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Abstract

In this paper, we study eight asynchronous communication primitives, arising
from the combination of three features: arity (monadic vs polyadic data), commu-
nication medium (message passing vs shared dataspaces) and pattern-matching.
Each primitive has been already used in at least one language appeared in liter-
ature; however, to uniformly reason on such primitives, we plugged them in a
common framework inspired by the asynchronous � -calculus. By means of possi-
bility/impossibility of ‘reasonable’ encodings, we compare every pair of primitives
to obtain a hierarchy of languages based on their relative expressive power.

1 Introduction

In the last 25 years, several languages and formalisms for distributed and concurrent
systems appeared in literature. Some of them (e.g., CCS [21] and the � -calculus [26])
are mostly mathematical models, mainly used to formally reason on concurrent sys-
tems; other ones (e.g., LINDA [17]) are closer to actual programming languages and
are mainly focused on issues like usability and flexibility. As a consequence, the for-
mer ones are usually very essential, while the latter ones provide more sophisticated
and powerful programming constructs.

Despite their differences, there are, however, some basic features that are somewhat
implemented in all these languages. Roughly speaking, these features can be described
as the possibility of having different execution threads (or processes) that run concur-
rently by interacting via some form of communication. At least at a first glance, the
last feature (i.e., the inter-process communication) has yield the highest variety of pro-
posals. These arose from the possibility of having synchronous/asynchronous primi-
tives, monadic/polyadic data, first-order/higher-order values, dataspace-based/channel-
based communication media, local/remote exchanges (whenever processes are ex-
plicitly distributed, like in [10, 13]), built-in pattern-matching mechanisms, point-to-
point/broadcasting primitives, and so on. The aim of this work is to formally study
some of these proposals and to organise them in a clear hierarchy, based on their ex-
pressive power. Hopefully, our results should help to understand the peculiarities of ev-
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ery communication primitive and, as a consequence, they could be exploited to choose
the ‘right’ primitive when designing new languages and formalisms.

We focus on asynchronous communication primitives, since they are the most basi-
lar ones. Among the remaining features mentioned above, we focus on arity of data,
communication medium and possibility of pattern-matching. The expressiveness of
the omitted features has been already dealt with elsewhere [29, 13, 15]; we leave as a
future work the integration of these results in our framework. Notice that we studied
pattern-matching because it is nowadays becoming more and more important, espe-
cially in languages that deal with complex data like XML [1, 5, 11]. However, for the
sake of simplicity, we consider here a very basic form of pattern-matching, that only
checks for name equality while retrieving a datum; the formal study of more flexible
and powerful mechanisms (e.g., those in [14]) is left for future work.

By combining the three features chosen, we obtain eight communication primitives
that have been all already employed elsewhere, e.g. in [20, 4, 17, 10, 13, 11]. However,
to uniformly reason on such primitives, we plugged them in a common framework in-
spired by the asynchronous � -calculus; we choose the � -calculus because nowadays
it is one of the best-established workbenches for theoretical reasoning on concurrent
systems. By following [30, 12, 25], we shall compare the resulting languages by means
of their relative expressive power, i.e. we shall try to encode one in the other and study
the properties of the encoding function. More precisely, we shall exploit ‘reasonable’
encodings (as introduced in [25]), or impossibility of such encodings, to compare ev-
ery pair of primitives, thus obtaining a hierarchy of languages based on their relative
expressive power.

1.1 On Assessing the Expressiveness of a Language

To study the expressive power of a programming language, several techniques can
be exploited. A first, very rough, test is to determine whether a language is Turing
complete or not; however, since almost all ‘usefull’ languages are Turing complete,
this criterion is too coarse to compare different languages.

A second, more informative, approach to show that language
���

is more expressive
than language

���
is to find a problem that can be solved in

���
under some conditions

that cannot be met by any solution in
���

. For example, this technique can be very
naturally used to prove that non-deterministic Turing machines are more powerful than
deterministic ones. Indeed, the former machines can solve all problems in NP with a
polynomial-time computation, whereas it is very unlikely that the latter machines can
satisfy this property (because of the very well-known conjecture “P �� NP”).

Another interesting approach to show that
���

is at least as expressive as
���

consists
in encoding

���
in
���

(where an encoding is a function that translates every
���

-term in
a
���

-term) and studying the properties of this encoding. This is the approach we shall
follow in this paper. Before discussing the properties one may require for an encoding,
let us remark that this approach is very appealing for at least two reasons. First, it is
a natural way to show how the key features of

���
can be rendered in

�	�
. Second, it

allows us to also carry out quantitative measures on language expressiveness: we can
consider aspects like the size and the complexity of the encoding of a

�	�
-term w.r.t.

the source term and, consequently, quantitatively assess the encoding proposed.
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Of course, the encoding function must preserve the ‘essence’ of the translated term,
i.e. to be meaningful an encoding should not change the functionalities and the be-
haviours of source terms. This requirement can be formalised in different ways. A first
possibility (usually called semantical equivalence) is to fix an equivalence, say � , and
require that the encoding maps every

���
-term into a � -equivalent

�	�
-term. According

to the discriminating power of � , this requirement can be too demanding. Moreover,
this property can only be investigated when

���
and

� �
are very similar, i.e. whenever

they share some notion of equivalence. This property can be weakened by choosing an
abstract semantic theory

�
and considering the equivalences generated in

���
and

� �
by
�

, say ��� � and ��� � . Then, the so called full abstraction property requires that the
encoding respects

�
, i.e. it maps ��� � -equivalent terms into ��� � -equivalent terms and

vice versa.
Semantical equivalence and full abstraction are both defined w.r.t. a fixed notion

of equivalence (viz., � or
�

). In concurrency, we have an incredibly wide range of
equivalences; thus, fixing one or another is highly debatable. This is even more dra-
matic when proving impossibility results, that are crucial to build up a strict hierarchy
of languages: every separation result based on a fixed semantic theory could be crit-
icised by saying that it actually compares not the expressive power of the languages,
but the discriminating power of the semantic theories. To prove that

���
is strictly more

powerful than
���

it is better to fix a set of minimal properties that every encoding
should satisfy and prove that no such encoding of

���
in
���

exists. We shall formally
present the minimal properties we are going to exploit in this paper later on; for the
moment, we only want to discuss and justify the most debatable ones.

Homomorfism w.r.t. parallel composition A first requirement (taken from [12, 25])
is that the encoding, � ���	� � , should not reduce the degree of parallelism present in the
source term. This property, called homomorfism w.r.t. parallel composition, can be
formalised as

� �	
�� � 
��� � � � �	
�� ��� � � �	
��� � �����

where ‘ � � ’ is the parallel composition operator in language
� � . Property ����� implies

that, to be more expressive than
���

, a (concurrent) language
�	�

must implement a
certain behaviour with at least the same degree of distribution. Indeed, suppose that
a centralised entity is needed to translate a certain term 
�� � 
  ; this means that

�	�
’s

constructs are not powerful enough to let parallel processes organise and simulate the
behaviour of 
�� � 
  autonomously. The possibility of handling a high number of
parallel components without any centralised entity is a clear evidence of the expressive
power of the language constructs.

Clearly, a simple consequence of ����� is that no sequential language
���

can be more
expressive than a concurrent language

���
. However, the reader should not believe

that this fact undermines the current implementations of some concurrent languages
(take, e.g., the implementation of PICT [27], a programming language based on the

� -calculus). Property ����� simply implies that concurrent languages are more powerful
than sequential ones, a claim that is hardly debatable. Not incidentally, several prob-
lems arise when passing from a sequential setting to a concurrent one, because of the
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enhanced possibilities of interactions (mutual exclusion, deadlock, synchronisation,
...).

Another possible critique to ����� is that there exist ‘good’ encodings that do not map
‘ � � ’ in ‘ � � ’; for example, in the setting of CCS [21], take the encoding of CCS into
its parallel-free fragment that implements ‘ � ’ via ‘+’ (the non-deterministic choice), as
described by the expansion theorem:

� ����� � ����� � � �	�
��� � � � ����� � � ������ � ����� � ��� � �
� ����� � ������ � � �	�
��� � � � ������ � � �������� � ����� � ��� � ������� � � � ��� � �

This encoding enjoys semantical equivalence w.r.t. strong bisimulation, a really strong
and rare property. Neveretheless, we can still vindicate the validity of ����� by saying
that such an encoding is not fully satisfactory for quantitative reasons, since it leads to
an exponential blow-up of the process syntax.

Divergence freedom Another property we shall require to our encodings is the im-
possibility of introducing divergence, i.e. every non-terminating computation in the
encoded term must correspond to a non-terminating computation of the source term.
This property, called divergence freedom, is formalised as

� �	
�� ��� iff 
�� �����
where ‘ � ’ denotes the presence of a non-terminating computation. Clearly, a termi-
nating term must be mapped in a terminating term, otherwise the functionalities of the
source term would be changed by the encoding. Indeed, if 
 is a

�	�
-term that al-

ways halts and � �	
�� � exhibits a non-terminating computation, 
 ’s behaviour has been
modified by � ���	� � .

Again, also ����� can be considered too strong. Indeed, one may argue that diver-
gence does not matter when it arises with negligible probability, as in practice it is
very unlikely to observe it. While this observation makes sense from an implemen-
tative point of view, it seems quite clumsy from a theoretical point of view. Indeed,
take a terminating

���
-term and suppose that every encoding of

���
in
���

introduces
divergence (even with negligible probability); this can be used as an evidence of the
fact that the constructs of

�	�
are not powerful enough to mimick the constructs of

���
:

indeed, to preserve all the functionalities of the source term, every encoding has to add
further behaviours to the encoded term. Thus,

���
cannot be as expressive as

���
. At

most, the probability of having a divergent encoding from a non-divergent term can be
considered as a measure of the gap between the expressive power of the languages.

A similar critique to ����� could be that divergence only matters if it arises in fair
computations. Again, such a refinement of ����� is really meaningful when considering
the encoding as an implementation of the source language in the target one. From
the expressiveness prespective, the fact that all encodings introduce (unfair) divergence
when passing from

���
to
���

is an evidence of the irriducibility of
���

to
���

.

1.2 Overview of the Paper

Our results show that the communication paradigm underlying LINDA [17] (polyadic,
dataspace-based and with pattern-matching) is at the top of the hierarchy; not inci-
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dentally, LINDA’s paradigm has been used in actual programming languages [3, 16].
On the opposite extreme, we have the communication paradigm used in Ambient [10]
(monadic, dataspace-based but without pattern-matching). Such a paradigm is very
simple but also very poor; indeed, Ambient’s expressive power mostly arises from
the mobility primitives. Strictly in the middle, we find the asynchronous � -calculus
(channel-based and without pattern-matching), in its monadic and polyadic version.
This result stresses the fact that the � -calculus is a good compromise between expres-
siveness and simplicity. As a further contribution, we also prove that the polyadic

� -calculus is strictly more expressive than the monadic one. A posteriori, this fact jus-
tifies the use of type-systems [22, 31, 28] to obtain a fragment of the former calculus
that can be reasonably translated in the latter one.

The paper is organised as follows. In Section 2, we present a family of eight � -
based asynchronous calculi arising from the combination of the three features studied.
In Section 3, we present the criteria an encoding should satisfy to be a reasonable
means for language comparison; there, we also sum-up the results of the paper, that
are proved in Sections 4 and 5. We start with the encodability results and then we
present the impossibility results, that are the main contribution of our work. Finally, in
Section 6, we conclude the paper by also touching upon related work.

This paper is an extended version of [18]. With respect to the short version, we give
here more details on some technical proofs and we formally prove Turing completeness
of the languages studied. Moreover, we added Section 1.1 to better justify the approach
followed in assessing language expressiveness.

2 A Family of � -based Calculi

As we said in the Introduction, we shall assess the expressiveness of the communica-
tion primitives studied by putting them in a common framework, inspired by the asyn-
chronous � -calculus. We assume two disjoint and countable sets: names, � , ranged
over by ��� ���������	��
����������� , and process variables, � , ranged over by ������������� . Nota-
tionally, when a name is used as a channel, we shall prefer letters ��� ������������� ; when a
name is used as an input variable, we shall prefer letters �����	����������� ; to denote a generic
name, we shall use letters 
����������� . The (parametric) syntax of our calculi is

� � ����� � � � ������! 
 ��#"%$ �
� �� �'&(
 � � ��

� � �
�� )+* 
 � �-,/.10(2 � 0(3+4/0 � ��65 0(7�� �

� �� �

The different calculi will be obtained by plugging into this basic syntax a proper def-
inition for input ( "%$ ) and output ( �! 
 ) actions. As usual, � and

� � � denote the
terminated process and the parallel composition of two processes, while �'&(
 � � re-
stricts to

�
the visibility of 
 ; finally, )+* 
 � �8,/.10(2 � 0(3+4/0 � , 5 0(79� �

�
and �

are the standard constructs for conditional evolution, recursive process definition and
process invocation. Notationally, )+* 
 � �:,/.10(2 � denotes a conditional construct
with a terminated else-branch; moreover, we shall omit trailing occurrences of � .

In this paper, we study the possible combinations of three features for asynchronous
communications: arity (monadic vs. polyadic data), communication medium (channels
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vs. shared dataspaces) and pattern-matching. As a result, we have a family of eight
calculi, denoted as ����� ��� � , whose generic element is denoted as �	��
������� , where � ������ ����� . Intuitively, � � � � iff we have polyadic data, � � � � iff we have channel-based
communications and ��� � � iff we have pattern-matching. Thus, the full syntax of
every calculus is obtained from the following productions:

�������!� � � ����� � � � � � � "%$ � � � � � � �! 
 � � �! �#"
����� � � � � ����� � � � � � � "%$ � � � � 
�� �! 
 � � �! �#"
��� � �!� � � ����� � � � � � � "%$ � � � � � � � �! 
 � � � �  �#"
��� � � � � � ����� � � � � � � "%$ � � � � � 
�� �! 
 � � � �  �#"
�
� ���!� � � ����� � � � � � � "%$ � � � �%$� � �! 
 � � �! $ �#"

�
� � � � � � ����� � � � � � � "%$ � � � � $
�� �! 
 � � �! $ �#"

�
� � �!� � � ����� � � � � � � "%$ � � � � �%$� � �! 
 � � � �  $ �#"

�
� � � � � � ����� � � � � � � "%$ � � � � � $
�� �! 
 � � � �  $ �#"

where

 � � � � ��'& 
�( (Template)

and $ denotes a (possibly empty) sequence of elements of kind (whenever useful, we
shall write a tuple $ as the sequence of its elements, separated by a comma). Template
fields of kind � are called formal and can be replaced by every name upon withdrawal
of a datum; template fields of kind & 
�( are called actual and impose that the datum
withdrawn contains exactly name 
 . As usual, � �	����� ����������� � � � and �'&(� � � bind � in�

, while 5 0(7�� �
�

binds � in
�

. The corresponding notions of free and bound names
of a process, FN � � � and BN � � � , and of alpha-conversion, �*) , are assumed. We let
N � � � denote FN � � �,+ BN � � � .

Notice that ��� � � and �
� � � are very similar to the (monadic/polyadic) asynchronous

� -calculus [20, 4]; �
� � � relies on the communication paradigm adopted in LINDA [17];

������� and �
� ��� rely on the communication paradigm adopted in the (monadic/polyadic)

Ambient Calculus [10]; �	��� � and ��� � � rely on the communication paradigm adopted in
LCKLAIM and CKLAIM [13], respectively; finally, �

� � �
relies on the communication

paradigm adopted, e.g., in - KLAIM [13] or in semantic- � [11].

Remark 2.1. ����� ��� � can be easily ordered by language containment; in particular,
�.��
������� can be seen as a sub-language of � �0/
 �0/ �0/� if and only if, for every 12� � � �43 ��56� ,
it holds that � �879� � . As an extremal example, consider ������� and �

� � �
: monadic

data are a particular case of polyadic data (all of length one); a shared dataspace can be
modelled by letting all communications happen on the same global channel, say :�;0<�:�= ;
finally, absence of pattern-matching can be obtained by only considering templates
without actual fields.

Operational semantics The operational semantics of the calculi is given by means
of a labelled transition system (LTS) describing the actions a process can perform to
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evolve. Judgements take the form
� )� � �  , meaning that

�
can become

�  upon
execution of � . Labels take the form

� � � � � �� �
� $ � �� �'&�$ ��� ��� $ � ��

� $ � �� �'&�$ � ��� $ �
Traditionally, � denotes an internal computation; � � $ � and �'&�$ � � ��� $ � denote the recep-
tion/sending of a sequence of names $ � along channel � ; when channels are not present
(namely, in � � ),

� $ � and �'&�$ ����� $ � denote the withdrawal/emission of $ � from/in the shared
dataspace. In �'&�$ � � ��� $ � and �'&�$ ����� $ � , some of the sent names, viz. $ � ( � $ � ), are restricted.
Notationally, �'&�$ � � � $ � stands for either �'&�$ � � ��� $ � or �'&�$ � ��� $ � ; similarly,

� $ � stands for either
� � $ � or

� $ � . As usual, BN � �'&�$ ��� � $ � � � $ � ; FN ��� � and N ��� � are defined accordingly.
The LTS provides some rules shared by all the calculi; the different semantics are

obtained from the axioms for input/output actions. The common rules, reported be-
low, are an easy adaptation of an early-style LTS for the � -calculus; thus, we do not
comment them and refer the interested reader to [26].

�
	�� ��� � �  �
� � � � � 

� ���
�� � �  ��� 

� � 	�� ��� � �  � � � � ��� � � 
� ������ � �  ��� 

� )� � �  
 �� N ��� �
�'&(
 � �

)� � �'&(
 � � 

����� � ��� � � ��������� � �  
 � FN � $ ����� � � $ ���
�'&(
 � � ��� � � � �!� � � �"�������#� � � 

� )� � �  BN ��� ��$ FN ��� � �&%
� ���

)� � �  ���

�(' � � )� � � � ' � 
� )� � � 

The structural equivalence,
'

, rearranges a process to let it evolve according to the
rules of the LTS. Its defining axioms are the standard � -calculus’ ones [26]:

� � � ' � � ��� ' ��� � � � ����� � � ' � � ��� � �/�

)+* 
 � 
 ,/.10(2 � 0(3+4/0 � ' �
)+* 
 � � ,/.10(2 � 0(3+4/0 � ' � if 
 �� �

�(' �  if
� ��) �  �'&(
 � � ' � �'&(
 ���'&(� � �)' �'&(� ���'&(
 � �

� ���'&(
 ��� ' �'&(
 ��� � ��� � if 
 �� FN � � � 5 0(79� �
�*' � �,+ -�.0/21 3�4 / �

To define the semantics for the basic actions of the various calculi, we must specify
when a template matches a datum. Intuitively, this happens whenever both have the
same length and corresponding fields match (i.e., & 
�( matches 
 and � matches ev-
ery name). This can be formalised via a partial function, called pattern-matching and
written MATCH, that also returns a substitution 5 ; the latter will be applied to the pro-
cess that performed the input to replace template formal fields with the corresponding
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names of the datum retrieved. These intuitions are formalised by the following rules:

MATCH ��� � ��� MATCH � & 
�(���
 � ��� MATCH � ����
 � � ����4�� �
MATCH � 
	� ��� � 5 � MATCH � $

� $ � � � 5 �

MATCH � 
 � $
������ $ � � � 5 �� 5 �

where ‘ � ’ denotes the empty substitution and ‘
�
’ denotes substitution composition.

Now, the operational rules for output/input actions in calculi � � are

 $ �#"
� � � � � � $
�� � �
	�� � � � � 5 if MATCH � $
�� $ � � � 5

and, similarly, the rules for calculi �
�

are

�  $ �#" � � � ��� � � � � $
�� � � � 	 � ��� � � 5 if MATCH � $
�� $ � � � 5
Notation A substitution 5 is a finite partial mapping of names for names;

� 5 denotes
the (capture avoiding) application of 5 to

�
. As usual, we let � � stand for �� ���

(i.e., the reflexive and transitive closure of �� � ) and
)��� stand for � �

)� � � � . We
shall write

� )� � to mean that there exists a process
�  such that

� )� � �  ; a similar
notation is adopted for

� � � and
� )��� . Moreover, we let � range over visible actions

(i.e. labels different from � ) and � to range over (possibly empty) sequences of visible
actions. Formally, � � � ��� ��� ��� , where ‘ � ’ denotes the empty sequence of

actions and ‘ � ’ represents concatenation; then, $����� is defined as $ � � and $
��� �� � �

is defined as $
��!� ��"� .

We conclude the presentation of the languages with a Proposition collecting to-
gether some properties of the LTSs we have just defined, that will be useful in the
sequel. The proof of these results easily follows from the definition of the LTSs.

Proposition 2.1. The following facts hold:

1. if
� � � � and

� 	�� �#� � , then
� 	 � ���� � for every $ � of the same length as $ � ;

2. if
� �� � �  then

�(' � � � � � and
�  ' �'&�$ � ��� � � � � � � , where

# � � 	�� ��� � � � and
� � ��� � ��� � � �,����� � � � , whenever

� � � �
# � � � 	 � ��� � � � and

� � ��� � ��� � � � � ������� � � � , whenever
� � �

�

or vice versa.
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3 Quality of an Encoding and Overview of our Results

We now study the relative expressive power of the calculi in � ��� ��� � by trying to encode
one in another. Formally, an encoding � ���	� � is a function mapping terms of the source
language into terms of the target language. As already said, the relative expressive
power of our calculi can be established by defining some criteria to evaluate the quality
of the encodings or to prove impossibility results. We have informally discussed some
key criteria in the Introduction; here, we define them formally and sum-up some of the
arguments that justify them. Moreover, we also add some other, more natural and less
debatable, requirements.

The main requirement, that we call faithfulness, is that the encoding must not
change the semantics of a source term, i.e. it must preserve the observable behaviour of
the term without introducing new behaviours. As very clearly discussed in [24], there
are several ways to formalise this idea; we shall define it in the simplest possible way,
by means of barbs and divergence.

Definition 3.1 (Barbs and Divergence).
�

offers a barb, written
���

, iff
� ��� � ��� � � � � � � ��� .�

diverges, written
� � , iff

� �� ��� .

The idea is to identify a basic observable behaviour (or barb) for the languages
considered and require that the encoding preserves and reflects it (i.e., the encoding
should maintain all the original barbs without introducing new ones). In the setting
of an asynchronous language [2, 6], a barb is the possibility of emitting some datum.1

Since barb preservation and reflection alone are too weak, it is also required that the
computations of a process correspond to the computations of its encoding, and vice
versa; this property is usually known as operational correspondence. Barb preserva-
tion and operational correspondence together yield (weak) barbed bisimulation [23, 2]
that, however, is insensitive to divergence (i.e., it can equate a term with an infinite
computation and a term with only finite computations). In our setting, it is clearly un-
desirable to have an encoding that turns a terminating term into a divergent one, since
this would change the behaviour of the source term. So, we need a further requirement
stating that also divergence must be preserved and reflected by the encoding.

Finally, a good encoding cannot depend on the particular names involved in the
source process, since we are dealing with a family of name-passing calculi; we call this
property name invariance. Furthermore, the encoding should not decrease the degree
of parallelism in favour of centralised entities that control the behaviour of the encoded
term: if we can find some process behaviour that cannot be implemented in the target
language with the same degree of distribution as in the source one, then surely the
former language will be “weaker” than the latter one. We express this last property as
homomorphism w.r.t. ‘ � ’.

To sum up, we consider an encoding as a ‘reasonable’ means to compare the ex-
pressive power of two languages if it enjoys all the properties discussed so far.

1We choose here a very weak form of barbs. This fact strengthens our impossibility results; on the
other hand, our possibility results are not undermined by this choice, since they would also enjoy properties
expressed in terms of more significant barbs, such as those in [2, 6].
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where # “ � ” denotes existence of a reasonable encoding# “ �� ” denotes impossibility for a reasonable encoding# “ � � ” denotes language inclusion

Table 1: Overview of the Results

Definition 3.2 (Reasonable Encoding). An encoding � ���	� � is reasonable if it enjoys the
following properties:

1. (homomorphism w.r.t. ‘ � ’): � � � � � � � � � � � � � � � � � � � � � � �
2. (name invariance): � � � 5�� � � � � � � ��5 , for every permutation of names 5
3. (faithfulness):

� �
iff � � � � � � ;

� � iff � � � � ���
4. (operational correspondence):

(a) if
� �� � �  then � � � � � �� � � � �  � �

(b) if � � � � � �� � � then there exists a
�  such that

� � � �  and � � � � � �  � �
The results of our paper are summarised in Table 1. It is worth noting that all the

languages are Turing complete, as formally proved in Section 4.1. Moreover, notice
that Definition 3.2(4).b is a weak form of correspondence; this makes our impossibility
results stronger. However, for the encodability results, a better definition should keep
into account every possible computation � � � � � � � � . With this stronger property, the
encodings provided in Sections 4.3 and 4.5 would not enjoy operational correspon-
dence; we leave for future work the task of establishing whether encodings of � ��� � and

�
� � � in ��� � � and ��� � � satisfying this stronger property exist or not.
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4 Positive Results

In this Section we present the “positive” results; more precisely, we first show that
all languages in ����� ��� � are Turing complete and then present the “ � ” arrows of Ta-
ble 1. For the latter task, we shall describe only the translation of the input and output
actions; the remaining operators will be translated homomorphically (this trivially sat-
isfies Definition 3.2(1)). Moreover, in what follows we are going to prove only that
the encodings do not introduce divergence; preservation of divergence is a trivial con-
sequence of Definition 3.2(4).a; Definition 3.2(2) and barb preservation/reflection will
hold by construction of the encodings; Definition 3.2(4) can be routinely proved.

4.1 Turing Completeness

We now prove that �	����� is Turing complete; by Remark 2.1, this implies that all lan-
guages in � ��� ��� � are Turing complete. To this aim, we shall encode in ������� the lan-
guage L from [6], that in loc. cit. is proved to be Turing complete.

Recall from [6] that the language L can be considered as the asyncronous version
of CCS, without the relabelling operator. Formally, its syntax can be described as

� � � � � ��  �6" ��
� � � � � �� �'& � � � �� � �� 5 0(79� �

� ���� �� � � � & � � ( � � � �
The only new construct is � �� � � � & � � ( � � � � , i.e. the input-guarded choice 2 among 
 ( � � )
processes prefixed by an input action with an actual field. As usual, the operational
semantics of L can be modelled by only adding rule

� �� � � � & � � ( � � � � 	 ����#� � � �

and by stating that the choice is a monoidal operator, with � as identity (this require-
ment can be incorporated in the structural equivalence).

The encoding of L in �	����� can be defined homomorphically for all the constructs
but for input-guarded choice, that is encoded as follows:

� � � �� � � � & � � ( � � � � � � � 5 0(79� � � � � � )+* � � � � ,/.10(2 � � � � � � 0(3+4/0
)+* � � � � ,/.10(2 � � � � � � 0(3+4/0
�����
)+* � � � � ,/.10(2 � � � � � � 0(3+4/0  ��" � �

Such an encoding is not reasonable because it introduces divergence. Consider, e.g.,
the L-process  �6" ��� & � ( � � �

(that, incidentally, is also a �	��� � -process). For � �� � the process is blocked; neverthe-
less, its encoding

 �6" � 5 0(79� � � � � � )+* � � � ,/.10(2 � � � � � 0(3+4/0  ��" � �
2Actually, [6] presents a more general kind of choice, viz. ���
	��� ; however, to prove Turing complete-

ness, only input-guarded choice is exploited. For this reason, we consider here this simpler construct.
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is a clearly divergent �	����� -process. However, the fact that the encoding introduces
divergence is irrelevant to study Turing completeness; to this aim, the crucial require-
ments are operational correspondence and barb preservation, and the encoding we have
just presented enjoys them (the proof of this fact is simple and left to the interested
reader).

4.2 An Encoding of ������� in �������

The only feature of �
� � �

not present in �
� � � is the possibility of specifying the name

of a channel where the exchange happens. However, thanks to pattern-matching, this
feature can be very easily encoded in �

� � � : it suffices to impose that the first name
of every datum represents the name of the channel where the interaction is scheduled
and that every template starts with the corresponding actual field. This discipline is
rendered by the following encoding:

� � �  $ �#" � �	�  ��� $ �#"
� ��� � $
�� � � � �	� � & � ((� $
�� � � � � � �

Proposition 4.1. The encoding � ���	� ��� �
� � � � � �

� � � is reasonable.

Proof. Definition 3.2(2) holds by construction. Definition 3.2(4).b can be proved as
a stronger claim: if � � � � �*�� � � , then � ' � � �  � � and

� �� � �  (this result, like Def-
inition 3.2(4).a, is proved by an easy induction over the shortest inference for �� � ).
Definition 3.2(3) holds easily; just notice that the stronger formulation of operational
correspondence mentioned above implies that the encoding cannot introduce diver-
gence.

4.3 An Encoding of ������� in �	�����

We now have to translate the monadic pattern-matching of ����� � into the channel-based
exchanges of �	� � � . This would have been an easy task, if only actual fields occurred in
templates: indeed,  �#" would have been translated in �  �#" and, correspondingly, � & � ( � � �
would have been translated in � � � � � � � � � � , for � fresh. This encoding, however, does not
work well when trying to translate � � � � � .

Thus,  �#" in ����� � should correspond to two outputs in ��� � � : one over � , to
mimic name matching as described above, and one over a fresh and reserved
channel :�;0<�:�= , to enable inputs with formal fields. Symmetrically, an input ac-
tion is translated in two successive inputs: the first one from :�;0<�:�= and the sec-
ond one from the received value, if we are translating an input with a formal
field, and vice versa, otherwise. For example,  �#"��  ��"�� � & � ( � � � is translated to
�  �#" � :�;0<�:�=  �#"�� �  ��" � :�;0<�:�=  ��"��(� � � � � :�;0<�:�= �+� � � � � � � � . We believe that this encod-
ing is reasonable, but proving that it does not introduce divergence is hard because of
the possible interferences between parallel components (e.g., the above example could
evolve in �  �#" � :�;0<�:�=  ��" � � � � � � , by performing a communication between � � � � and
�  ��" and between :�;0<�:�= �+� � and :�;0<�:�=  �#" ).
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The problem is that the two outputs in the translation of  �#" are totally unrelated.
This can be fixed by associating every output with a restricted name and by using such
a name to reduce the effects of interferences. Formally,

� �  �#" � �	� �'&(
 ��� :�;0<�:�=  
 " � �  
 " � 
  �#" �
� ��� � � � � � �	� :�;0<�:�= � � � � � � � � � � �+� � � )+* � � � ,/.10(2 � � � � �
� ��� & � ( � � � � �	� � � � � � � � �  � � :�;0<�:�= �+� � � )+* � � � ,/.10(2 � � � � �

for 
 , � , �  and � fresh names. Clearly, this solution does not rule out interferences; it
simply blocks interfering processes. This suffices to make the proof of reasonableness
easier; to this aim, the key result is the following Lemma.

Lemma 4.2. Let � be the number of top-level outputs in
�

. If � � � � �(�� � ����� � � , then
there exists a

�  such that
� �� � �  and � � � � � �� � � � � �  � � � � � .

Proof. First notice that we need three � -steps to consume the encoding of some  �#" .
Thus, since � � � � � performs 5�� � � � -steps, this means that at least the encoding of
one output has been fully consumed and that a test put forward by an )+* - ,/.10(2 has
been successfully passed. By definition of the encoding, this happens if and only if
at least the encoding of an output has been consumed without interferences in the
computation leading � � � � � to � ;3 let  �#" be the first of such outputs. By construc-
tion,  �#" is a top-level output in

�
; thus,

� ' �'& $
 ���  �#" � � � � � � � , where
� �

is the
parallel component whose encoding consumes � �  �#" � � . Recall that � ���	� � is a homomor-
phism w.r.t. restrictions and parallel compositions; moreover, it is trivial to prove
that it maps structurally equivalent �	��� � -processes into structurally equivalent ��� � � -
processes. Thus, � � � � � ' �'& $
 ��� � �  �#" � � � � � � � � � � � � � � � � � ; moreover, if � � � � � � � � , then
� ' �'& $
 � � and � �  �#" � � � � � � � � � � � � � � � � � � � . The latter reduction holds if and only if
� � � � � � � � � � � � � � � � � � � � � � � �

) 
�"� � � � ��� � � � � � � � �
) �,� � �  � � � � � � �  � � � �

) ��,� �
�   � � � � � � � , for � � � � � �

) 
�,� � � �
) �,� � �  �

) ��,� � �   � and � � � � � � � � � � � � � � � � � � .
This holds because

� �
is the parallel component whose encoding consumes without in-

terferences � �  �#" � � and  �#" is the first output whose encoding has been consumed without
interferences. Then, � � � � � � � � � � � � �

) 
�,� � ) �,� � ) ��,� � �   � � � � � � � � � � � . Now,

(a) if
� � � � � � � � � then � � � :�;0<�:�= � 
 , � � � 
 � � , � � � � � 
 and

�   � ' � � � � ��� 4�� � � �
(b) if

� � � � & � ( � � � � then � � � � � 
 , � � � 
 � � , � � � :�;0<�:�= � 
 and
�   � ' � � � � � � .

In both cases, � � � � � �� �8� �'& $
 ��� �   � � � � � � � � � � � � ; we conclude by letting
�  �

�'& $
 ��� � � � � 4�� � � � � � in case (a) and
�  � �'& $
 ��� � � � � � � in case (b).

Proposition 4.3. The encoding � ���	� ��� �	��� � � � ��� � � is reasonable.

Proof. We only prove that � ���	� � does not introduce divergence; the other require-
ments are simple. Assume that � � � � � � , i.e. there exists an infinite computation
� � � � � � ��� �� � � � �� � ����� �� � � ����� � �� � ����� . By Lemma 4.2, there exists a

� 
3Notice that, without the restricted name associated to the encoding of an output and without the corre-

sponding � � - 	�
��� in the encoding of an input, this crucial property would not hold.
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such that � � � � � �� � � � � �  � � � � � ����� � and
� �� � �  . But � � �  � � is still divergent; indeed,

� � �  � � � � � ����� � �� � ����� . By iterating this reasoning, we can build up a divergent com-
putation for

�
, i.e.

� �� � �  �� � ����� ; hence, � ���	� � does not introduce divergence.

4.4 An Encoding of ������� in �	�����

The only feature of �
� ��� is that it can check the arity of a datum before retrieving

it (see the definition of function MATCH). This, however, can be mimicked by the
channel-based communication of �	� � � . Indeed, we assume a (reserved) channel for
every possible arity: a datum of arity � will be represented as an output over channel�

; an input of arity � will be represented as an input from
�

; a communication over�
in ��� � � can happen if and only if pattern-matching succeeds in �

� ��� ; finally, the
exchanged datum is a restricted name that will be used in the actual data exchange.

The encoding assumes that ����� � � � � � � � � � � are fresh and reserved names; then

� �  � � ������� � ����" � �	� �'&(
 ��� �  
 " � 
 � � � � � �  � � " � 
 � � � � � �  � � " �

 � � � � �	������
 � � � � �  ����" � ����� � � �

� ��� � � ������� ����� � � � � �	� � � � � � �'&(� ��� �  � " � � � � � � � � �  � " �
� � � � � � �	����� � �  � " � � � ��� � � � � � � � � ����� � � �

for 
 , � , � and � fresh names. The datum emitted over
�

(viz. 
 ) is used as a “synchro-
niser”, to keep the order of the transmitted data and force the right name-to-variable
association. The actual exchange takes place over a restricted channel created by the
receiver (viz. � ) and transmitted along 
 as an ack to the sender.

Similarly to Proposition 4.3, reasonableness of this encoding can be easily proved,
once we prove the following Lemma. Moreover, notice that for this encoding the
stronger version of Definition 3.2(4).b holds: if � � � � � � � � , then there is a

�  such
that

� � � �  and � � � � � �  � � .
Lemma 4.4. Let � and � be the number and the maximum arity of top-level outputs in�

, respectively. If � � � � � �� � � � �
	 � � � � , then there exists a
�  such that

� �� � �  and
� � � � � �� �

�
�
�
�
� � �  � � � � � , for

� 7�87� .

Proof. We work like in the proof of Lemma 4.2. Now, the encoding of a � -ary output is
consumed (without the risk of interferences) in 3�� �8� � -steps. Thus, upon execution of
� ��3�� � � � � -steps, at least the encoding of an output has been fully consumed without
interferences; let  $ � " be the first of such outputs and � be its arity. We then proceed like
before.

Proposition 4.5. The encoding � ���	� ��� �
� ��� � � ��� � � is reasonable.

4.5 An Encoding of ������� in �	�����

In �
� � � , a communication succeeds if (and only if) a datum of a proper length is present

over the channel specified by the inputting process. So, two kinds of information are
atomically verified: the length of the message and the channel where it should be
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transmitted. This can be mimicked in �	� � � by having one fresh and reserved name
for every length (say, ����� � � � � � � � � � � ); a � -ary input from � is then translated into a
process starting with � � & � ( � and, correspondingly, a � -ary output on � is translated into
a process offering

�
at � . Once this communication took place, we are sure that a � -ary

datum is available on � ; we then proceed similarly to Section 4.4 for the actual data
exchange: a new channel 
 is made available on � , to maintain the order of messages,
while a new channel � is sent back on 
 to transmit the datum name by name.

However, we need to enhance the encoding of Section 4.4 to avoid interfer-
ences due to the fact that the existence of a � -ary output and the acquisition of the
new name for the actual exchange are not atomic here. Indeed, the translation of
�  � � � � � " � �  � � ��� � ���#��" ��� � � � ��� � � � � ��� � � � ��� � ���	� � � � can originate interferences that
can lead to divergence. Thus, like in Section 4.3, we shall verify at the end of the
data exchange the consistency of the exchange, i.e. that a � -ary data has really been
retrieved. To this aim, let :�� � be another fresh and reserved name; then

� � �  � � ������� � ����" � �	� �  � " � �'&(
 ��� �  
 " � 
 � � � � � �  � � " � �����1
 � � � � � �  ����" �

 � � � � �  :�� � " � ����� � �

� ��� � � � ������� ����� � � � � �	� � � & � ( � � � � � � � �'&(� ��� �  � " � � � � � � � �	����� � � �  � " � � � ��� � �
� �  � " � � � & :�� � ( � � � � � � � � ����� � � �

for 
 , � , � and � fresh names. Reasonableness of this encoding can be proved like in
Proposition 4.3, as a consequence of the following Lemma.

Lemma 4.6. Let � and � be the number and the maximum arity of top-level outputs
in
�

, respectively. If � � � � � �� � � � �
	 �,� � � � � , then there exists a
�  such that

� �� � � 
and � � � � � �� �

�
�
��� � � �  � � � � � , for

� 7 �87� .

Proof. The proof is similar to the proof of Lemma 4.4. Now, the encoding of a � -ary
output is consumed in 3�� ��� � -steps and, upon execution of � ��3�� � 5 ��� � � -steps, at
least the encoding of an output has been fully consumed without interferences; let �  $ �#"
be the first of such outputs and � � � $ � � . Then,

�(' �'& $
 ��� �  $ �#" � � � � � � � , � � � �%$� � � � � ,
� $� � � � (otherwise action � � & :�� � ( � in the encoding of

� �
would not succeed),

� ' �'& $
 � � and � � �  $ �#" � � � � � � � � � � � � � � � � � � � . Again, the latter reduction holds if and

only if � � � � � � � � � � � � � � 	����� � � 	 ������ � ��� � � � � �� ���#����� � � 	� 
������� � ����� � � �� ��� � � 	��	� ����� � � � �� ��� � � 	�
���������� �
� � � � ��� � 4 �� � � � � � � � � � � � � � . Then, � � � � � �� �

�
�
��� �'& $
 ��� � � � � ��� � 4 �� � � � � � � � � � � � � � � ; we con-

clude by letting
�  � �'& $
 ��� � � � � � 4 �� � � � � � .

Proposition 4.7. The encoding � ���	� ��� �
� � � � � ��� � � is reasonable.

5 Impossibility Results

We now consider the impossibility results, i.e. the “ �� ” arrows of Table 1, that are
the main technical contribution of this paper. They are all proved by contradiction:
we assume that a reasonable encoding exists and show that it introduces divergence.
Often, the contradiction is obtained by exhibiting a process that cannot reduce but
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whose encoding reduces. This fact, together with operational correspondence, implies
that the encoding introduces divergence, as stated by the following simple result.

Proposition 5.1. Let � ���	� � be an operationally corresponding encoding. If there exists
a process

�
such that

� �� � 4 but � � � � � �� � , then � ���	� � introduces divergence.

Proof. The fact that � � � � �*�� � � implies, by operational correspondence, that
� � � �  ,

for some
�  such that � � � � � �  � � . But the only

�  such that
� � � �  is � itself; thus,

� � � � � �� � � � � � � � , i.e. � � � � � diverges.

Theorem 5.2. There exists no reasonable encoding of ��� � � in �
� � � .

Proof. Assume that � ���	� � is reasonable and consider the process � � & � ( � � �  �#" , for � �� � ,
that evolves in � . By operational correspondence, � ��� � & � ( ��� �  �#" � � � � � � � � � ; moreover,
by faithfulness, � ��� � & � ( � � � �� , � � �  �#" � � � and � � � � � �� . Thus, the barb of � � �  �#" � � must be
consumed in the computation leading � ��� � & � ( � � �  �#" � � to � � � � � .

Now, notice that � � �  �#" � � cannot perform a � -step otherwise, by Proposition 5.1,
� ���	� � would introduce divergence. This fact, together with � ��� � & � ( � � �  �#" � � �
� ��� � & � ( � � � � � � �  �#" � � , implies that � ��� � & � ( � � � consumed the barb offered by � � �  �#" � � . Thus,

it must be that � ��� � & � ( � � � � 	 � ��!��� � , for some 
 and $ � such that � � �  �#" � � ��� �� / � � � � ��#������� � ; by Propo-

sition 2.1(1), this fact implies that � ��� � & � ( � � � � 	,��� ��� � , for every $� of the same arity as $ � ,
i.e. � $� � � � $ � � .

If 
 �� � , then pick up � �� � ��� ����
 � and the permutation of names swapping � and

� ; by name invariance, it holds that � � �  ��" � � ��� �� / � � � ���������#��� � , where $� and $�  are the renaming
of $ � and $�  . In particular, � $ � � � � $� � . Then, � ��� � & � ( � � �  ��" � � � � ��� � & � ( � � � � � � �  ��" � � �� � ,
while � � & � ( � � �  ��" �� � 4 . By Proposition 5.1, � ���	� � is not reasonable, as it introduces
divergence; contradiction.

If 
 � � , then pick up � �� � ��� ��� , the permutation of names swapping � and � , and
work like before, with process � ��� � & � ( � � �  �#" � � .
Corollary 5.3. There exists no reasonable encoding of ����� � in �

� ��� .
Proof. Trivial consequence of Theorem 5.2, since ����� � and �

� ��� can be seen as the sub-
calculi of ��� � � and �

� � � where all the communications happen on the same (unique and
global) channel.

Theorem 5.4. There exists no reasonable encoding of ��� � � in �
� ��� .

Proof. The proof is similar to that of Theorem 5.2. We start with process �  �#" ��� � � � ,
for � �� � ; it holds that � � �  �#" � � ��� �� / � � � �������� � and � ��� � � � � � 	 � ���� � , for some $ � . By name

invariance, � � �  �6" � � ��� �� / � � ����������� � , where $� and $�  are obtained by swapping � and � in $ � and

$�  ; thus, � $� � � � $ � � . Now, � ��� � � � � � 	,��� � � and � � �  �6" � � � � � � � �� � , while �  �6" � � � � � �� � 4 ;
this suffices to conclude.

Theorem 5.5. There exists no reasonable encoding of �
� � � in ��� � � .
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Proof. Similarly to the proof of Theorem 5.2, consider the process � � ����� � � �  ������" ;
again, � � �  ������" � � ��� �� / � � � ��!��������� � and � ��� � ����� � � � � 	 �� ��� � , for some

�
and $�  . If 
 �� � ,

choose � �� � ; by name invariance, � � �  ������" � � ��� �� / � � � �� ��������� � and � ��� � ����� ��� �  ������" � � �� � ,
while � � ����� � � �  ������" � �� � . If 
 � � , consider � � �����	��� � � �  ����������" ; like

before, � � �  ����������" � � ��� �� / � � � �� ��������� � and � ��� � �����	��� � � � � 	 ��,��� � . Then, if � � � , we
have that � ��� � ����� � � �  ����������" � � �� � ; otherwise, choose

� �� � and conclude that
� ��� � �����	��� � � �  ����������" � � �� � .

Corollary 5.6. There exist no reasonable encodings of ����� � and �
� ��� in ������� .

Proof. Easily derivable from Corollary 5.2 and Theorem 5.5, respectively.

Theorem 5.7. There exists no reasonable encoding of �
� � �

in ��� � � .
Proof. Consider the process �  ������" � � � & � ((� & � ( � , for � , � and � pairwise distinct. Like

in Theorem 5.2, we have that � ��� � & � (%� & � ( � � � � 	 �� ��� � and � � �  ������" � � ��� �� � � � �� ��������� � . If the
input of � ��� � & � ((� & � ( � � � has been generated by relying on a template formal field, then

� ��� � & � (%� & � ( � � � � 	���#� � , for every
�
; by Proposition 5.1, this would suffice to build up a

divergent computation for � ��� � & � (%� & � ( � � �  ��� � " � � , for every
� �� � . Otherwise, the input

of � ��� � & � (%� & � ( � � � relies on an actual field; we then consider the following possibilities
for 
 and � :

1. � �� � 
���� � : let
� �� � and consider the permutation that swaps � and

�
; then,

� � �  ��� � " � � ��� �� � � � ������������ � and � � �  ��� � " ��� � & � (%� & � ( � � � �� � .

2. 
 � � , � �� � : let
� �� � and consider the permutation that swaps � and

�
; like

before, � � �  � ����" ��� � & � (%� & � ( � � � �� � .

3. 
 � � , � � � : let
� �� � and consider the permutation that swaps � and

�
; then,

� � �  ������" ��� � & � (%� & � ( � � � �� � .

4. � � � , 
 �� � : like case 2.

5. � � � , 
 � � : like case 3.

Theorem 5.8. There exists no reasonable encoding of ��� � � in ����� � .
Proof. By contradiction, assume that there exists a reasonable encoding � ���	� � . Let � ,
� , � and

�
be pairwise distinct names; let � denote a divergent process and define� � )+* � � � ,/.10(2�� . Faithfulness implies that � � )+*

� � � ,/.10(2�� � � diverges,
� ��� � � � � � � � cannot offer data and � � �  �#" � � must offer some datum. Moreover, because of
Proposition 5.1, � ��� � � � � � � � and � � �  �#" � � cannot perform � -steps in isolation; however,
because of operational correspondence, when put in parallel they must perform at least
one � -step to become � � � � � 4�� � � � . If the input performed by � ��� � � � � � � � relies on a formal
field, then we can obtain a divergent computation from � ��� � � � � � � �  �#" � � . So, it must be
that � ��� � � � � � � � starts with an input relying on an actual template field & � ( (it must be �
otherwise, by name invariance, � ��� � � � � � � �  �#" � � would diverge).
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Now, by exploiting Proposition 2.1(2) and the definition of the LTS, we have that

� ��� � � � � � � � � � � �  �#" � � � � � � � � � 4�� � � � if and only if � ��� � � � � � � �
��"� � , � � �  �#" � �

�� � �  and
� � �  ' � � � ��� 4�� � � � . It must be that � � � � � � � � � � � � � , for � not occurring
in � � and

� � generated by an input action with a formal template field; moreover,

� ��� � � � � � � � 	 � � � 
� � � � � � � 	���� � � �
� � � � � and � � �  �#" � �

� � � � 
� � � � � �
� � � � �

� � � � �  . In par-
ticular, � � ��� � 
 � � � � � ��� �/
 � , for ����� � � � � � , and � � ��� � 
 � � � � � ��� ��
 � , for� � � � � � � � � � ����� .

Let 5 be the permutation that swaps � and � and � and
�
; by name invariance,

� ��� � � � � � � � 	 � � � / 
� � � � � � 5 	 �� � � � � 5
� /� � � � 5 and � � �  � " � �

� � � � / 
� � ��� � � 5 � �� � � �"5
� /� � � �  5 ,

for �  � � � � 5 and � � � � � 5 . More precisely, � � ��� � 
  � ��� � � ��� �/
  � and � � �� � 
  � � � � � ��� ��
  � , for 
 � � 5 � 
 � � .
Now, consider � � � � � � � � � �  �#" � �  � " � � � � � � �  , where

�  � )+* � � �1,/.10(2 � ;
trivially, � �� while, as we shall see, � � � � � � . This yields the desired contradiction.
Consider

� � � � � � � � � �/� � �/� � 5 �/� � 5 � � � � � � ��	�4 � � �/� � � �+� � 5 � � � 4 	 � �/� �,5
where � � received

�
in place of � and � � 5 received � in place of

�
(this is possible

since these inputs do not rely on actual fields). Now, � � ��	�4 � � 
 
�� 
 � � � � � 
� � �� � � � � � � � � ��� , where

� � �
� �

if 
 � � �

 � otherwise

and �+� � 5 � ��� 4 	 � 
 
 � / 
 � � � � � 
� � / �� � � � � � � � � ��� , where

�  � �
� � if 
 � � �


 � otherwise

Finally, consider the computation

� � � 	 4 � � �/� � � �+� � 5 � ��� 4 	 � � � �"5 � � � � 	 4 � � �/�  � 	 4 � � � �+� 5 � ��� 4 	 � � �+�  5 � ��� 4 	 �
obtained by performing a communication

# between ��� � � and � �+
 � and between � � � � and � �+
 � , if 
 � �� � , or

# between ��� � � and � �+
 � and between � � � � and � �+
 � , otherwise.

Now, � ��	!4 � � �%�  ��	�4 � ��� �+� � �  � ��	!4 � � ' � � � � � 4�� � � � ��	!4 � � � � � )+*
� � � ,/.10(2 � � � ,

that is a divergent process.

Theorem 5.9. There exists no reasonable encoding of �
� ��� in ����� � .

Proof. The proof is similar to that of Theorem 5.8. Assume that � ���	� � is reasonable;
consider the process

� ��� ����� � � )+* � � �!,/.10(2 )+* � � � ,/.10(2 � ; pick up � �� � and
� �� � ; consider the permutation of names 5 swapping � with � and � with

�
; finally,

show that � � � �  ��� �#" � � 5 �  ��� � " is not divergent, while � � � � ��� .
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6 Conclusion and Related Work

We have studied the expressive power of eight communication primitives, arising from
the combination of three features: arity of data, communication medium and presence
of pattern-matching. By relying on possibility/impossibility of ‘reasonable’ encodings,
we obtained a clear hierarchy of communication primitives. Notably, LINDA’s com-
munication paradigm [17] is at the top of this hierarchy, while the � -calculus is in the
middle. A posteriori, this can justify the fact that the former one is usually exploited in
actual programming languages [3, 16], where flexibility and expressive power are the
driving issues, while the latter one is mostly used for theoretical reasoning.

Related work One of the pioneering works in the study of communication primi-
tives for distributed systems is [19]. There, the expressive power of several “classical”
primitives (like test-and-set, compare-and-swap, ...) is studied by associating to every
primitive the highest number of parallel processes that can reach a distributed consen-
sus with that primitive, under conditions similar to the ‘reasonableness’ of our Defini-
tion 3.2. It then follows that a primitive with number 
 is less expressive than every
primitive with number � ( � 
 ): the latter one can solve a problem (i.e. the consensus
among � processes) that the former one cannot reasonably solve. This idea is also
exploited in [25] to assess the expressive power of the non-deterministic choice in the

� -calculus.
In [12], the notion of relative expressive power is used to measure the expressive-

ness of programming languages. In particular, a simple class of three concurrent con-
straint languages is studied and organised in a strict hierarchy. The languages have
guarded constructs and only differ in the features offered by the guards: a guard is al-
ways passed in the less expressive language; a guard is passed only if a given constraint
is satisfied by the current knowledge; and, finally, a guard is passed only if a new con-
straint, that must be atomically added to the knowledge, is consistent with the current
knowledge. Very roughly, the last kind of guards can be related to the pattern-matching
construct of our calculi, for the possibility of atomically testing and modifying the en-
vironment; in both cases, this feature sensibly increases the expressive power of the
language.

By the way, the form of pattern-matching considered here is very minimal: only the
equality of names can be tested while retrieving a datum. However, many other forms
of pattern-matching can be exploited [14], to yield more and more flexible formalisms;
some proposals have been investigated from the expressiveness point of view in [32].

Another form of atomic polyadic name matching is presented in [9], but with a dif-
ferent approach w.r.t. ours. Indeed, while in our �

� � �
the tuple of names to be matched

is in the transmitted/received value (by using a standard � -calculus terminology, the tu-
ple is in the ‘object’ part of an output/input), in [9] there are composite channel names
that must be matched to enable a communication (thus, the tuple is in the ‘subject’
part of the output/input). This feature enables a nice modelling of distributed and cryp-
tographic process calculi; nevertheless, our LINDA-like pattern-matching is stronger,
since the possibility of using both formal and actual fields in a template yield a more
flexible form of input actions.
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In this paper we have only considered two key features of LINDA, namely shared
dataspaces and pattern-matching. Other two relevant features are the read operation
and the conditional predicates. The former one allows us to access the content of a da-
tum without removing it from the dataspace; the latter ones enhance input/read actions
with the possibility of activating different execution threads, according to whether a
matching tuple is present in the dataspace or not (thus, they are not blocking). In [6]
all the possible combination of these features are studied. In particular, the authors
develop a way of giving a structured operational semantics to the resulting languages
and investigate possible notions of behavioural equivalences. However, to the best of
our knowledge, no encodability result has been developed so far for such languages;
this opens another possible direction for future work.

Finally, in [7] three different semantics for the output operation are studied in the
setting of a simple LINDA-based process calculus: instantaneous output (an output
prefix immediately unleashes the corresponding tuple in the dataspace), ordered out-
put (a reduction is needed to turn an output prefix into the corresponding tuple in the
dataspace) and unordered output (two reductions are needed to turn an output into an
available tuple, i.e. one to send the tuple to the dataspace and another one to make
the tuple available in the dataspace). In [7, 8] it is proved that the semantics can be
strictly ordered according to their expressive power, with the instantaneous semantics
being the most expressive one and the unordered semantics being the less expressive
one (actually, the latter semantics yields a no Turing complete language). According
to this terminology, the semantics we used in this paper for the output operation is in-
stantaneous; it would be interesting to discover whether our results still hold also under
different semantics for the output actions or not.

Future work This paper is one of the first attempts to classify languages according
to their communication primitive. As we have already said, a lot of work still remains
to be done. For example, it would be interesting to study more concrete languages,
maybe by encoding them in one of the calculi presented in this paper. Moreover, other
common features (such as synchrony) could be added to the picture. Finally, it would
also be interesting to prove stronger properties for the encodings of Section 4, when-
ever possible; indeed, since we were mostly interested in the impossibility results, we
intentionally exploited quite a weak form of ‘reasonabless’.
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