.〈m〉] and Q ,
n[in n.(m[out n.open m.

√
] | out n)] | open m, for n 6= m; by Proposition 3.2,

JP |Q K must reduce and, because of Proposition 3.3 and the definition of the re-
duction rules for MA, it can only be that

(i) either C1(JP K) exhibits a top-level ambient n′ and C2(JQ K) wants to en-
ter/open it;

(ii) or C2(JQ K) exhibits a top-level ambient n′ and C1(JP K) wants to enter/open
it.

for some context C1(·) and C2(·) that are empty or have a single top-level ambient
containing a top-level hole. Notice that the reduction cannot happen because of a
communication otherwise, by Property 2, Jm[in m.〈n〉] | Q K would reduce, against
Proposition 3.1. For the same reason, it must be that n′ ∈ ϕJ K(n).

We now prove that both cases are impossible; without loss of generality, assume
that we fall in case (i), since case (ii) is similar. First, notice that C1(·) must be
empty: if it was not, we would have that Jn[out n.〈m〉] | Q K 7−→ (recall that C1(·)
is part of C{n,m}| [ 1; 2], the context used to encode parallel composition of processes
with free names {n,m}; so, it only depends on parallel composition and such names).
Thus, we have that JP K exhibits the top-level ambient n′; but also this leads to a
contradiction. Indeed, by Property 1, it holds that JP K , C{n,m}n[ ] (J in n.〈m〉 K); so,

the ambient named n′ can be exhibited either by C{n,m}n[ ] (·) or by J in n.〈m〉 K (and,

1 The idea is that, if placed within an ambient different from n, ! in n | ! out n | ! open n has the same

effect as 0. If placed (possibly, after some reduction steps) within an ambient n, ! in n | ! out n | ! open n
is useless (and, again, has the same effect as 0): since we are working in a translated setting (and hence
every ambient has replicated occurrences of all the co-capabilities involving its name), an identical process
is already present within n and can be absorbed thanks to Milner’s law !P 'tr !P | !P .

If we did not restrict our attention to translated contexts, we could use n[·] as a distinguishing context

in SA for the two processes 0 and ! in n | ! out n | ! open n .



hence, C{n,m}n[ ] (·) has a top-level hole). In both cases, we can contradict Proposi-
tion 3.1: in the first case, we would have that Jn[out n.〈m〉] | Q K 7−→; in the
second case, we would have that J in n.〈m〉 | Q K 7−→. 2

We want to remark that SA can encode MA also in a different way, that allows
us to formulate operational correspondence up to standard (i.e., not just translated)
barbed equivalence. To this aim, we have to consider a family of encodings J · KN ,
for N ⊂ N , with the idea that a MA process P can be encoded via J · KN only if
f n(P ) ⊆ N . For every N , J · KN is a homomorphism for all operators, except for

J0 KN , PN Ju[P ] KN , u[PN | JP KN ]

J (νn)P KN , (νn)JP KN∪{n} J (x).P KN , (x).JP KN∪{x}

where PN ,
∏
n∈N ! in n | ! out n | ! open n. By exploiting the equivalence !P '

!P | !P , it is easy to check that now operational correspondence holds up to '.
It is however worth noting that such a kind of parameterized encoding (and,

similarly, those proposed by [19,16]) is not considered in our framework because
it would make difficult to formulate our properties and carry out proofs without
knowing what the index represents. For example, having a parameterized encod-
ing J · KΞ, which is the initial (i.e., top-level) value of Ξ in J · KΞ? Moreover, even
assuming that Ξ are names (as in the translation of SA in MA just presented), are
they names in the source or in the target language? The latter question is very
delicate: in the first case, Property 2 should be adapted by requiring that JSσ KΞσ

is equal/equivalent to (JS KΞ)σ′; in the second case, we have that JSσ KΞσ′ must be
equal/equivalent to (JS KΞ)σ′. Thus, even if we believe that such an enhanced form
of encoding is reasonable, we have problems in adapting our framework without
specifying anything on the index. On the contrary, we would find it very strange to
make too many assumptions on the index, in general.

Nevertheless, we believe that both the argument shown in the proof of Theo-
rem 4.5 and this further possible encoding give the feeling that SA can be encoded
in MA. This fact justifies the dashed arrow placed in Figure 1 between SA and
MA: there should be some kind of arrow from MA into SA, but it seemed us fair
to distinguish such an arrow from the other ones in the picture.

Theorem 4.6 There exists no encoding of BA in SA and MA.

Proof. We show the non-encodability of BA in SA, since the result for BA in
MA is simpler. Consider the processes (x)n.

√
and n[〈b〉?], for n 6= b. Because of

Proposition 3.2, J (x)n.
√
| n[〈b〉?] K must reduce and, because of Propositions 3.3

and of the reduction rules for SA, this can only happen because:

(i) either C1(J (x)n.
√

K) wants to enter into an ambient named n′ and C2(Jn[〈b〉?] K)
allows such an entrance;

(ii) or C2(Jn[〈b〉?] K) wants to enter into an ambient named n′ and C1(J (x)n.
√

K)
allows such an entrance;

(iii) or C1(J (x)n.
√

K) wants to open an ambient named n′ and C2(Jn[〈b〉?] K) allows



such an opening;

(iv) or C2(Jn[〈b〉?] K) wants to open an ambient named n′ and C1(J (x)n.
√

K) allows
such an opening.

Indeed, C1(J (x)n.
√

K) and C2(Jn[〈b〉?] K) cannot perform a communication, other-
wise, by Property 2, J (x)n.

√
| b[〈n〉?] K would reduce; for the same reason, it must

be that n′ ∈ ϕJ K(n).
However, we now prove that all the cases depicted above lead to contradict

Proposition 3.1. Let us consider C2(Jn[〈b〉?] K) in all cases. If C2(·) is empty we
can work as follows. First, observe that Jn[〈b〉?] K , C{b}n[ ](J 〈b〉

? K); if the action

is produced by C{b}n[ ](·) alone, also Jn[〈b〉�] K would produce the same action and
so J (x)n.

√
| n[〈b〉�] K would reduce; similarly, if the action is produced by J 〈b〉? K

alone, J (x)n.
√
| 〈b〉? K would reduce. Hence, the action is produced both by C{b}n[ ](·)

and J 〈b〉? K; this means that C{b}n[ ](·) provides an ambient and J 〈b〉? K performs the
action in n′, in n′ or open n′. However, the latter fact is not possible because
otherwise n′ ∈ f n(J 〈b〉? K), in contradiction with Proposition 3.6. So, it must be
that C2(·) is not empty; this rules out case (iv) above and imposes that Jn[〈b〉?] K
performs the action in n′, in n′ or open n′, respectively. We then work like in the
case in which C2(·) is empty to prove that there is no way for Jn[〈b〉?] K to perform
such an action without contradicting Proposition 3.1. 2

Theorem 4.7 There exists no encoding of SA in BA.

Proof. By contradiction. First, consider the pair of SA processes P , n[in n.〈m〉]
and Q , n[in n.(m[out n.open m] | out n)] | open m.

√
, for n 6= m; by Propo-

sitions 3.2 and 3.3, and by definition of the reduction rules for BA, it must be
that

(i) either C1(JP K) exhibits an ambient n′ and C2(JQ K) wants to enter in it, or
vice versa;

(ii) or C1(JP K) sends a message to a sibling ambient n′ and C2(JQ K) is ready to
locally receive a message, or vice versa;

(iii) or C1(JP K) waits for a message from a sibling ambient n′ and C2(JQ K) locally
sends some message, or vice versa.

In all cases, n′ ∈ ϕJ K(n). We now prove that the three cases above all lead to a
contradiction: the first case is formally identical to the proof of Theorem 4.5; the
second and the third case are similar, so we only work out case (ii). First, notice
that C1(·) must be empty: if it were not, it must be a single ambient and, hence, it
could not send/receive any message. So, the action is produced either by C{n,m}n[ ] (·)
or by J in n.〈m〉 K. In both cases, we can contradict Proposition 3.1: in the first
case, we would have that Jn[in m.〈n〉] | Q K 7−→; in the second case, we would have
that J in n.〈m〉 | Q K 7−→. 2

To complete the hierarchy of Figure 1, it would suffice to prove that there exists
no encoding of MA in BA. Surprisingly, we have not been able to prove such a
(quite expectable) result; we leave it open as a conjecture. Thus, there are only two



possibilities for resolving the ‘??’ in Figure 1:

SA BA

Dπ MA
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πa

ccFFFFFFFF

OO ;;xxxxxxxx

according to whether MA is encodable in BA or not. We strongly believe that the
right one should hold, even if we still have not been able to prove it.

5 Conclusions and Related Work

We have comparatively studied some mainstream calculi for mobility, namely the
asynchronous π-calculus, a distributed π-calculus and Mobile/Safe/Boxed Ambi-
ents. We have organized all these languages in a clear hierarchy based on their
relative expressive power. In [11], we also extend our analysis to various dialects of
MA/BA/SA appeared in the literature in the last years and compare every dialect
with the language it comes from.

The results of this paper are summed up in Table 1 and are compared with
analogous results from the literature (‘?’ stands for absence – to the best of our
knowledge – of any formal claim already appeared). To obtain such results, we have
exploited the set of criteria presented and discussed in [13].

To the best of our knowledge, our encoding of πa in MA is the first one that
satisfies operational correspondence. It is quite complex (the encoding of a single
communication in πa requires 14 reduction steps in MA) because some ingenuity
is needed to handle the possible interferences that can arise between the encod-
ing of different actions on the same channel. Notice that the encoding of πa in
SA [17] is simpler (just 5 reductions to mimic a single communication), since co-
actions can be exploited to reduce such interferences; this is a further evidence of
SA’s expressive power. Moreover, the encoding of πa in BA [2] is even simpler:
thanks to parent-child communications, just 2 reductions are needed to mimic a
single communication. These facts suggest that co-actions and, even more, remote
communications are more suitable to implement channel-based communications in
ambient-based languages.

To conclude, we want to mention some strictly related results. First, [26] pro-
vides an encoding of the synchronous (choice-free) π-calculus in ‘pure’ SA, i.e. SA

without communications. The encoding enjoys all our properties, with homomor-
phism w.r.t. ‘|’ that holds only for processes without free names; otherwise, it is
simply compositional, because it introduces a channel-handler for every free name
of the translated process. Second, [16] provides an encoding of (a variant of) BA

in (a variant of) SA; the encoding respects all our criteria but the languages con-
sidered differ from the ones we have presented. Third, the results in [4] entail that
Dπ cannot be encoded in πa, under properties similar to ours; notably, they need
homomorphism w.r.t. parallel composition whereas we just rely on composition-
ality. Fourth, [22,23] are inspired by Palamidessi’s work on electoral systems [21]



Encoding Encodability In this paper In other papers

πa in Dπ X Thm 4.3 ? (though common sense)

πa in MA X Thm 4.4 [7,6,5]: not satisfactory

πa in SA X Thms 4.4 + 4.5 [17]

πa in BA X Thm 4.3 [2]

Dπ in πa × Thm 4.2 [4]

Dπ in MA × Thm 4.2 ?

Dπ in SA × Thm 4.2 ?

Dπ in BA × Thm 4.2 ?

MA in πa × Thm 4.1 [22]

MA in Dπ × Thm 4.1 ?

MA in SA X Thm 4.5 [17]: not satisfactory

MA in BA ?? ? ?

SA in πa × Thm 4.1 [22]

SA in Dπ × Thm 4.1 ?

SA in MA × Thm 4.5 ?

SA in BA × Thm 4.7 ?

BA in πa × Thm 4.1 [22]

BA in Dπ × Thm 4.1 ?

BA in MA × Thm 4.6 ?

BA in SA × Thm 4.6 ?

Table 1
Overview of all our results: ‘X’ stands for a possibility result, ‘×’ stands for an impossibility result, ‘??’

stands for an open question.

and separate several calculi for mobility according to the possibility of solving the
problem of leader election. Though their approach is different from ours, our results
confirm theirs: for example, they prove that πa cannot encode MA, SA and BA.
However, we want to remark that our approach is more informative than theirs,
since we are able to compare pairs of languages in which leader election is either
possible or impossible (e.g., SA and MA, or πa and Dπ).

Finally, calculi for mobility have been a workbench for investigations on
the expressiveness of operators like restriction, communication primitives, non-
deterministic choice and replication ([3,18,21,20,12,8], just to cite some samples).
These works are quite orthogonal to ours, since they compare different sub-calculi



of the same language, whereas we compare different programming paradigms.
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