
Proc. of FGUC’04, ENTCS 138(1):23-42. c© Elsevier.

Security Policies as Membranes
in Systems for Global Computing 1

Daniele Gorla 2

Dip. di Informatica, Univ. di Roma “La Sapienza”, Italy
Dip. di Sistemi ed Informatica, Univ. di Firenze, Italy

Matthew Hennessy 3

Dep. of Informatics, Univ. of Sussex, Brighton (UK)

Vladimiro Sassone 4

Dep. of Informatics, Univ. of Sussex, Brighton (UK)

Abstract

We propose a simple global computing framework, whose main concern is code migration.
Systems are structured in sites, and each site is divided into two parts: a computing body,
and a membrane which regulates the interactions between the computing body and the
external environment. More precisely, membranes are filters which control access to the
associated site, and they also rely on the well-established notion of trust between sites. We
develop a basic theory to express and enforce security policies via membranes. Initially,
these only control the actions incoming agents intend to perform locally. We then adapt
the basic theory to encompass more sophisticated policies, where the number of actions an
agent wants to perform, and also their order, are considered.

Key words: Global Computing, Code Migration, Access Control,
Security Policies, Types.

1 This work has been partially supported by EU FET – Global Computing initiative, projects
MIKADO IST-2001-32222 and MyThS IST-2001-32617. The funding bodies are not responsible for
any use that might be made of the results presented here.
2 Email: gorla@di.uniroma1.it
3 Email: matthewh@susx.ac.uk
4 Email: vs@susx.ac.uk

1 Introduction

Computing is increasingly characterised by the global scale of applications and the
ubiquity of interactions between mobile components. Among the main features of
the forthcoming “global ubiquitous computing” paradigm we list distribution and
location awarness, whereby code located at specific sites acts appropriately to lo-
cal parameters and circumstances, that is, it is “context-aware”; mobility, whereby
code is dispatched from site to site to increase flexibility and expressivity; openness,
reflecting the nature of global networks and embodying the permeating hypothesis
of localised, partial knowledge of the execution environment. Such systems present
enormous difficulties, both technical and conceptual, and are currently more at the
stage of exciting future prospectives than that of established of engineering prac-
tice. Two concerns, however, appear to clearly have a ever-reaching import: security

and mobility control, arising respectively from openness and from massive code and
resource migrations. They are the focus of the present paper.

We aim at classifying mobile components according to their behaviour, and at
empowering sites with control capabilities which allow them to deny access to those
agents whose behaviour does not conform to the site’s policy. We see every site of a
system

k[[M |〉 P]]

as an entity named k and structured in two layers: a computing body P , where
programs run their code – possibly accessing local resources offered by the site – and
a membrane M , which regulates the interactions between the computing body and
the external environment. An agent P wishing to enter a site N must be verified by
the membrane before it is given a chance to execute in N . If the preliminary check
succeeds, the agent is allowed to execute, otherwise it is rejected. In other words,
a membrane implements the policy each site wants to enforce locally, by ruling on
the requests of access of the incoming agents. This can be easily expressed by a
migration rule of the form:

k[[Mk |〉 go l.P | Q]] ‖ l[[M l |〉 R]] → k[[Mk |〉 Q]] ‖ l[[M l |〉 P | R]] if M l `k P

The relevant parts here are P , the agent wishing to migrate from k to l, and l, the
receiving site, which needs to be satisfied that P ’s behaviour complies with its policy.
The latter is expressed by l’s membrane, M l. The judgement M l `k P represents l

inspecting the incoming code to verify that it upholds M l.

Observe that in the formulation above M l `k P represent a runtime check of all
incoming agents. Because of our fundamental assumption of openendedness, such
kind of checks, undesirable as they, cannot be avoided. In order to reduce their
impact on systems performance, and to make the runtime semantics as efficient as

possible, we adopt a strategy which allows for efficient agent verification. Precisely,
we adopt an elementary notion of trust, so that from the point of view of each l the
set of sites is consistently partitioned between “good,” “bad,” and “unknown” sites.
Then, in a situation like the one in the rule above, we assume that l will be willing to
accept from a trusted site k a k-certified digest T of P ’s behaviour. We then modify
the primitive go and the judgement `k as in the refined migration rule below.

k[[Mk |〉 goTl.P | Q]] ‖ l[[M l |〉 R]] → k[[Mk |〉 Q]] ‖ l[[M l |〉 P |R]] if M l `k
T P

The notable difference is in M l `k
T P . Here, l verifies the entire code P against M l

only if it does not trust k, the signer of P ’s certificate T. Otherwise, it suffices for l

to match M l against the digest T carried by go together with P from k, so effectively
shifting work from l to the originator of P .

Our main concern in this paper is to put the focus on the machinery a membrane
should implement to enforce different kinds of policies. We first distill the simplest
calculus which can conceivably convey our ideas and still support a non-trivial study.
It is important to remark that we are abstracting from agents’ local computations.
These can be expressed in any of several well-known models for concurrency, for
example CCS [12] or the π–calculus [13]. We are concerned, instead, with agents’
migration from site to site: our main language mechanism is go rather than intra-
site (i.e. local) communication. Using this language, we examine four notions of
policy and show how they can be enforced by using membranes. We start with an
amusingly simple policy which only lists allowed actions. We then move to count
action occurrences and then to policies expressed by deterministic finite automata.
Note that such policies are only concerned with the behaviour of single agents, and
do not take into account “coalitional” behaviours, whereby incoming agents – ap-
parently innocent – join clusters of resident agents – they too apparently innocent
– to perform cooperatively potentially harmful actions, or at least overrule the host
site’s policy. We call resident those policies intended to be applied to the joint,
composite behaviour of the agents contained at a site. We explore resident policies
as our fourth and final notion of policy. In all the cases, the theory adapts smoothly
to the various cases; we only need to refine the information stored in the membrane
and the inspection mechanisms.

Structure of the paper. In Section 2 we define the calculus used in this paper,
and start with the straightforward policy which only prescribes the actions an agent
can perform when running in a site. In Section 3, we enhance the theory to control
also how many (and not only which kind of) actions an agent wants to perform in
a site, and their order of execution. Finally, in Section 4 we extend the theory to
control the overall computation taking place at a site, and not only the behaviour
of single agents. The paper concludes in Section 5 where a comparison with related
work is also given. The theoretical results are proved in the full paper [7].

Agents P, Q, R ::= nil
∣∣∣ a.P

∣∣∣ goTl.P
∣∣∣ P |Q

∣∣∣!P

Systems N ::= 0
∣∣∣ l[[M |〉 P]]

∣∣∣ N1 ‖ N2

Fig. 1. A Simple Calculus

2 A Simple Calculus

In this section we describe a simple calculus for mobile agents, which may migrate
between sites. Each site is guarded by a membrane, whose task is to ensure that
every agent accepted at the site conforms to an entry policy.

2.1 The Syntax

The syntax is given in Figure 1 and assumes two pairwise disjoint sets: basic agent
actions Act, ranged over by a, b, c, · · · , and localities Loc, ranged over by l, k, h, · · · .
Agents are constructed using the standard action-prefixing, parallel composition and
replication operators from process calculi, [12]. The one novel operator is that for
migration, goTl.P . This agent seeks to migrate to site l in order to execute the
code P ; moreover it promises to conform to the entry policy T. In practical terms
this might consist of a certification that the incoming code P conforms to the policy
T, which the site l has to decide whether or not to accept. In our framework, this
certification is a policy that describes the (local) behaviour of the agent; thus, in
goTl.P , T will be called the digest of P .

A system consists of a finite set of sites running in parallel. A site takes the form
l[[M |〉P]], where l is the site name, P is the code currently running at l, and M is the
membrane which implements the entry policy. For convenience we assume that site
names are unique in systems. Thus, in a given system we can identify the membrane
associated with the site named l by M l. We start with a very simple kind of policy,
which we will then progressively enhance.

Definition 2.1 (Policies) A policy is any finite subset of Act ∪ Loc. For two
policies T1 and T2, we write T1 enforces T2 whenever T1 ⊆ T2. �

Intuitively an agent conforms to a policy T at a given site if every action it
performs at the site is contained in T, and it will only migrate to sites whose names
are in T. For example, conforming to the policy {info, req, home}, where info,
req are actions and home a location, means that the only actions that will be
performed are from the set {info, req} and migration will only occur, if at all, to

(r-act) l[[M |〉 a.P | Q]] → l[[M |〉 P |Q]]

(r-par)
N1 → N ′

1

N1 ‖ N2 → N ′

1 ‖ N2

(r-struct)
N ≡ N1 N1 → N ′

1 N ′

1 ≡ N ′

N → N ′

(r-mig) k[[Mk |〉 goTl.P | Q]] ‖ l[[M l |〉 R]] →

k[[Mk |〉 Q]] ‖ l[[M l |〉 P |R]] if M l `k
T P

Fig. 2. The reduction relation

the site home. With this interpretation of policies, our definition of the predicate
enforces is also intuitive; if some code P conforms to the policy T1 and T1 enforces

T2 then P also automatically conforms to T2.

The purpose of membranes is to enforce such policies on incoming agents. In
other words, at a site l[[M |〉Q]] wishing to enforce a policy Tin, the membrane M has
to decide when to allow entry to an agent such as goTl.P from another site. There
are two possibilities.

• The first is to syntactically check the code P against the policy Tin; an implemen-
tation would actually expect the agent to arrive with a proof of this fact, and this
proof would be checked.

• The second would be to trust the agent that its code P conforms to the stated
T and therefore only check that this conforms to the entry policy Tin. Assuming
that checking one policy against another is more efficient than the code analysis,
this would make entry formalities much easier.

Deciding on when to apply the second possibility presupposes a trust management

framework for systems, which is the topic of much current research. To simplify
matters, here we simply assume that each site contains, as part of its membrane,
a record of the level of trust it has in other sites. Moreover, we assume only three
possible levels: bad, unknown and good.

Definition 2.2 (Membranes) A membrane M is a pair (Mt, Mp) where Mt is a
partial function from Loc to {unknown, good, bad}, and Mp is a policy. �

2.2 The Operational Semantics

Having defined both policies and membranes, we now give an operational semantics
for the calculus, which formalises the above discussion of how to manage agent mi-
gration. This is given as a binary relation N → N ′ over systems; it is defined to be
the least relation which satisfies the rules in Figure 2. Rule (r-act) says that the
agent a.P running in parallel with other code in site l, such as Q, can perform the
action a; note that the semantics does not record the occurrence of a. (r-par) and
(r-struct) are standard. The first allows reductions within parallel components,
while the second says that reductions are relative to a structural equivalence. The
precise rules defining this equivalence are unsurprising and therefore left to the full
paper [7]; they state that ‘|’ and ‘‖’ are monoidal operators (with nil and 0 act-
ing as identities, resp.), and that replicated processes can be freely unfolded. The
interesting reduction rule is the last one, (r-mig), governing migration; the agent
goTl.P can migrate from site k to site l provided the predicate M l `k

T P is true. This
‘enabling’ predicate formalises our discussion above on the role of the membrane M l,
and requires in turn a notion of code P satisfying a policy T,

` P : T

With such a notion, we can then define M l `k
T P to be:

if M l
t (k) = good then (T enforces Mp

l) else ` P : Mp
l (1)

In other words, if the target site l trusts the source site k, it trusts that the professed
policy T is a faithful reflection of the behaviour of the incoming agent P , and then
entry is gained provided that T enforces the entry policy Mp

l (i.e., in this case,
T ⊆ Mp

l). Otherwise, if k can not be trusted, then the entire incoming code P has
to be checked to ensure that it conforms to the entry policy, as expressed by the
predicate ` P : Mp

l .

In Figure 3 we describe a simple inference system for checking that agents conform
to policies, i.e. to infer judgements of the form ` P : T. Rule (tc-empty) simply
says that the empty agent nil satisfies all policies. (tc-act) is also straightforward;
a.P satisfies a policy T and if a is allowed by T, and the residual P satisfies T. The
rule (tc-par) says that to check P | Q it is sufficient to check P and Q separately,
and similarly for replicated agents. The most interesting rule is (tc-mig), which
checks goT′l.P . This not only checks that migration to l is allowed by the policy,
that is l ∈ T, but it also checks that the code to be spawned there, P , conforms
to the associated professed policy T′. In some sense, if the agent goT′l.P is allowed
a entry into a site k, then k assumes responsibility for any promises that it makes
about conformance to policies.

(tc-empty)

` nil : T

(tc-act)

` P : T

` a.P : T
a ∈ T

(tc-mig)

` P : T′

` goT′ l.P : T
l ∈ T

(tc-repl)

` P : T

` !P : T

(tc-par)

` P : T ` Q : T

` P | Q : T

Fig. 3. Typechecking incoming agents

2.3 Safety

We have just outlined a reduction semantics in which sites seek to enforce policies
either by directly checking the code of incoming agents against entry policies, or more
simply by checking the professed policy of trusted agents. The extent to which this
strategy works depends, not surprisingly, on the quality of a site’s trust management.

Example 2.1 Let home be a site name with the following trust function

Mh
t : {alice,bob, secure} 7→ good .

Consider the system

S
4

= home[[Mh |〉P h]] ‖ bob[[M b |〉P b]] ‖ alice[[Ma |〉P a]] ‖ secure[[M s |〉P s]]

in which the entry policy of home, Mp
h, is {info, req, secure}, and that of secure,

Mp
s, is {give, home}. Since Mh

t (bob) = good, agents migrating from bob to home

are trusted and only their digests are checked against the entry policy Mp
h. So, if P b

contains the agent

goT1
home.(take.Q)

where T1 enforces Mp
h, then the entry policy of home will be transgressed. �

The problem in this example is that the trust knowledge of home is faulty;
it trusts in sites which do not properly ensure that professed policies are enforced.
Let us divide the sites into trustworthy and otherwise. This bipartition could be
stored in an external record stating which nodes are trustworthy (i.e. typechecked)
and which ones are not. However, for economy, we prefer to record this information
in the membranes, by demanding that the trust knowledge at trustworthy sites is
a proper reflection of this division. This is more easily defined if we assume the
following ordering over trust levels:

unknown <: bad and unknown <: good

(wf-empty)

` 0 : ok

(wf-g.site)

` P : Mp

` l[[M |〉 P]] : ok

l trustworthy

(wf-par)

` N1 : ok, ` N2 : ok

` N1 ‖ N2 : ok

(wf-u.site)

` l[[M |〉 P]] : ok

l not trustworthy

Fig. 4. Well-formed systems

This reflects the intuitive idea that sites classified as unknown may, perhaps with
further information, be subsequently classified either as good or bad. On the other
hand, good or bad cannot be further refined; sites classified as either, will not be
reclassified.

Definition 2.3 (Trustworthy sites and Coherent systems) In a system N , we
say the site k is trustworthy if M k

t (k) = good. N is coherent if for every trustworthy
site k, it holds that Mk

t (l) <: M l
t(l). �

Thus, if a trustworthy site k believes that a site l can be trusted (i.e., M k
t (l) = good),

then l is indeed trustworthy (as represented by M l
t (l) = good). Similarly, if it

believes l to be bad, then l is indeed bad. The only uncertainty is when k classifies
l as unknown: then l may be either good or bad. Of course, in coherent systems
we expect sites which have been classified as trustworthy to act in a trustworthy

manner, which amounts to say that code running at such a k must have at one time
gained entry there by satisfying the entry policy. Note that by using policies as in
Definition 2.1, if P satisfies an entry policy Mp

k, then it continues to satisfy the policy
while running at k (cf. Theorem 2.2 below).

This property of coherent systems, which we call well-formedness, can therefore be
checked syntactically. In Figure 4, we give the set of rules for deriving the judgement
` N : ok, of well-formedness of N . There are only two interesting rules. Firstly,
(wf-g.site) says that l[[M |〉P]] is well-formed whenever l is trustworthy and ` P : Mp.
There is a subtlety here; this not only means that P conforms to the policy Mp, but
also that any digests proffered by agents in P can also be trusted. The second
relevant rule is (wf-u.site), for typing unknown sites: here there is no need to
check the resident code, as agents emigrating from such sites will not be trusted.

Example 2.2 (Example 2.1 continued.) Let us now re-examine the system S in
Example 2.1. Suppose home is trustworthy, that is Mh

t (home) = good. Then, if S

is to be coherent, it is necessary for each of the sites bob, alice and secure also

(lts-act)

a.P
a
→ P

(lts-mig)

goTl.P
l
→ nil

(lts-repl)

P | !P
α
→ P ′

!P
α
→ P ′

(lts-par)

P1
α
→ P ′

1

P1 | P2
α
→ P ′

1 | P2

P2 | P1
α
→ P2 | P ′

1

Fig. 5. A Labelled Transition System

to be trustworthy. Consequently, S can not be well-formed. For example, to derive
` S : ok it would be necessary to derive

` goT1
home.(take.Q) : Mp

b

where Mp
b is the entry policy of bob. But this requires the judgement ` take.Q : T1,

where T1 enforces Mp
h. Since take 6∈ Mp

h, this is not possible. �

In well-formed systems we know that entry policies have been respected. So one
way of demonstrating that our reduction strategy correctly enforces these policies
is to prove two things: system well-formedness is preserved by reduction, and only
legal computations take place within trustworthy sites. The first requirement is
straightforward to formalize:

Theorem 2.1 (Subject Reduction) If ` N : ok and N → N ′, then ` N ′ : ok.

To formalise the second requirement we need some notion of the computations

of an agent. With this in mind, we first define a labelled transition system between
agents, which details the immediate actions an agent can perform, and the residual
of those actions. The rules for the judgements P

α
→ Q, where we let α to range over

Act∪Loc, are given in Figure 5, and are all straightforward. These judgements are
then extended to P

σ
→ Q, where σ ranges over (Act∪Loc)∗, in the standard manner:

σ = α1, . . . , αk, when there exists P0, . . . , Pk such that P = P0
α1→ . . .

αk→ Pk = P ′.
Finally, let act(σ) denote the set of all elements of Act ∪ Loc in σ.

Theorem 2.2 (Safety) Let N be a well-formed system. Then, for every trustwor-

thy site l[[M |〉 P]] in N , P
σ
→ P ′ implies that act(σ) enforces Mp.

3 Entry Policies

The calculus of the previous section is based on a simple notion of entry policies,
namely finite sets of actions and location names. An agent conforms to such a
policy T at a site if it only executes actions in T before migrating to some location
in T. However both the syntax and the semantics of the calculus are completely
parametric on policies. All that is required of the collection of policies is a binary
relation T1 enforces T2 between them, and a binary relation ` P : T indicating
that the code P conforms to the policy T. With any collection of policies, endowed

with two such relations, we can define the predicate M `k
T P as in (1) above, and

thereby get a reduction semantics for the calculus. In this section we investigate two
variations on the notion of entry policies and discuss the extent to which we can
prove that the reduction strategy correctly implements them.

3.1 Multisets as Entry Policies

The policies of the previous section only express the legal actions agents may perform
at a site. However in many situations more restrictive policies are desirable. To
clarify this point, consider the following example.

Example 3.1 Let mail serv be the site name of a mail server with the following
entry policy Mp

ms: {list, send, retr, del, reset, quit}. The server accepts client
agents performing requests for listing mail messages, sending/retrieving/deleting
messages, resetting the mailbox and quitting. Now, consider the system

S
4

= mail serv[[Mms |〉 P ms]] ‖ spam[[M s |〉 goTmail serv.(!send)]]

where T = {send}. According to the typechecking of Figure 3, we have that ` ! send :
Mp

ms. However, the agent is a spamming virus and, in practical implementations,
should be rejected by mail serv. �

In such scenarios it would be more suitable for policies to be able to fix an upper-
bound over the number of messages sent. This can be achieved in our setting by
changing policies from sets of agent actions to multisets of actions.

First let us fix some notation. We can view a multiset as a set equipped with an
occurrence function, that associates a natural number to each element of the set. To
model permanent resources, we also allow the occurrence function to associate ω to
an element with an infinite number of occurrences in the multiset. Notationally, eω

stands for an element e occurring infinitely many times in a multiset. This notation
is extended to sets; for any set E, we let Eω to denote the multiset {eω : e ∈ E}.

Example 3.2 (Example 3.1 continued.) Coming back to Example 3.1, it would be
sufficient to define Mp

ms to be {. . . , sendK, . . .} where K is a reasonable constant.
In this way, an agent can only send at most K messages in each session; if it wants
to send more messages, it has to disconnect from mail serv (i.e. leave it) and then
reconnect again (i.e. immigrate again later on). �

The theory presented in Sections 2.2 and 2.3 can be adapted to the case where
policies are multisets of actions. The judgment ` P : T is redefined in Figure 6,
where operator ∪ stands for multiset union. The key rules are (tc-act), (tc-par)
and (tc-repl). The first two properly decrease the type satisfied when typecheck-
ing sub-agents. The third one is needed because recursive agents can be, in general,

(tc-empty)

` nil : T

(tc-act)

` P : T

` a.P : T ∪ {a}

(tc-mig)

` P : T′

` goT′l.P : T ∪ {l}

(tc-par)

` P : T1 ` Q : T2

` P | Q : T1 ∪ T2

(tc-repl)

` P : T

` !P : T′
Tω enforces T′

Fig. 6. Typechecking with policies as Multisets

freely unfolded; hence, the actions they intend to locally perform can be iterated ar-

bitrarily many times. For instance, agent P
4

= ! send, satisfies policy T
4

= {sendω}.
Notice that the new policy satisfaction judgement prevents the spamming virus of
Example 3.1 from typechecking against the policy of mail serv defined in Exam-
ple 3.2.

The analysis of the previous section can also be repeated here but an appropriate
notion of well-formed system is more difficult to formulate. The basic problem
stems from the difference between entry policies and resident policies. The fact
that all agents who have ever entered a site l respects an entry policy Mp gives no
guarantees as to whether the joint effect with the code currently occupying the site
l also satisfies Mp. For instance, in the terms of Example 3.2, mail serv ensures
that each incoming agent can only send at most K messages. Nevertheless, two
such agents, having gained entry and now running concurrently at mail serv, can
legally send – jointly – up to 2K messages. It is therefore necessary to formulate
well-formedness in terms of the individual threads of the code currently executing at
a site. Let us say P is a thread if it is not of the form P1 |P2. Note that every agent
P can be written in the form of P1| . . . |Pn, n ≥ 1, where each Pi is a thread. So the
well-formedness judgment is modified by replacing rule (wf-g.site) in Figure 4 as
below.

(wf-g.sitem)

∀i . (Pi a thread and ` Pi : Mp)

` l[[M |〉 P1| . . . |Pn]] : ok

l trustworthy

Theorem 3.1 (Subject Reduction for multiset policies) If ` N : ok and

N → N ′, then ` N ′ : ok.

The statement of safety must be changed to reflect the focus on individual threads
rather than agents.

Theorem 3.2 (Safety for multiset policies) Let N be a well-formed system.

Then, for every trustworthy site l[[M |〉 P1| . . . |Pn]] in N , where each Pi is a thread,

Pi
σ
→ P ′

i implies that act(σ) enforces Mp.

3.2 Finite Automata as Entry Policies

A second limitation of the setting presented in Section 2 is that policies will some-
times need to prescribe a precise order for executing legal actions. This is very
common in client/server interactions, where a precise protocol (i.e. a pattern of mes-
sage exchange) must be respected. To this aim, we define policies as deterministic

finite automata (DFAs, for short).

Example 3.3 Let us consider Example 3.1 again. Usually, mail servers requires a
preliminary authentication phase to give access to mail services. To express this
fact, we could implement the entry policy of mail serv, Mp

ms, to be the automaton
associated to the regular expression below.

usr.pwd.(list + send + retr + del + reset)∗.quit

The server accepts client requests only upon authentication, via a user-
name/password mechanism. Moreover, the policy imposes that each session is reg-
ularly committed by imposing that each sequence of actions is terminated by quit.
This could be required to save the status of the transaction and avoid inconsistencies.

�

We now give the formal definitions needed to adapt the theory developed in
Section 2. We start by defining a DFA, the language associated to it, the enforces

predicate between DFAs and a way for an agent to satisfy a DFA. As usual [10],

a DFA is a quintuple A
4

= (S, Σ, s0, F, δ) where S is a finite set of states, Σ is the
input alphabeth, s0 ∈ S is the starting state, ∅ ⊂ F ⊆ S is the set of final states, and
δ : S×Σ → S is the transition relation In our framework, the alphabeth of the DFAs
considered is a finite subset of Act ∪ Loc. Moreover, for the sake of simplicity, we
shall always assume that the DFAs in this paper are minimal.

Definition 3.1 (DFA Acceptance and Enforcement) Let A be a DFA. Then

• Acps(A) contains all the σ ∈ Σ∗ such that σ leads A from state s to a final state;
• Acp(A) is defined to be Acps0

(A);
• A1 enforces A2 holds true whenever Acp(A1) ⊆ Acp(A2). �

We now formally describe the language associated to an agent. To this aim, we
exploit the notion of concurrent regular expressions (CRE, for short) introduced in
[6] to model concurrent processes. For our purposes, the following subset of CRE
suffices:

e ::= ε | α | e1.e2 | e1 � e2 | e⊗

ε denotes the empty sequence of characters, α ranges over Act∪Loc, ‘.’ denotes con-
catenation, � is the interleaving (or shuffle) operator and ⊗ is its closure. Intuitively,

if e represents the language L, then e⊗ represents {ε} ∪ L ∪ L�L ∪ L�L�L
Given a CRE e, the language associated to it, written lang(e), can be easily defined;
a formal definition is given in the full paper. Now, given a process P , we easily define
a CRE associated to it. Formally

CRE(nil)
4

= ε CRE(a.P)
4

= a.CRE(P)

CRE(goAl.P)
4

= l CRE(P1 |P2)
4

= CRE(P1) � CRE(P2)

CRE(!P)
4

= CRE(P)⊗

Definition 3.2 (DFA Satisfaction) An agent P satisfies the DFA A, written
` P : A, if lang(CRE(P)) ⊆ Acp(A) and, for every subagent of P of the form
goA′ l.Q, it holds that ` Q : A′. �

In the full paper, we prove that the enforcement predicate can be established effi-
ciently, while DFA satisfaction is decidable, but extremely hard to establish. This
substantiate our hypothesis that verifying digests is preferable to inspecting the full
code from the point of view computational complexity. We are now ready to state
the soundness of this variation. It simply consists in finding a proper notion of well-
formed systems. Like in Section 3.1, the entry policy can only express properties of
single threads, instead of coalitions of threads hosted at a site. Thus, we modifiy
rule (wf-g.site) from Figure 4 as below.

(wf-g.siteA)

∀i . Pi a thread and ∃s ∈ S . lang(CRE(Pi)) ⊆ Acps(Mp)

` l[[M |〉 P1| . . . |Pn]] : ok

l trustworthy

This essentially requires that the languages associated to each of the threads in
l are suffixes of words accepted by Mp (cf. Theorem 3.4 below). Since this may
appear quite weak, it is worth remarking that the well-formedness predicate is just
a ‘consistency’ check, a way to express that the agent is in a state from where it will
respect the policy of l.

Theorem 3.3 (Subject Reduction for automata policies) If ` N : ok and

N → N ′, then ` N ′ : ok.

Theorem 3.4 (Safety for automata policies) Let N be a well-formed system.

Then, for every trustworthy site l[[M |〉 P1| . . . |Pn]] in N , where each Pi is a thread,

it holds that σ ∈ lang(CRE(Pi)) implies that there exists σ′ ∈ Acp(Mp) such that

σ′ = σ′′σ, for some σ′′.

4 Resident Policies

Here we change the intended interpretation of policies. In the previous section a
policy dictated the proposed behaviour of an agent prior to execution in a site, at
the point of entry. This implied that safety in well-formed systems was a thread-
wise property (see rules (wf-g.siteM) and (wf-g.siteA)). Here we focus on policies
which are intended to describe the permitted (coalitional) behaviour of agents during
execution at a site. Nevertheless these resident policies are still used to determine
whether a new agent is allowed access to the site in question; entry will only be
permitted if the addition of this incoming agent to the code currently executing at
the site does not violate the policy.

Let us consider an example to illustrate the difference between entry and resident
policies.

Example 4.1 Let licence serv be the site name of a server that makes available K

licences to download and install a software product. The distribution policy is based
on a queue: the first K agents landing in the site are granted the licence, the following

ones are denied. The policy of the server should be Mp
s 4

= {get licenceK}. However
if this policy is interpreted as an entry policy, applying the theory of Section 3.1, then
the system grants at most K licences to each incoming agent. Moreover this situation
continues indefinitely, effectively handing out licences to all incoming agents. �

We wish to re-interpret the policies of the previous section as resident policies

and here we outline two different schemes for enforcing such policies. For simplicity
we confine our attention to one kind of policy, that of multisets.

4.1 Static membranes

Our first scheme is conservative in the sense that many of the concepts developed
in Section 3.1 for entry policies can be redeployed. Let us reconsider the migration
rule from Figure 2:

(r-mig) k[[Mk |〉 goTl.P | Q]] ‖ l[[M l |〉 R]] →

k[[Mk |〉 Q]] ‖ l[[M l |〉 P |R]] if M l `k
T P

(2)

Here the membrane M l only takes into consideration the incoming code P , and its
digest T, when deciding on entry, via the predicate M l `k

T P . But if the membrane
is to enforce a resident policy, then it must also take into account the contribution
of the code already running in l, R. To do so we need a mechanism for joining

policies, such as those of the incoming P and the resident R in (2). So let us assume
that the set of policies, with the relation enforces is a partial order in which every
pair of elements T1 and T2 has a least upper bound, denoted T1 t T2. For multiset
policies this is the case as t is simply multiset union. In addition we need to be

(ti-empty)

 nil : ∅

(ti-act)

 P : T

 a.P : T ∪ {a}

(ti-mig)

 P : T′

 goTl.P : {l}
T′ enforces T

(ti-repl)

 P : T

 !P : Tω

(ti-par)

 P : T1
 Q : T2

 P | Q : T1 ∪ T2

Fig. 7. Type inference for agents with policies as multisets

able to calculate the (minimal) policy which a process R satisfies; let us denote this
as pol(R). For multiset policies we can adjust the rules in Figure 6, essentially by
eliminating weakening, to perform this calculation; the resulting rules are given in
Figure 7, with judgements of the form
 P : T.

Definition 4.1 Define the partial function pol(·) over closed terms by letting pol(P)
to be the unique policy such that
 P : T, if it exists. �

With these extra concepts we can now change the rule (r-mig) in (2) to take the
current resident code into account. It is sufficient to change the side condition, from
M l `k

T P to M l, R `k
T P , where this latter is defined to be

if M l
t (k) = good then (Tt pol(R)) enforces Mp

l else ` P | R : Mp
l

Here if only the digest needs to be checked then we compare Tt pol(R), that is the
result of adding the digest to the policy of the resident code R, against the resident
policy Mp. On the other hand if the source site is untrusted we then need to analyse
the incoming code in parallel with the resident code R. It should be clear that the
theory developed in Section 3.1 is readily adapted to this revised reduction semantics.
In particular the Subject Reduction and Safety theorems remain true; we spare the
reader the details. However it should also be clear that this approach to enforcing
resident policies has serious practical drawbacks. An implementation would need to:

(i) freeze and retrieve the current content of the site, namely the agent R;

(ii) calculate the minimal policy satisfied by R to be merged with P ’s digest in order
to check the predicate enforces , or typecheck the composed agent P |R;

(iii) reactivate R and, according to the result of the checking phase, activate P .

Even if the language were equipped with a passification operator, as in [16], the
overall operation would still be computationally very intensive. Consequently we
suggest below another approach.

4.2 Dynamic membranes

In the previous approach we have to repeatedly calculate the policy of the current
resident code each time a new agent requests entry. Here we allow the policy in the
membrane to “decrease,” in order to reflect the resources already allocated to the
resident code. So at any particular moment in time the policy currently in the mem-
brane records what resources remain, for any future agents who may wish to enter;
with the entry of each agent there is a corresponding decrease in the membrane’s
policy. Formally we need to change the migration rule (2) to one which not only
checks incoming code, or digest, against the membrane’s policy, but also updates the
membrane:

(r-mig′) k[[Mk |〉 goTl.P | Q]] ‖ l[[M l |〉 R]] →

k[[Mk |〉 Q]] ‖ l[[M̂ l |〉 P |R]] if M l `k
T P � M̂ l

where the judgement M l `k
T P � M̂ l is defined as

let T′ =





T if M l
t(k) = good

pol(P) otherwise
in (T′ enforces Mp

l ∧

Mp
l = M̂ l

p t T′ ∧ M l
t = M̂ l

t)

First notice that if this migration occurs then the membrane at the target site
changes, from Mp

l to M̂ l
p. The latter is obtained from the former by eliminating

those resources allocated to the incoming code P . If the source site, k, is deemed to
be good this is calculated via the incoming digest T; otherwise a direct analysis of
the code P is required, to calculate pol(P).

This revised schema is more reasonable from an implementation point of view, but
its soundness is more difficult to formalise and prove. As a computation proceeds
no permanent record is kept in the system of the original resident policies at the
individual sites. Therefore well-formedness can only be defined relative to an external
record of what the resident policies were, when the system was initiated. For this
purpose we use a function Θ, mapping trustworthy sites to policies; it is sufficient
to record the original polices at these sites as we are not interested in the behaviour
elsewhere.

Then we can define the notion of well-formed systems, relative to such a Θ; this is
written as Θ ` N : ok and the formal definition is given in Table 8. The crucial rule
is (wf-g.site), for trustworthy sites. If l is such a site then l[[M |〉P]] is well-formed
relative to the original record Θ if Mp

ltpol(P) guarantees the original resident policy
at l, namely Θ(l).

Theorem 4.2 (Subject Reduction for resident policies) If Θ ` N : ok and

N → N ′, then Θ ` N ′ : ok.

(wf-g.site)

Θ ` l[[M |〉 P]] : ok

l trustworthy
(pol(P) t Mp) enforces Θ(l)

(wf-empty)

Θ ` 0 : ok

(wf-u.site)

Θ ` l[[M |〉 P]] : ok

l not trustworthy

(wf-par)

Θ ` N1 : ok, Θ ` N2 : ok

Θ ` N1 ‖ N2 : ok

Fig. 8. Well-formed systems under Θ

Theorem 4.3 (Safety for resident policies) Let N be a well-formed system

w.r.t. Θ. Then, for every trustworthy site l[[M |〉 P]] in N , P
σ
→ P ′ implies that

act(σ) enforces Θ(l).

5 Conclusion and Related Work

We have presented a framework to describe distributed computations of systems
involving migrating agents. The activity of agents entering/running in ‘good’ sites
is constrained by a membrane that implements the layer dedicated to the security of
the site. We have described how membranes can enforce several interesting kind of
policies. The basic theory presented for the simpler case has been refined and tuned
throughout the paper to increase the expressiveness of the framework. Clearly, any
other kind of behavioural specification of an agent can be considered a policy. For
example, a promising direction could be considering logical frameworks (by exploiting
model checking or proof checkers).

The calculus we have presented is very basilar: it is even simpler than CCS [12],
as no synchronization can occur. Clearly, we did not aim at Turing-completeness, but
at a very basic framework in which to focus on the rôle of membranes. We conjecture
that, by suitably advancing the theory presented here, all the ideas presented here
can be lifted to more complex calculi (including, e.g., synchronization, value passing
and/or name restriction).

Related Work. In the last decade, several calculi for distributed systems with code
mobility have appeared in literature. In particular, structuring a system as a (flat
or hierarchical) collection of named sites introduced the possibility of dealing with
sophisticated concrete features. For example, sites can be considered as the unity of
failure [5,1], mobility [5,3] or access control [9,15,8]. The present work can be seen
as a contribution to the last research line.

Similarly to [8], we have presented a scenario where membranes can evolve. How-
ever, the membranes presented in Section 4 only describe ‘what is left’ in the site.
On the other hand, the (dynamically evolving) type of a site in [8] always constrains
the overall behaviour of agents in the site and it is modified upon acquisition/loss of
privileges through computations.

We borrowed from [15] the notion of trust between sites. In loc. cit., agents
coming from trusted sites are accepted without any control. Here, we relaxed this
choice by examining the digest of agents coming from trusted sites. Moreover, we
have a fixed net of trust; we believe that, once communication is added to our basic,
the richer scenario of [15] (where the partial knowledge of a site can evolve during
its computation) can be recovered.

A related paper is [11]. The authors develop a generic type system that can
be smoothly instantiated to enforce several properties of the π–calculus (dealing
with arity mismatch in communications, deadlock, race control and linearity). They
work with one kind of types, and modify the subtyping relation in order to yield
several relevant notions of safety. The main difference with our approach is that we
have different kind of types (and, thus, different type checking mechanisms) for any
variation we propose. It would be nice to lift our work to a more general framework
closer to theirs; we leave this for future work.

Our work is also related to [14]. Policies are described there as deterministic
finite automata and constrain the access to critical sections in a concurrent functional
language. A type and effect system is provided that guarantees adherence of systems
to the policy. In particular, the sequential behaviour of each thread is guaranteed to
respect the policy, and the interleavings of the threads’ locks to be safe. Differently
from our paper, [14] has no code migration, and no explicit distribution; thus, only
one centralised policy is used.

Membranes as filters between the computing body of a site and the external
environment are also considered in [2,16]. There, membranes are computationally
capable objects, and can be considered as a kind of processes. They can evolve and
communicate both with the outer and with the inner part of the associated node, in
order to regulate the life of the node. This differs from our conception of membranes
as simple tools for the verification of incoming agents.

To conclude, we remark that our understanding of membranes is radically differ-
ent from the concept of policies in [4]. Indeed, in loc. cit., security automata control
the execution of agents running in a site by in-lined monitoring. This technique
consists in accepting incoming code unconditionally, but blocking at runtime those
actions not abiding the site policy. Clearly, in order to implement the strategy, the
execution of each action must be filtered by the policy. This contrasts with our
approach, where membranes are ‘containers’ that regulate the interactions between
sites and their environments. The computation taking place within the site is out of
the control of the membrane that, hence, cannot rely on in-lined monitoring.

References

[1] R. Amadio. On modelling mobility. Theoretical Computer Science, 240(1):147–176,
2000.

[2] G. Boudol. A generic membrane model. Draft, 2004.

[3] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[4] U. Erlingsson and F. Schneider. SASI Enforcement of Security Policies: A
Retrospective. In Proc. of New Security Paradigms Workshop, pages 87–95. ACM,
1999.

[5] C. Fournet, G. Gonthier, J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile
agents. In Proc. of CONCUR’96, volume 1119 of LNCS, pages 406–421. Springer,
1996.

[6] V. Garg and M. Raghunath. Concurrent regular expressions and their replationship
to Petri nets. Theoretical Computer Science, 96:285–304, 1992.

[7] D. Gorla, M. Hennessy, and V. Sassone. Security policies as membranes in systems for
global computing. Full version of this paper, available as Computer Science Research
Report 02/2004, Dept. of Informatics, Univ. of Sussex (UK).

[8] D. Gorla and R. Pugliese. Resource access and mobility control with dynamic privileges
acquisition. In Proc. of ICALP’03, volume 2719 of LNCS, pages 119–132. Springer-
Verlag, 2003.

[9] M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents.
Information and Computation, 173:82–120, 2002.

[10] J. Hopcroft and J. Ullman. Introduction to automata theory, languages and
computation. Addison-Wesley, 1979.

[11] A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. In Proceedings
of POPL ’01, pages 128–141. ACM, 2001.

[12] R. Milner. A Calculus for Communicating Systems. Springer-Verlag, 1982.

[13] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University
Press, 1999.

[14] N. Nguyen and J. Rathke. A typed static analysis for a concurrent policy based
resource access control. Draft, 2004.

[15] J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile agents.
In Proceedings of POPL ’99, pages 93–104. ACM, 1999.

[16] A. Schmitt and J. Stefani. The M-calculus: a higher-order distributed process calculus.
In Proc. of POPL’03, pages 50–61. ACM, 2003.

	Introduction
	A Simple Calculus
	The Syntax
	The Operational Semantics
	Safety

	Entry Policies
	Multisets as Entry Policies
	Finite Automata as Entry Policies

	Resident Policies
	Static membranes
	Dynamic membranes

	Conclusion and Related Work
	References

