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Abstract

The topic of this paper is the role-based trust-management language
RTy, a formalism inspired by logic programming that handles trust in
large scale, decentralised systems. We provide a purely operational se-
mantics for the language in which credentials can be established using a
simple set of inference rules. We then extend RTj to include time validity
and boolean guards that control the availability of credentials. In such an
extended framework, credentials are conditional on the availability of sup-
porting credentials in the execution context. In addition to a set-theoretic
and a logic-programming semantics, we develop for the extended language
a series of increasingly powerful inference systems for establishing these
conditional credentials. By means of simple but realistic examples, we
demonstrate the expressiveness and usability of our language, warranting
its integration into existing trust-management tools.
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1 Introduction

One of the current challenges in computer science is the development of
theoretically-based and practically-implementable approaches to access control
and authorisation in large-scale, distributed systems. Such problems arise, for
example, when independent users or organisations collaborate to achieve com-
mon goals, since collaborations are highly dynamic and usually heterogeneous:
membership, resources and policies vary in time and are usually locally con-
trolled by each collaborating principal; normally no form of centralisation exists.

Trust-management [6] is an approach to distributed access control where
decisions are based on policy statements made by multiple principals. A key
aspect of trust-management is delegation: a principal may transfer limited au-
thority on one or more resources to other principals. Usually, this is done by
means of credentials, i.e. pieces of information, passed from one principal to
another and used to establish the sending principal’s access rights. A chain of
one or more credentials acts as a capability, granting permissions to principals.

Traditionally, access control takes decisions by relying on the identity of
the resource requester. Unfortunately, when resource owner and requester are
unknown to each other, such a form of access control does not work. For this
reason, in [19] trust-management has been integrated with rdle-based access
control (RBAC) [26]. RBAC is a policy-neutral access control technology, whose
flexibility and expressiveness arise from the notion of réle, interposed in the
assignment of permissions to users. Users are authorised to use the permissions
assigned to the roles they belong to; thus, in contrast with traditional access
control mechanisms, RBAC regulates access to resources on the basis of the
activities users execute in the system, and not on their identity.

A Role-based Trust-Management Language RT is a family of role-based
trust-management languages able to express statements on policies in a suc-
cinct and intuitive way. It is inspired by trust-management languages such as
SPKI/SDSI [9, 8] and includes basic operations to perform complex forms of
delegation. RTy is the most basic language of the family; it is the “core” lan-
guage, in that it only includes the key aspects of RT and ignores programming
features, such as data types or constraints, whose only aim is to make the task
of programming more flexible.



We present the key features of RTy via the following simple example.

Example 1 An auditor can inspect an enterprise only if he is a member of a
society authorised by the government. In the UK, auditing societies are chosen
among those which are legally registered and fair. Assuming that B is a member
of a society BSoc that is both legally registered and fair for the UK standards,
then B can become an auditor for an enterprise Ent. This scenario can be
modelled by the following RTj-credentials:

Ent.auditor <+ UK.auditor

UK.auditor < UK.authSoc.member
UK.authSoc + UK.legalSoc M UK.fairSoc
UK .legalSoc + BSoc

UK.fairSoc + BSoc

BSoc.member + B
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The basic statement of RTy takes the form A.r <+ B (cf. (4), (5) and (6)
in Example 1): it states that the principal B belongs to the role r governed by
principal A. The basic form of delegation is expressed in RTy by means of a
credential A.r < B.s (cf. (1) in Example 1), stating that all members of role
s governed by B also belong to role r governed by A. Delegation can also be
partial, viz. in A.r <~ B.s M C.t (cf. (3) above): in this case, only the members
of both B’s role s and of C’s role ¢ belong to role r governed by A. Finally,
delegation itself can also be delegated, viz. in A.r < B.s.t (cf. (2)): in this
case, all members of C’s rdle t also belong to role r governed by A, for every C
belonging to B’s role s.

Two equivalent semantics of RT} are presented in [21, 19]: in the first paper,
the semantics of a set of RTj-credentials is given via a set-theoretic interpreta-
tion; this resembles a denotational semantics and is explicitly based on a fixpoint
construction. In the second paper, the semantics is given indirectly: RTj cre-
dentials are translated into a logic program and their semantics is obtained as
the minimal Herbrand model of the translation. The main intention of this
second approach is to provide an implementation of credential resolution.

The first contribution of our paper is a purely operational interpretation of
RTy credentials; we give a simple set of inference rules for deriving credentials
from a set of RTy statements. This inference system is an explicit formalisation
of the intuitive meaning of RTj statements and provides a convenient way of
working with them. The judgements of the inference system take the form P> c,
where P is a set of RTy credentials and ¢ is a RTp-credential. Thus, in the
context of Example 1, we will be able to derive that {(1), (2), (3), (4), (5),(6)} >
Ent.auditor < B.

RTj is intended as a model for real-life trust management; it is therefore
desirable to extend it with realistic features, while preserving its nature of “core”



formalism. The main contribution of this paper is in this direction: we add
time validity and (possibly negative) boolean conditions to limit the use of
RTy-credentials. We call the resulting formalism context-dependent credentials
(CDCs, for short), since the availability of a RTg-credential now depends on the
context where it is exhibited, that is the time of evaluation and the information
inferable from other credentials available in the execution context.

Context-dependent credentials, informally Example 1 can be made more
realistic by including timing information; indeed, several authors advocate cre-
dentials that are valid only for some fixed periods of time (see, e.g., [27, 22, 25]).
In our auditing scenario, it is quite natural to assume that B is a member of
BSoc only for a fixed period of time, say vs; moreover, UK’s fairness certificates
are usually valid only for a period of time, say vy; finally, BSoc becomes a legal
society only after its registration that happens, say, at time 7. Thus, credentials
(4), (5) and (6) should be generalised to

UK legalSoc <+ BSoc in [1,400) (7)
UK fairSoc < BSoc in vy (8)
BSoc.member < B in v (9)

stating that (4), (5) and (6) are only available after 7, during v; and during vs,
respectively. On the other hand, credentials (1), (2) and (3) are always valid, as
they express some time-independent facts. Now, by using (1), (2), (3), (7), (8)
and (9), we want to be able to derive that B can be an auditor for Ent during
all of the period

v Nwg N [T, 400). (10)

Another powerful feature which would be useful to model more realistic
policies is the ability to parameterise the validity of a credential on the the
availability /non-availability of other credentials in the execution context. This
can be useful to enforce, e.g., mutual exclusion or separation of duties. These
principles are easy to implement in RBAC [12] and thus it is then desirable to
have them also in RT'.

For example, in Example 1 it would be very natural to require that the
auditor to inspect Ent is not one of Ent’s employees. Thus, credential (1)
should be replaced by

if B € UK.auditor A B ¢ Ent.employees (11)
then Ent.aquditor + B

Now, from (2), (3), (7), (8), (9) and (11), we will be able to infer that B can
inspect Ent during all v; Nwve N |7, +00) only if the execution context does not
provide any credential proving that B is an employee of Ent in such a period,
i.e., only if it is mot possible to infer from the context the RTj-credential

Ent.employees + B (12)



The presence of negative premises makes the theory of CDCs considerably
more complex than that of RTy. We avoid potential inconsistencies by following
the well-known path put forward by the stable model semantics [14]; using this
technique we extend the standard semantics of RTy by providing both a set-
theoretic semantics for CDCs and a translation into logic programming. We
then adapt our inference system for RTg to CDCs; as with RTy, we believe that
this approach gives a very intuitive interpretation to CDCs. However, since
the inference system has negative premises, we have to be careful to avoid the
same unfoundedness problems present in the logic programming and in the set
theoretic approach. Following the ideas in [7], we define an inference system
allowing negative premises by following the construction of stable models for
general logic programs (i.e., logic programs with negative atoms). Then because
the same construction is used in all the three semantics for CDCs, we can claim
and prove that all these approaches do coincide.

The extended inference system now relies on judgements of the form R F_ ¢,
where RN is a set of CDCs and ¢ is a RTp-credential. Intuitively, it means that ¢
can be inferred, at time 7, from R, meaning that X has enough information to
satisfy all the positive guards of the CDCs used in the inference and none of their
negative guards. For example, we will have that {(2), (3), (7). (8),(9), 11)} F,
Ent.auditor < B, for every T € vy Nvy N [1,+00). On the other hand, it will
not be possible to derive Ent.auditor + B from {(2),(3),(7), (8),(9), (11), (12)}
at any time.

As a final contribution, we then enhance the judgements X +_ ¢ in two ways.
Firstly, we define the judgement N Ik ¢, stating that ¢ can be inferred from
N at any time 7 € v; in other words, we calculate the maximal set of times in
which the inference X F_ ¢ holds. Secondly, we define the judgement X I-? ¢,
stating that ¢ can be inferred from N at time 7 in any context that provides
enough information to satisfy the logical formula ¢; essentially ¢ describes what
can be inferred from the context and what cannot. This is useful in distributed
systems, where it would be unreasonable to assume that all users know at all
times the credentials currently available. Thus, when a user wants to construct a
certificate chain, he can rely on the credentials he owns (typically, those created
by himself and those granted to him by someone else); these are, however,
rarely sufficient to complete the chain. So, X IF2 ¢ could be used to describe
the contexts in which the user can obtain the privilege desired.

Example 2 Let us clarify this last point by means of a simple example. The
access to Alice’s mail can be described by the following CDC:

if Alice ¢ Ent.active

then Alice.readMail < Ent.secr (13)

It states that whenever Alice is not an active worker of the enterprise (maybe
because she is on vacation or because she is no longer working for it), the
enterprise’s secretary can read Alice’s mail. Clearly, Alice’s status is described
by the execution context where the credential is used. Hence, the credential
Alice.readMail < Ent.secr is available if the execution context provides a set of



credentials where Ent.active < Alice cannot be inferred. For example, imagine
that the execution context provides the credential

Ent.active < Alice in v (14)

where v is a proper time validity. Then, the credential set {(13), (14)} makes
available the credential Alice.readMail < Ent.secr at any time not included in
v. Now, what are the credentials a user Bob should provide to read Alice’s
mail? In other words, we need to find a set of CDCs that, together with (13)
and (14), allows Bob to derive the following goal:

Alice.readMail < Bob (15)
A possibility would be the context
Ent.secr < Bob and 1 € (—00,+00) \ v (16)

i.e., Bob can read Alice’s mail provided that Bob is one of the enterprise’s
secretaries while Alice is not an active worker of the enterprise (by (14), Alice
is an active worker only during v; thus, she is not an active worker during
(—o00,+00) \ v). Notice that context (16) works well only if v C (—o0,+00);
otherwise credential (13) cannot be used because credential (14) states that Alice
is a permanently active worker. In this latter case, we can only rely on a context
providing a credential set that permits to directly infer Alice.readMail < Bob.
O

Finally, we also discuss the close correspondence between our enhanced in-
ference systems for inferring CDCs and abductive logic programming [15]. This
is a variant of logic programming which, given a logic program (corresponding,
in our case, to a set of CDCs) and a goal (corresponding, in our case, to the
privilege desired), returns the minimal set of facts (corresponding, in our case,
to the execution context) enabling the derivation of the goal.

Structure of the paper The paper is structured as follows. In Section 2 we
recall some elements from the theory of logic programming, since, as we have
already mentioned, several constructions are taken from this field. In Section 3
we briefly recall RT, and its two known semantics, namely the set-theoretic and
the logic-programming one. Then, we present our inference system and state
its equivalence with respect to the previous two semantics. In Section 4 we
present CDCs and their set-theoretic, logic-programming and inference system
semantics. In Section 5 we present the enhanced inference systems for CDCs
and their abductive logic programming counterpart. Finally, in Section 6 we
conclude the paper by touching upon related work.

2 Elements of Logic Programming

We briefly recall the main definitions from the field of logic programming used
in the paper. For the sake of simplicity, several definitions will be tailored to
our needs; for a full presentation, see [2, 4].



We assume three numerable and pair-wise disjoint sets: wvariables, ranged
over by &,(,...; constants, ranged over by A, B,C,...; and (binary) relations,
ranged over by r,s,t,.... Atoms, ranged over by «, are triples consisting of a
relation and two variables or constants; for example, r(A, £) is an atom. Atoms
are called ground whenever they do not contain any variable. Literals, ranged
over by A, are either atoms or negated atoms. General logic clauses take the
form

ai— A, Ak

for £ > 0; when k£ = 0, we use the term wunit clause. All variables occurring in a
clause are meant to be universally quantified and a comma between two literals
stands for their conjunction. Thus, for example,

T(A: f) S S(Ba f) ’ _'t(-Dv C)
denotes the following first-order logic formula
V¢ —t(D,C) A s(B,§) = r(4,¢)

General logic programs, ranged over by P, are finite sets of general logic clauses.
A logic program is a finite set of clauses that do not contain negated atoms.

The semantics of a general logic program is given by its models. A model
is a triple formed by a nonempty set U, called universe, and two functions that
associate an element of the universe to each constant of the language and a
subset of U x U to each relation of the language, respectively; moreover, such as-
sociations must respect the logical constraints imposed by the program clauses.
The canonical model of a program is usually chosen among its Herbrand mod-
els. These are models whose universe is the set of constants of the language and
whose constants are interpreted by the identity function. A Herbrand model is
completely determined by the ground atoms that are true in it; we shall usually
identify it with the set of these atoms. A Herbrand model is minimal if no
proper subset of it is a Herbrand model of the program.

The semantics of a logic program (without negations) P is given by means
of its minimal Herbrand model, written ¥ (P), that always exists and is unique.

Proposition 2.1 ([29]) The minimal Herbrand model of a logic program P is
the least fizpoint of the immediate consequence operator Tp, defined as follows.
Given a (Herbrand) model M for P, we let r(A,B) € To(M) if there exist a
clause o :— aq,--- ,ap in P and a substitution o mapping variables in constants
such that r(A, B) = o(a) and o(e;) € M, for alli=0,... k.

However, for general logic programs the Herbrand model may not be unique or
may not even exist at all. Problems arise in programs such as

{r(4,B) = =r(4,B) } (17)

{r(A,B) :—= =s(C,D)

s(C,D) :— =r(A, B) ’} (18)



where validity of r(A, B) (possibly indirectly) relies on the non-validity of
r(A, B) itself. Several proposals have been appeared in literature to give a
semantics to general logic programs. However, as clearly stated in [14], “re-
searchers seem to agree that there can be no useful definition of canonical mod-
els for arbitrary programs.” Among all the available proposals, one of the most
general and intuitive is the stable model semantics [14].

Definition 2.1 (Stable Model Semantics) Let K be a set of ground atoms
from P.t Then,

1. the logic program P|k is obtained from P by deleting

e cach clause that has a negative literal —a with a € K, and

o all negative literals in the remaining clauses;
2. K is a stable model of P if K = U(P|k);

3. the stable model semantics of P is ¥(P|x), provided that it exists and it is
the only stable model of P.

The stable model semantics is one of the most general semantics for general
logic programs in the sense that it assigns a semantics to quite a large number
of programs. Indeed, it has been proved [14, 4] that stable models subsume the
iterated fixpoint semantics of stratified programs [3], the well-founded semantics
[30] and the perfect models of locally stratified programs [23], while it overlaps
with perfect models for programs that are not locally stratified. Moreover, it
coincides with the well-supported model semantics of [11]; this is a very reason-
able semantics as it only allows to infer atoms whose ‘explanation’ does not rely
on themselves. However, stable models still leave some programs without a se-
mantics. For example, (17) has no semantics, as it has no stable model, whereas
(18) has no semantics, as it has two different stable models (viz., {r(4, B)} and

{s(C,D)}).

3 The Language RT),

We start by briefly recalling the language RTp from [20] which, in turn, is a
generalisation of SPKI/SDSI [9, 8]. We then present an inference system for
RT), that captures precisely the existing semantics of the language, given by
both a set-theoretic interpretation and a logic programming interpretation.

3.1 Syntax

The syntax of RTj is depicted in Table 1. We assume two countable and pair-
wise disjoint sets, £ and R, of entity and réle names, respectively. Entity names

LA set of ground atoms from a general logic program P is any subset of R X C x C, where R
and C are the relations and the constants occurring in P.



ENTITY NAMES A,B,C,---€&

ROLE NAMES r st €ER

ROLES Ar,B.s,Ct,---€EXR

ROLE EXPRESSIONS e == B | B.s| Bst| BsnCit
CREDENTIALS c u= Ar<+e

Table 1: Syntax of RTy

start with (or simply are) capital letters, while role names start with (or simply
are) lower case letters. Rdles are compound entities made up of an entity name
and a role name, separated by a dot.

In RTj there are four kinds of rédle expressions, ranged over by e, that yield
four kinds of credentials, ranged over by c. Intuitively, credential A.r < B
means that A defines B to be a member of A’s r role. Credential A.r < B.s
means that A defines its r réle to include (all members of) B’s s rdle; this
represents a delegation from A to B, since B may affect who is a member of the
role A.r by issuing statements. Credential A.r < B.s.t means that A defines A.r
to include every member of C'.t, for every C' that is a member of B.s. Finally,
credential A.r < B.s I C.t means that A defines A.r to include every principal
who is a member of both B.s and C.t; this represents partial delegations from
A to B and to C.

In what follows, P denotes a finite set of RTj-credentials.

3.2 Semantics

We now recall from [18] two equivalent ways of giving a semantics to RTp.

Definition 3.1 The set-theoretic semantics of P, denoted as [P], is the least
fizpoint (w.r.t. point-wise set inclusion) of the following sequence of functions,
mapping réles to sets of entity names:

Ry
Riyn 2 @.cp f(Risc)

where ‘@ 7 is the point-wise extension of a function and f is a function that,
given a (partial) semantics R; and a credential A.r < e, returns all the entity
names that should be added to R;(A.r), as governed by e:

s the function mapping every réle to ()

.

{A.r — {B}}
{A.r = R;(B.s)}
{Ar— UC’ERi(B.s) Ri(C.t)}

f(R;, A.r + B.sit
f(Ri,Ar+ Bsn Cit

A
A
A
A

)
f(Rz,Ar + B.s)
)
)



(RT1) (RT?)

ceP P> Ar <+ B.s P>B.s<+ C
P>c P>Ar«C
(RTs)

P> Ar <« B.s.t P>B.s+ C P>Ct<+ D

P>Ar<« D

(RT4)
P>Ar<+ BsnCt P>B.s<+ D P>Ct<+ D

P>Ar<« D

Table 2: An Inference System for RTj

Definition 3.2 The logic-programming semantics of P, denoted as {P)), is the
minimal Herbrand model of LP(P), the logic program defined as

LP(P) £ U lc(e)

ceP

where function lc(-) translates every credential to a logic program clause as
follows:

lc(Ar < B) £ r(A,B) —

lc(Ar « B.s) 2 r(A€) = s(B,¢)
le(Ar ¢ Busit) 2 7(4,8) = s(B,(),#((,€)
lc(Ar« B.s 1 Ct) 2 r(A¢€) — s(B,§),t(C,¢€)

Proposition 3.1 (see [18]) r(A4, B) € (P) if and only if B € [P](A.r).

3.3 Inference system

We now provide an operational semantics for RTy via a very intuitive inference
system. The four kinds of credentials are handled by the four rules in Table 2,
where judgement P > ¢ should be read as: “using the credentials in P, we can
infer the credential ¢.” The rules should be self-explanatory.

We can now prove that the inference system provides an alternative way of
presenting the semantics of RTj.

Proposition 3.2 (Soundness and Completeness) P> A.r «+ B if and only
if B € [P](A.r).

Proof: For the ‘only if’ part (soundness), we work by induction on the depth
of the inference. The base case must rely on rule (RT;); thus, Ar < B € P
that implies B € Ry(A.r) C [P](A.r). For the inductive step, we have three
possibilities for the last rule used in the inference:

10



1. (RT3): in this case, there exists a C.s such that P » A.r « C.s and
P> C.s < B. By induction, B € [P](C.s), i.e. there exists a ¢ such that
B ¢ R;(C.s) but B € R;11(C.s). Moreover, P > A.r + C.s can only hold
because of (RT1); thus, A.r < C.s € P and B € R;12(Ar) C [P](A.r).

2. (RT3): in this case, there exists a C.s.t and a D such that A.r + C.s.t €
P, for P> C.s + D and P> D.t < B. By induction, D € [P](C.s), i.e.
there exists a i such that D ¢ R;(C.s) but D € R;;1(C.s); similarly B €
[P](D.t), i.e. there exists a j such that B ¢ R;(D.t) but B € Rj;1(D.t).
By definition, B € Ry,q4(i,j)4+2(A.r) C [P](A.r).

3. (RT4): in this case, there exists C.s and D.t such that A.r < C.s N D.t €
P, for P> C.s + B and P » D.t + B. By induction, B € [P](C.s) and
B € [P](D.t); we work similarly to case 2 above.

For the ‘if’ part (completeness), we work by induction on %, the index such
that B ¢ R;(A.r) but B € R;11(A.r); by Definition 3.1 such an index exists
and is unique. The base case is for i = 0; by construction, R; is built up by
only considering credentials of the form X.y < Z € P; thus, A.r + B € P and
we can conclude by using (RT;). For the inductive step, notice that R;yq is
built up from R; by only using credentials different from X.y < Z; thus, we
have three possibilities:

1. Ar «+ C.s € P, with B € R;(C.s). By induction, P » C.s < B and we
easily conclude by (RT1) and (RT,).

2. Ar <+ D.t.s € P, with C € R;(D.t) and B € R;(C.s). This case is similar
to the previous one, but exploits (RT3).

3. Ar < C.s N Dt € P, with B € R;(C.s) N R;(D.t). This case is similar
to the previous one, but exploits (RT}y). m

Example 3 (Example 1, formalised) We use the inference system to for-
mally derive a credential authorising B to inspect Fnt. To save space, we
shorten Ent as E, auditor as a, authSoc as aS, member as m, legalSoc as [,
fairSoc as f and BSoc as BS. Let P £ {(1),(2),(3), (4), (5), (6)}; then,

P>(3) P>(4) P> (5

P> (2) P>UK.aS < BS P> (6)
P> (1) P>UK.a+ B
P> E.a<+ B

where the leaf-nodes hold by rule (RT;), the top inference by rule (RT4), the
middle inference by rule (RT3) and the bottom one by rule (RT32). O

11



Everything from Table 1, plus

GUARDS:
g = tt| BEA.T‘| B¢A.r| g1 A g2

TIME VALIDITY:

v ou= [r,nl | ) | (]| (rm) | (—oo, 7]
| (_OO:T) | [T7 +OO) | (T,+OO) | (_OO7+OO)
| V1 U’U2 | V1 ﬂUQ | Ul\’U‘_)

CONTEXT-DEPENDENT CREDENTIALS:
x == 1ifgthencinwv

Table 3: Syntax of Context-dependent Credentials

4 Context-dependent credentials

We now extend RTj by adding boolean guards and time validity; the syntax is in
Table 3. A guard is either the always-satisfiable guard tt, the atomic statements
B € Arr and B ¢ A.r or a conjunction of guards. Time wvalidity is defined as
expected, with 7 ranging over time constants; we assume the obvious arithmetic
on validity. In particular, notice that

(—OO, +OO) \ (—OO, +OO) = w

where () can be represented in our syntax, e.g., as (11, 72) with » < 71.
Context-dependent credentials (CDCs, for short) take the form
if ¢ then ¢ in v, meaning “the credential ¢ is available during v, pro-
vided the guard g is satisfied by the execution context.” Finite sets of
CDCs are denoted by N. To make notation lighter, we write “if g then ¢”
to denote the CDC “if g then ¢ in (—oo,40c).”  Similarly, we write
[{P™2)

“c inv” for “iftt then ¢ in v.” Finally, we write “¢” to denote
“if tt then ¢ in (—o0, +00).”

4.1 Logic-programming semantics

As with RT,, we shall now give three semantics to sets of CDCs. We start
with the logic-programming approach, since the subsequent constructions will
be inspired by it. The semantics is calculated at a precise time instant, by only
considering those CDCs that are valid at that moment.

Definition 4.1 The logic-programming semantics of N at time 7, denoted as
(X)), is the stable model semantics of GLP(X), the general logic program defined
as

A

GLP,(N) = U glc(if g then ¢ in v)

if gthencinv € R
T€v

12



where glc(if g then c in v) £ 1c(c), cond(g) with

cond(tt) £ 0
cond(B € Ar) £ r(A,B)
cond(B ¢ Ar) 2 =r(A,B)
cond(g; A g2) = cond(g;), cond(ga)

and 1c(c) as in Definition 3.2.

We chose the stable model semantics because, apart from being one of the
most generous semantics for general logic programs (cf. Section 2), it can be
seen as “the sets of belief that a rational agent might hold” [14]. Quoting from
[14]:

“if K is the set of atoms I consider true, then any clause that has
a subgoal —a with a € K is, from my point of view, useless; fur-
thermore, any subgoal -« with a ¢ K is, from my point of view,
trivial. Then, I can simplify the clauses in GLP,(RX). If K happens to
be precisely the set of atoms that logically follow from the simplified
set of clauses, then I am ‘rational’.”

The ‘rational agent’ explanation of the stable model semantics given above can
be readily rephrased to intuitively justify the semantics for CDCs. Indeed, if K
is the entities-to-roles assignment that should hold, then any credential whose
guard contains B ¢ A.r, with (A, B) € K, is useless as its guard is not satisfied;
furthermore, any guard B ¢ A.r with r(4, B) ¢ K is trivially satisfied.

4.2 Set-theoretic semantics

An alternative way to define the semantics of CDCs is to directly state which
entities belong to every role. This can be done by adapting Definition 3.1 to the
current framework. Again, to avoid inconsistencies, we shall follow the approach
put forward by [14] and exploit the stable model construction. Moreover, like
before, the semantics will be parameterised with the evaluation time.

In the following definition, we shall exploit two auxiliary notations; let R
be a function mapping roles to sets of entity names. Then, N|g is the set of
CDCs obtained from X by deleting (a) each credential containing a negative
guard B ¢ A.r, with B € R(A.r), and (b) all negative guards in the remaining
credentials. Moreover, predicate R |= g is defined as follows:

REtt always

RE=EBeAr iff Be R(Ar)
RE=B¢ Ar iff B¢ R(Ar)
REgiNg ifft Rl=g¢g1 and R ¢

Definition 4.2 The set-theoretic semantics of X at time 7, denoted as [XN],, is
the function mapping réles to sets of entity names R such that:

13



1. R is stable for X at time 7, i.e. it coincides with the least fizpoint (w.r.t.
point-wise set inclusion) of the following sequence of functions:

Ry s the function mapping every réle to ()

A if gthencinv € R|
Rit1 = eas.t. Ril=g N 7€V " f(RZ’C)

where ‘@’ and f are defined in Definition 3.1.
2. R, if exists, is the only stable function for N at time 7.

The coincidence of these two semantics can be established via the following
Lemma.

Lemma 4.1

1. Let R be a stable function for X at time 7; then, the set K = {y(X,Z) :
Z € R(X.y)} is a stable model of GLP,(R).

2. Let K be a stable model of GLP(R); then, the function R that maps every
Axr to{B : r(A,B) € K} is a stable function for R at time 7.

Proof: For the first claim, observe that GLP,(X)|x = GLP,(X|g); thus, we have
to prove that K = W(GLP,(X|r)) that, by Proposition 2.1, holds if and only
if K is the least fixpoint of Tgrp, (x),), Wwhere T_ is the immediate consequence
operator. By exploiting a result in [29], we have that the least fixpoint of Tp is

UnZO T];n

where
T 2 1) TO(M)2 M T+ (M) £ Ty (T (M)

By Definition 4.2, R is the least fixpoint of a sequence of functions Ry, Ry, .. .;
by induction on n, we now prove that

Uogign TéLpT(N\R) ={y(X,2) : Ze R,(Xy) } (%)

This easily implies that K is a stable model of GLP,(X), since R = @, Rn-
The base case of (x) is trivial. To prove the inductive step, we work by double-
inclusion:

C:let 7(4,B) € UOSiSnJrl TéLPT(N\R); if r(A4,B) € Uogign TéLPT(NIR) the
thesis holds by a straightforward induction, since R,, C R,4+1. Other-
wise, by definition of the immediate consequence operator, there exist
a clause a :— ag, - ,ap in GLP,(X|g) and a substitution o such that
r(4,B) = o(a) and o(e) € Tgip (y),). for all i = 1,....k. By con-
struction, for every ¢, it holds that o(«;) = y;(X;, Z;) and, by induction,
Z; € R,(X;.y;). Moreover, notice that a :— «p,--- , a4 is the translation
of a CDC if g then c in v belonging to X\ such that 7 € v and R,, E g;
hence, B € R, 11(A.r), as desired.
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D:let B € Ryy1(Axr); if B € R,(A.r) the thesis holds by a straightforward
induction. Otherwise, by definition, there exists a CDC if g then ¢ in v
belonging to N such that 7 € v, R, |= g and B € f(Rn,c)(Ar). By
induction, {cond(Pos(g))} C Uo<i<n TéLPT(N‘R), where POS(g) contains
the positive guards occurring in g. We now reason by case analysis on c:

e ¢ = A.r «+ B. By definition of the immediate consequence operator,

r(A,B) € T&E(N‘R); this suffices to conclude.

e ¢ = Ar + C.s. In this case, GLP,(X|r) contains the logic clause
r(A, &) — s(C,§),cond(P0Os(g)); moreover, by definition of function
f, it holds that f(Rn,c)(A.r) = R,(C.s). By induction, s(C,B) €
Uo<i<n Térp. (w55 thus, r(A,B) € T(?LJ;(MR)’ as desired.

o ¢ = Ar + C.s.t. In this case, GLP;(R|g) contains the logic clause
r(A, &) — s(C,(),t(¢,€),cond(P0Os(g)); moreover, by definition of
function f, it holds that f(Rn,c)(A.r) = Uper,(cs Bn(D-1).
Thus, there must exist a D € R, (C.s) such that B € R,(D.t). By
induction, {s(C, D), t(D,B)} C Uo<i<n TéLPT(N\R); thus, r(4, B) €

n+1
TGLPT (N|r)’

o ¢ = Ar < C.s 1 Dit. In this case, GLP,(X|g) contains the logic
clause r(A4,¢) — s(C,¢&),t(D,¢&),cond(P0s(g)); moreover, by def-
inition of function f, it holds that f(R,,c)(A.r) = R,(C.s) N
R,(D.t). By induction, {s(C,B),t(D,B)} C Uo<i<n TéLPT(NIR);

thus, (4, B) € T&E(MR),

as desired.

as desired.

For the second claim, as we have already said, K is the least fixpoint of
TGLP,(N)|K and it holds that K = Jo<i<k TéLPT(N)lk’ where k is the least index
such that TécLPT(N)lk = Téﬁi(x)h{. Now, consider the sequence of functions

Ry, Ry, ... defined as follows:

Ry is the function mapping every role to

ry if gthencinv € R|
Rn+1 - @ s.t. R,|Eg A T€EV 8 f(Rnac)

We now prove that, for every n > 0, it holds that
Rn(Ar) = {B : 7(4,B) € UOSiSn TéLP,(N)\K} (1)

This suffices to conclude that R (= Ry) is stable for 8 at 7. The base case is
trivial. For the inductive case, we work by double-inclusion.

C:let B € Ryy1(Ar); if B € R,(A.r), the thesis holds by induction. Oth-
erwise, there exists in 8|g a CDC if A\, B; € A;.r; then ¢ in v, where
T € v, R, = B; € Aj.ry, for every i, and B € f(R,,c)(A.r). Hence,
N contains a CDC if A; B; € A;.r; A\, B} ¢ Al.r) then c in v, where
each negative guard B; ¢ Aj.r; is such that B; ¢ R(A;.r;). Hence,
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GLP(N)|k contains the logic clause r(A4,-) :— --- ,cond(A,; B; € A;.r;),
where r(A4,-) :— -+ = 1c(¢). Moreover, by definition of |=, it holds that
B; € R,(A;.r;); by induction, r;(A4;, B;) € Uo<i<n TéLPT(N)IK' Hence,
(4, B) € Uo<i<n+1 TéLpf(N)‘K, as desired.

2 : let 7(4,B) € Uo<i<ntt Tep_ vt if 7(4,B) € Uo<i<n Terp_ x> Ve
use the inductive hypothesis. Otherwise, there are four possible kinds of
clauses of GLP,(X) from which r(A, B) can derive:

1. 7(A, B) derives from a clause of the form
T(Aaf) = S(Caf)a'rl(AlaBl)a"'arh(Ah;Bh)a_'Tll(AllaBi)a"'a
ﬁT;(A;),BZI))‘, with  {s(C,B),r1(A1,B1), - ,71(An, Br)} -
Uo<i<n Torp, (w)) and  with ri(A;,B;) ¢ K, for ev-
ery j = 1,...,p. This implies that N contains a CDC
if /\?:1 B, € Ajr; A A§:1 B; ¢ Ajr; then Ar + B.s inuv,
for 7 € v; moreover, by induction, B € R,(C.s) and B; € R, (4;.14),

for every ¢ = 1,...,h. Hence, B € Rp+1(A.r), because
f(Rp,Ar < C.ss) = {Ar —» R,(C.s)} and R, |E B; € A;.r,
for every i.

2.,3., 4. If r(A,B) derives from clauses of the form

T(Aa B) T Tl(Ala Bl): o '7Th(Aha Bh): _'Tll(AllvBi)a T _'T;:)(A;ImB;))a

or T(A’é.) = S(Ca C)at((;ﬂg)ﬂrl (AlaBl)a v 'a’rh(Ahth)a_'r,l(AllaBi)a
'a_'r;)(A;)ﬂB;))’ or T(Aaé.) = S(C,g),t(D,f),’rl(Al,Bl),"',

mh(An, Br), =1 (Ay, By), -+, 1y, (A, By) the proof is similar.

Proposition 4.2 (Coincidence of the Semantics) 7(A4,B) € (XN)_ if and
only if B € [N](A.r).

Proof: For the ‘if’ part (the ‘only if’ part is proved similarly), let R = [R],.
We know, by Lemma 4.1(1), that the set K £ { y(X,Z) : Z € R(X.y) } is
a stable model of GLP,(X); we now prove that it is its only stable model. By
contradiction, let K’ be a different stable model of GLP,(X); by Lemma 4.1(2),
we know that the function R’ mapping A.r to {B : r(A, B) € K'} is stable for
N at time 7. But this contradicts the fact that R is the only stable function for
N at 7, that instead holds since R = [X].. Now, assume that B € [N].(A.r); by
construction, r(A4,B) € K = (X)) _. ]

4.3 Inference system

We now adapt the inference system of Table 2 to take guards and validity into
account. To simplify notation, in what follows we shall equate guards up-to
commutativity, associativity and idempotency of A, and up-to absorption of tt-
conjuncts. Thus, every CDC if g then ¢ in v will be considered in a ‘normal
form’ like

if /\iGI B; € Ajr; A /\je] B} ¢ A}.r;- then ¢ in v
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(CDCy)
if /\l B; € Airi A /\j Bj ¢ Aj.r; then cin v € R

Vi.R b, Ajri + B; ViR ¥, Alrl « B
T € v
N F.c
(CDC»)
N F_ Ar« B.s N F. Bs+C
N Ar«C

(CDCs)

N F. Ar« B.st N . Bs<+ C RN+ _Ct«+ D
N+ _Ar« D

(CDCy4)

NF Ar«BsnCt NF Bs+D XF _Ct+«D
N F Ar« D

Table 4: An Inference System for Context-dependent Credentials

for finite (and possibly empty) index sets I and J, with g logically equivalent
to /\iEI B, € Aj.r; A /\jeJ B.; ¢ A;T;

The inference system for guarded credentials is given in Table 4; it mainly
extends the inference rules given in Table 2 by replacing (RT;) with (CDCy)
and by considering only valid CDCs. Rule (CDC;) requires that, to use a
guarded credential, all its positive guards should be inferable and none of its
negative guards can be inferred. However, the latter requirement is far from
being innocuous: the presence of negative premises can undermine the well-
foundedness of the inference system. Moreover, as in the logic-programming
framework, sets of rules of the proposed form do not necessarily define a unique
relation. To deal with these problems, we slightly adapt the well-known theory
developed in [7] for transition systems with negative premises.

First, notice that inference systems are usually defined via inference sys-
tem specifications (as in Tables 2 and 4); these are (small) collections of rule
schemata, i.e. “meta-rules” which use names as placeholders; that is, they are
implicitly universally quantified. If the rule schemata have no negative premises,
they uniquely determine an inference set, i.e. the set of all judgements deriv-
able from them via a finite depth inference. More precisely, given a ‘positive’
inference system specification Z, we first instantiate the placeholders in 7 with
any possible name, thus obtaining a (possibly infinite) set of (closed) inference
rules Z'; then, the inference set associated to Z is FinInf(Z'), the set formed
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by all the judgements derivable via a finite depth inference using rules from Z'.

With negative premises, things become more delicate, because of well-
foundedness problems: the associated inference set can be defined in several
ways and, according to the definition chosen, an inference system specification
can determine zero, one or several inference sets. We now adapt the approach
of [7] to define an inference set for the inference system specification in Table 4.

Given a set of guarded credentials X and a time 7, we aim at defining a set
of RTy-credentials (X)), such that, if ¢ € (N]);, then ¢ is inferable from R at time
7. Hence, we guess a set of RTg-credentials P (the candidate inference set) and
use the ‘implicit’ definition put forward by stable models to define the inference
set associated to the inference system. Like in the stable model approach, P
plays the role of an ‘oracle,” stating what is inferable from R at 7 and what is
not.

In what follows, we let POS(g) and NEG(g) contain, respectively, the positive
and negative guards occurring in g, with tt belonging to POs(g). Moreover, we
use the shortcut X F_ g, defined as follows:

N tt 2 0
N+ BeAr 2 X+ _Ar« B
Nk B¢gAr 2 R F¥F_Ar+ B
N giAgs & XN g A NXF_g

Finally, we shall say that an inference rule holds in b, for N if it is obtained by
replacing the placeholders of a rule schema in F, with any réle and entity name
occurring in N.

Definition 4.3 Given a set of CDCs X, a time T and the inference system
specification b, of Table 4, the inference set associated with I, under R, written
(X)+, is the set of RTy-credentials P such that

1. P is stable for X and +, i.e.
P = FinInf(Strip(F,, N, P))

where Strip(k., R, P) is the set formed by all the instances of (CDC2),
(CDC3) and (CDCy) that hold in \-, for X and all the rules
if g then cin v € X TEW R+, Pos(g)
N F_c

T

such that . .
if g then cin v € ¥ TEV N F_g

R F.c
holds in b, for X and A.r < B ¢ P, for all B ¢ A.r belonging to NEG(g).

2. P, if exists, is the only stable set for X and .
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Soundness and completeness of the inference system w.r.t. the two semantics
presented in the previous subsections can be established as a consequence of the
following Lemma.

Lemma 4.3

1. Let P be stable for X and \,; then, the set K = {y(X,Z) : X.y + Z € P}
is a stable model of GLP,(R).

2. Let K be a stable model of GLP.(XN); then, the set P = FinInf(Strip(F,
,N,{A.r < B : r(A,B) € K})) is stable for X and +.

Proof: For the first claim, we have that Strip(F,,N,P) +_ A.r < B if and
only if A.r < B € P, since P = FinInf(Strip(F,,R,P)). Now, we prove that,
for every n > 0, it holds that

Uo<i<nt1 TéLP;(N)‘K ={r(4,B) : Strip(t;,\,P) - Ar+ B
with an inference of depth < n}

where GLP/ (RX) has the same stables models as GLP(R); this easily implies that
K is a stable model of GLP,(X). GLP.(R) is defined similarly to GLP,(X) but
glc(if g then c¢ in v) now introduces two clauses: r(A,-) :(— ---,r'(4,A) and
n'(A, A) :— cond(g), where 1c(¢) = r(A,:) :— --- and n is a fresh relation
symbol (one for every clause). We work by induction on n. We skip the the base
case, since it can be adapted from the inductive one by assuming no positive
guards, except tt. We work by double-inclusion.

D : let Strip(k,,R,P) F, A.r « B with an inference of depth n+ 1; we reason
by case analysis on the last rule used in the inference.

e (CDCQCy): then, Strip(k;,R,P) contains a CDC if A\, B; € A;.r; A
N;Bj ¢ Aj.rj then Ar « C.s in v, where 7 € v, with each B; ¢
Aj.r; such that Aj.r; < B; ¢ P and with each B; € A;.r; such that
Strip(F,,R,P) k. A;.r; + B; with an inference of depth at most n.
Moreover, Strip(k-, N, P) k. C.s < B with an inference of depth at
most n. By definition of Strip, N contains the CDC if A, B; € A;.riA
A;Bj ¢ Ajrj then Ar « C.s in v; hence, GLP,(R)|x contains
the logic clause r(A4,¢) — s(C,&),cond(A; B; € Aj;.r;); moreover,
by induction, ({S(C, B)} UUZ Ti(Aia Bz)) g UOSiSn-l—l TéLPT(N)lK . By
deﬁnit‘ion of Tgrp, (R)|x > We have that r(A4, B) € UOSiSn+2 TéLPT S
as desired.

e (CDCy), (CDC3) and (CDCy): similar to the previous case.

C: let r(A,B) € Téﬂgf(mlk. By construction, r(A, B) derives from a clause of

GLP.(X) that can assume four forms:

L T(Aaé) = s(C’,f),r'(A,A) and T/(AvA) = Tl(AlyBl)a"'a
Th(AhvBh)a_'rll(AllvBi)a"'a_'r;c(A;wB;e)a with T;(A;aBI) ¢ K,

7

19



for every i = 1,..,k, and with {s(C,B),r"(4,A)} C
U05i§n+1 TéLPT(N)|K; thus, {Tl (AlvBl)’ T a'rh(Ahv Bh)} -
Uo<i<n TéLPT(N)lk' This implies that XN contains a CDC
if /\?:1 B; € A;ri A /\f:1 B} ¢ A;.r; then Ar + C.s in v,
for 7 € v; moreover, by induction, Strip(k,, N, P) . C.s + B with
an inference of depth at most n and Strip(k,,N,P) F,. A;.r; + B;

with inferences of depth at most n — 1. By definition,
Strip(-.,X,P) k. Ar <« B with an inference of depth at
most n + 1.

2.,3., 4. The cases for r(A,B) — r'(A,A), r(4,&) — s(C,{),
t(¢,6), " (A, A) and r(A4,¢) — s(C,&),t(D,&),r' (A, A) are similar.

For the second claim, it suffices to prove that Strip(,,RN,P) = Strip(-,
R, {A.r < B : r(A,B) € K}). We work by double-inclusion. In both cases,
the portion of these sets containing instances of rules (CDCs), (CDCj3) and
(CDCy) coincide; thus, we only examine the case for (CDCy).

C : let Strip(F,,R,P) contain the inference rule

if g then ¢ in v € X TEV N F_Pos(g)
N

e

By definition of Strip, it holds that
if g then ¢ in v € X TEW NF.g
Nk, c

is an instance of F, and that X.y < Z ¢ P, for every Z ¢ X.y belonging
to NEG(g). It suffices to prove that y(X,Z) ¢ K. If it was not the case,
we would have that there exists an index k such that y(X, Z) ¢ TécLPT(N)IK

but y(X, Z) € Té“lj,lr(x)‘l(. By induction on k, we prove that X.y + Z € P.
For the base case, it must be that y(X,Z) comes from a clause
Y(X,Z) = —ri (AL, BY), - g (A, By), of GLP,(R), with 7% (A%, BY) ¢
K, for every j; hence, X contains a CDC if /\j B} ¢ A, r; then X.y <
Z in v, with 7 € v. By definition, Strip(F-,,R, {A.r + B : r(A,B) €
K}) contains the rule

if/\ng'géA;,r;thenA.r(—BinveN TEV
N Xy« Z

and so X.y « Z € FinInf(Strip(k,, R, {Ar + B : r(A,B) € K})) ="P.

For the inductive step, y(X,Z) can come from four kinds of
clauses; we just examine one case, the other ones being simi-
lar. Let y(Xaé.) = S(Cvf)a'rl(AlyBl)a'"a,rp(ApaBp)a_'Tll(AllaBi)a"'a
-1, (A, By) belong to GLP,(X), with r}(A}, B}) ¢ K, for every j, and
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with {s(C,Z2),r1(A1,B1), -, mp(Ap,Bp)} C TécLPT(N)\K' Hence, N con-
tains a CDC if A\; B; € A;,ri AN\; B; ¢ Aj,r; then X.y + C.s in v,
with 7 € v; by definition, Strip(k,,R,{A.r + B : r(A,B) € K}) con-
tains the rule
if N\i Bi€Ai,riN\; B; ¢ A7 then X.y - C.sin v €N
TEUVU NI—T/\iBiEAi,ri
N Xy+Cs

Moreover, by induction, {C.s < Z,A1.rqy < By, - ,Ap.rp < By} C P;
thus, by definition of FinInf(-), it holds that Strip(k,,R,{Ar < B :
r(A,B) € K}) +,. C.s < Z and Strip(k-,N,{Ar < B : r(A,B) €
K}) k. A;.r; « By, foreveryi. Thus, Strip(k,,R,{A.r < B : r(A,B) €
K}) b, Xy« Z,ie. Xy« Z€eP.

D : let Strip(F.,N,{A.r + B : r(A, B) € K}) contain the inference rule
if g then ¢ in v € X TEWV N F_Pos(g)

N F_¢

T

By definition of Strip, it holds that

if g then ¢ in v € X TEV NF.g
N oc

is an instance of ., and that y(X, Z) ¢ K, for every Z ¢ X.y belonging
to NEG(g). It suffices to prove that X.y < Z ¢ P. If it was not the
case, we would have an inference of X.y < Z from Strip(k,,N, {A.r +
B : r(A,B) € K}); we work by induction on the depth of such an
inference to prove that y(X,Z) € K. For the base case, we have that
Strip(--, R, {A.r < B : r(A, B) € K}) contains the rule

if/\jB;gEA;,r}thenX.y(—ZinveN TEWV
N Xy« 2

with 7%(A%, B;) ¢ K, for every j. Hence, GLP,(X)|x contains the unit
clause y(X,Z) :— and, hence, y(X,Z) € K. For the inductive step,
we reason by case analysis on the last rule used in the inference; all the
cases are similar, and we just give a representative sample, i.e. by using
(CDCy,). In this case, X contains a CDC if A\;B; € A;;ri A\; B} ¢
A%, ri then Xy « C.s in v, with 7 € v, with Strip(F,, 8, {Ar < B
r(A,B) € K}) F, Cs « Z, with 7(A}, B}) ¢ K, for every j, and with
Strip(k, X, {Ar « B : r(A,B) € K}) k. A,.r; « B, for every i.
Thus, by induction, ({s(C, Z)}UlJ, 7i(A4s, B;)) € K; moreover, GLP,(X)|x
contains the clause y(X, &) :— s(C, &), 11 (A1, B1), - -+, 7p(Ap, Bp); hence, K
must contain y(X, Z). -
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Proposition 4.4 (Soundness and Completeness) r(A,B) € (X)) _ if and
only if Aor + B € (N),.

Proof: Like the proof of Proposition 4.2, but relying on Lemma 4.3. ]

Example 4 (Example 1, continued) We now use the inference system to
formally justify (10) and (12). Let v = [r,400) be the time validity of (4).
Now, let X 2 {(2),(3),(7),(8),(9),(11)} and use the abbreviations introduced
in Example 3, plus e for employees; then, pick any 7 € v Nv; N vy and, by rule
(CDCy), infer

NF_(3) RF_(7) XNFE_(8)

N F_(2) X +_UK.aS « BS Nk, (9)
(11) e X N+ UK.a+ B
X ¥, Ee+ B
N+ _E.a+ B

Clearly E.e < B cannot be inferred from X (at any time) and, like before, the
leaf-nodes hold by rule (CDCy), the top inference by rule (CDCy), the middle
inference by rule (CDCj3) and the bottom one by rule (CDCs).

Now, consider X' £ R U {(12)}; in this case, the inference shown above no
longer holds because now, trivially, X' +_ E.e < B. If we assume (12) be valid
only in v’, then the inference shown above holds only in (vNv; Nwe) \v'. O

To conclude, let us point out two aspects of the last example. Firstly, (11) is
still an approximation of realistic auditing behaviour, since it is also reasonable
to let B become an Ent’s auditor not only if he is not a current employee of Ent,
but also if he has not been an employee recently. This feature can be modelled
with CDCs as follows: add the credential

Ent.recentEmpl + B in [r', 7' + 7]

where 7' is the instant in which B stops to be an employee of Ent and 7 is the
offset after which it is assumed that B can inspect Ent. Moreover, replace (11)
with

if B € UK.auditor A B ¢ Ent.employees N B ¢ Ent.recentEmpl
then Ent.auditor < B

Secondly, there is some room for improvements is the definition of (11); com-
pared with (1), its weakness is that we must specialise the credential to every
possible B. A better solution would be something like

Ent.auditor < UK.auditor M —Ent.employee

We do not believe that such a feature would radically change the theory pre-
sented in this paper; nonetheless, we leave its investigation for future research.
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5 Deriving Contexts for Execution

Context-dependent credentials, as the name suggests, depend on the context
where the credential is exhibited, namely the other credentials available and the
exact time of evaluation. So it is of interest, given a set of CDCs, to deter-
mine some constraints on the execution context that enable a desired inference,
whenever possible. This turns out to be fundamental in large-scale distributed
systems where users have partial views of their execution context.

As we have already discussed in Section 1, a context is a pair (XN;7) that
defines the set of CDCs made available and the time of the evaluation. The
problem we now want to solve is the following:

given a set of CDCs XN (representing the credentials available to a
user) and a goal ¢, which are the assumptions that should be made
on the execution context in order to derive the goal?

As in the previous sections, we shall follow two lines of work: firstly, we
adapt the inference system of Section 4.3 to also derive constraints on the envi-
ronment, both on the execution time and on the CDCs it must provide or not
provide; secondly, we enhance the logic-programming semantics of Section 4.1
with features taken from the field of abductive logic programming.

5.1 Adapting the Inference System

For the sake of presentation, we shall give the inference system in two steps:
we first give an inference system that calculates the maximal time validity in
which a certain RTy-credential can be inferred from a given set of CDCs; then,
we give an inference system that calculates a minimal set of CDCs that must
be added to the given set of CDCs to infer a certain RTy-credential. Clearly,
the two systems can be combined, but this would complicate the presentation.
Moreover, a nice feature of these inference systems is that they have no negative
premises; this makes it trivial to define the inference set associated with them.

5.1.1 Inferring Time Validity

The revised inference system enhances judgements of the form X +_ ¢ to yield
the new judgements
R Ik, c

Intuitively, X Ik, ¢ means that, at any time 7 € v in which N has a semantics,
it is possible to derive the credential ¢ from N.

The inference rules are in Table 5. The key rule is (Tvy): it states that a
CDC can be exploited whenever it is valid, whenever its positive premises are
satisfied, but not when any of its negative premises may hold. Clearly, the base
case of the inference system is (Tvy) involving a CDC whose guard is tt. Rules
(Tva), (Tvs) and (Tv,) simply state that an inference rule can be applied only
if all its premises hold. Finally, rule (TVs) states that, if a RT, credential ¢ can
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(Tv1)
if /\Z B; € Airi A /\j Bj ¢ Aj.r; then cin v € N
Vi.R Ik, Ajr « B; Vi R Ik, Al < B

R IFwnnsv\U; v €

(TVQ)
NIk, Ar+Bs R, Bs«C

N Iy, o, AT C

(TV3)
N b, Ar<Bst X, Bs+«C NI, Dt D

N by, nog oy AT < D

(TV4)
NIk, A7+ BsNCt R, Bs«D RI, Ct«D

R IFy Avgnog AT < D

(Tvs)
R Iy ¢ R Iy

Ry, Uy €©

Table 5: Inferring Time Validity

be inferred both with validity vy and with validity vs, then ¢ can be inferred
with validity v U vs.

Notice that I+, generalises F_: indeed, the former coincides with the latter
whenever v = [r,7]. Moreover, since in general there are several possible ways
to infer a certain RTp credential ¢ from X, rule (TVs) can be used several times
to enlarge ¢’s validity. We now want to isolate all those inferences in which
(Tvs) has been used to enlarge as much as possible the validity.

Definition 5.1 An inference terminating in X I+, c is called maximal if and
only if

1. there exists no v' D v such that X I, ¢, and
2. every its sub-inference terminating in X Ik, ¢, for ¢ # ¢, is mazimal.

The first requirement ensures that (TVvs) has been used as much as possible to
infer the validity of ¢. The second requirement of the Definition ensures that
this property is propagated through all the inference tree. We are interested in
maximal inferences since they guarantee that the v; and v; in the premise of
(Tvy) are the maximal time validity for A;.r; < B; and A;.r;- — B}, respec-
tively; thus, for these inferences we can prove soundness and completeness of
IF,, by means of Proposition 5.2 whose proof relies on the following Lemma.
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Lemma 5.1 R F_ c implies that there exists a v containing T such that X |-, c.

Proof: It suffices to mimic the derivation for N |_ ¢ by replacing every applica-
tion of rule (CDC;) with an application of rule (T'V;); v will be the intersection
of the validity of all the CDCs used in the inference and will be at least [r, 7].
u

Proposition 5.2 (Soundness and completeness for maximal inferences)
Let X I, ¢ be a mazimal inference and (X)), be defined. Then, X +_ ¢ if and
only if T € v.

Proof: By induction on the depth of X I ¢. For the base case, N must contain
a CDC if tt then ¢ in v. If 7 € v, we trivially conclude thanks to (CDCjy).
Vice versa, assume by contradiction that there is a 7/ ¢ v such that X F_, ¢
but then the inference leading to X I+, ¢ would not be maximal, because of
Lemma 5.1.

For the inductive step, we reason by case analysis on the last rule used; the
most difficult cases are when using (Tv;) and (Tvs). In the first case, we have
that X contains a CDC if A;B; € A;.r; A \; Bj ¢ Aj.r; then c in v', with
v= (" N N;v)\ Uj vj. By induction, & F_ A;.r; < B; if and only if 7 € v;
and X k. Aj.ri « B; if and only if 7 € v;; hence, ¥ ¥ Al.ri < Bj if and
only if 7 ¢ v;. We then work like in the base case. If X Ik, ¢ terminates with
an application of (TVvs), then v = vy Uwvy. This case is less straightforward,
because judgements X I+, cand X Ik, c are, in general, not maximal.? Let
R F_ ¢; by Lemma 5.1, there exists a v’ containing 7 such that X I+ , ¢. Now,
it must be that v’ C v, otherwise X I, ¢ would not be maximal; we trivially
conclude. Vive versa, let 7 € v and let R |-, ¢ be the deepest sub-inference
of X I, ¢ whose premises do not entail ¢ (hence, X Ik, ¢ has been obtained
via an application of (TV;), for i # 5) and such that 7 € v’. By definition of
the rules in Table 5, each of these premises has a validity containing 7; since
these premises have been obtained via maximal inferences, by induction we can
replace I+ with F_. Now, apply (CDC;) and easily conclude. [ |

Example 5 (Example 2, formalised) Consider the set of CDCs X =
{(13), (14)}; when does it make the credential Alice.readMail + Ent.secr avail-
able (if ever)? As we said informally before, such a credential can be used at
any time not included in v. We now formally derive this statement. By using
(Tvy), this can be done easily:

(13) e X N Ik, Ent.active < Alice

N 1o, 4ooy\0 Alice.readMail < Ent.secr

Indeed, (13) is a time-independent credential, i.e. it holds in all (—oo, +00).

2They can be maximal whenever vy C w2 or vice versa, i.e. when the inference terminates
with a ‘trivial’ application of (TVs), that is always possible. In this case, the proof relies on
a straightforward induction.
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Now, consider the credentials

Ent.active + Ent.inMission (19)
Ent.inMission < Alice in v’ (20)

and the set X' = R U {(19),(20)}. Intuitively, (19) states that employees of
Ent that are out on a mission are still active, whereas (20) states that Alice is
in mission during v’. Now, the inference previously shown becomes (with the

obvious shorthands for entity and role names, plus I standing for ”‘(_00, Jroo))
NIk Ea+ Ei NIk, Ei+ A
NIk, Ea+ A NIk, Ea<+ A
(13) e & N Ik, Ba+— A
N1 (oo, oo\ (vuw) AT < E.s
and states that Ent.secr can read Alice’s mail only outside v U v'. O

5.1.2 Inferring Environmental CDCs

The second inference system enhances judgements of the form N F_ ¢ to yield
judgements like
N [

Intuitively, ® IF¢ ¢ means that it is possible to derive the credential ¢ from N
at time 7 in any execution context providing enough CDCs to satisfy ¢. Here,
we let ¢ range over propositional formulae over the atoms B € A.r, i.e.

¢ u=tt| BeAr| -¢| di1Ad2| 41V

We shall equate propositional formulae up-to commutativity, associativity and
idempotency of both A and V, and up-to absorption of identity elements.

The aim of propositional formulae is to characterise sets of CDCs. Formally,
the satisfiability relation is defined as follows:

N FE, tt iff [N], exists
N FE, BeAr iff B € [N]-(A.r)
R E, —¢ N E, ¢

NE, d1Ads R E, ¢ and X E;
RN E 1V iff N F; ¢ or XN Er ¢

The inference rules are in Table 6. The key rule is (ENVy): it states that
a CDC can be exploited whenever it is valid and in any context enabling the
inference of its positive premises but not enabling the inference of its negative
premises. However, notice that we can always trivially infer A.r « B if the
context provides it at time 7; this justifies the new rule (ENvy).
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(ENVo)

R IFPEAT A B
(ENV1)
if /\z B; € Airi A Aj Bj ¢ Aj.r; then cin v € N

rev  Vi.N IF Ajr; «— B;

Nidi A Nj—(BjeAsr)) .
-

N -

(ENV;))
NI Ar« Bs RN IF2Bs«C

N IF1792 Ar e C

(ENV3)
NI Ar« Bst R IF2Bs«C NI Ct« D

R F2A2N98 4 p o D

(ENV4)
RIF'Ar« BsnCt RN IF2Bs« D RN IFCt+« D

R Fe1792793 g p e D

Table 6: Inferring Environmental Credentials

Also in this case, notice that IF¢ generalises F_ : the former coincides with
the latter whenever ¢ is tt, up-to absorption of boolean constants. Moreover, a
rule similar to (Tvs)

NI e N IF2c

N (FO1VO ¢

could also be introduced in this inference system. However, it would only make
N ¢ ¢ more descriptive, in the sense that the formula ¢ would describe different
possible contexts enabling the inference of ¢ from R at time 7. Indeed, differently
from Ik, (where rule (TVs) was crucial to prove Proposition 5.2), we can prove
soundness and completeness of [F¢ without any requirement on the strategy
used in the inference of X 12 c.

Proposition 5.3 (Soundness) If N IF? ¢, then RUN' F_ ¢, for any set of
CDCs X' such that XNUN' F, ¢.

Proof: First, notice that X U X' E,. ¢ implies that X U X’ has a (logic-
programming/set-theoretic/inference-based) semantics; thus, F_ is meaningful.
The proof is by induction on the depth of X IF% ¢. We have two possible base
cases:

27



e (ENVy): in this case, ¢ = A.r + B. By definition of =, RUX' F, B € A.r
implies that B € [N U X'].(A.r); by Propositions 4.2 and 4.4, this entails
NUN F_Ar«+ B.

e (ENvy): by hypothesis, X must contain a CDC if tt then ¢ in v, for
v 3 7 and ¢ = tt. Then, trivially, RUX' F_c.

For the inductive step, we reason by case analysis on the last rule used; we only
consider the case in which the inference terminates with (ENV;), since the other
ones rely on a simple induction. In this case, we have that Y contains a CDC
if \,B;€ Air; A /\j B; ¢ A}.r;- then ¢ in v and that X IF% A;.r; + B;, for
every i; moreover, ¢ = A\, ¢; A /\j —(B} ¢ A.r}). By induction, RUN' |=; ¢;
(that holds since RUN' =, ¢) implies that NUR' +_ A;.r; < B;. If we prove
that XNUN' F_ Aj;r; < By, for every j, we can conclude by (CDC;). By
contradiction, assume that there exists a j such that RUN' +_ A;.r; < Bj;
then, by Propositions 4.2 and 4.4, RUR' |=, B} € A’.r}, in contradiction with

NUN =, . m

Proposition 5.4 (Completeness) If (R UN'), exists and RUR' F_ ¢, then
there exists a ¢ such that RURX' E. ¢ and X M2 c.

Proof: If ¢ = A.r « B, the proof is simple: by Propositions 4.2 and 4.4,
[N UN], exists and associates B to A.r; hence, RUXN' F, B € A.r and, by rule
(ENVg), X IFBEAT Ay < B. Let ¢ # A.r < B; in this case, it must be that
NUN contains x £ if A, Bi € 4;.ri A \; B} ¢ A}.r} then ¢ in v such that
T € v, RURN' F_ A;r; + By, for every i, and NUN' ¥ A%.r; < B, for every j.
We now prove that we can always find a y such that RUN' E_ /\j B ¢ Al.r.
By contradiction, suppose that every y entailing c have at least one j such that
NUR F; B; € Aj.r;. This fact, together with Proposition 5.3 and (ENVy),
would imply that RUR' I A%.r; + BY; thus, we would have no means to infer
NUN F_ e So, choose one of the x’s whose negative guards are not satisfied
by R U (as we have just proved, at least one exists). As proved before, for
every i there exist a ¢; such that RUN' B, ¢; and R IF%i A;.r; + B;; trivially,

RUN' E, A és A\, (B} € AlLrt) and, by (Exvy), N N2 A A e
as desired. |
Example 6 (Example 2, formalised) Consider again the set of CDCs R =
{(13), (14)}; which constraints should be put on the environment to let Bob
read Alice’s mail (if possible)? As we have already informally said, the context
must provide enough information to infer that Bob is a secretary of Ent while
Alice is not active. We now formally derive this statement. Let 7 ¢ v; by using
(Envy), (ENVg) and (ENV3), we have

N FAEEe Ar o Bs R IFPEEs ps B

N |pAEEa A BEEs 4p o B
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where A ¢ FE.a is the obvious shortcut for —=(A € E.a).

On the contrary, pick up 7 € v. Now, since X =, A € E.a, there exists no
N such that NUN' =, A ¢ E.q; hence, in no context, the Ent’s secretaries can
read Alice’s mails when she is active, as desired. O

5.2 Abductive Logic Programming

The inference system given in Section 4.3 provides a way to decide, given a set
of CDCs, which knowledge can be derived from it; as we have proved, such an
inference system closely corresponds to the stable model semantics of a general
logic program originating from the set of CDCs, see Proposition 4.4. The in-
ference systems presented in Section 5.1 extend the system of Section 4.3 by
providing more information, i.e. they describe the requirements an execution
context, should satisfy in order to derive a given goal. It is then natural to look
for a logic-programming counterpart of such inference systems.

There is an intimate correspondence between the inference systems of Sec-
tion 5.1 and a variant of logic programming, called abductive logic programming
(ALP) [15]. Apart from theoretical interest, such a correspondence is also of
practical use, since well-established proof procedures [16, 13, 10] and tools [1]
for ALP provide us with a more tractable and automatable way of working with
CDCs.

Informally, ALP seeks to derive, given a general logic program P and a goal
r(A, B), a set of unit clauses P’ such that:

e from PUP’, we can derive r(A, B), and
e P UP satisfies some form of ‘consistency.’

More precisely, we have the following definition.

Definition 5.2 (Abducible explanation) Given a general logic program P
and a goal (A, B), an abducible explanation of r(A, B) in P is a set of unit
clauses P' such that the stable model semantics of P UP' contains r(A, B).

Intuitively, P U P’ is ‘consistent’ if it has a stable model semantics (i.e., it has
a semantics according to Definition 2.1); moreover, it can be used to derive
r(A, B) only if its stable model contains such an atom.

5.2.1 Relationship between the semantics

We now prove a correspondence result between the semantics defined by the
inference system in Table 6 and the abducible explanations of Definition 5.2.
To this end, we first need to convert a set of unit clauses into a set of CDCs.
This is carried out by function UC-CDC(-), whose formal definition is:

0
Ar« B
UC-¢DC(P1) U Uc-cDC(P2)

uc-cnc(f)
vc-cnc(r(A, B) :— )
UC-CDC(P1 U Py)

> 1> >
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Moreover, we say that ¢ respects X at time 7 if there is a set of CDCs X' of
the form A.r + B (with a tt-guard and a (—o0,+00) time validity) such that
N |=; ¢ and [NUN], exists.

Proposition 5.5 If P is an abducible explanation of (A, B) in GLP(R), then
N IF¢ A.r < B, for some ¢ such that X UuC-cDC(P) F, 6.

Proof: By definition, the stable model semantics of P U GLP,(X) contains
r(A,B). Now, consider X U Uc-cDC(P); clearly, GLP,(X U Uc-cDc(P)) =
P UGLP,(X). Hence, by Propositions 4.2 and 4.4, XU Uuc-CDC(P) . A.r < B
and, by Proposition 5.4, we easily conclude. ]

Proposition 5.6 If R ¢ Ar < B and ¢ respects N at time T, then
there exists an abducible explanation P of r(A,B) in GLP.(X) such that
N U Uc-cDC(P) E; ¢.

Proof: By hypothesis, there is a set of CDCs X’ of the form if tt then A.r +
B in (—o0,+00) such that X' =, ¢ and [R U N[, exists. Notice that, because
of the form of the CDCs in X', we also have that RUNX’ |=, ¢. Then, by Propo-
sitions 5.3 and 4.4, GLP,(X’) is the required abducible explanation of r(A, B)
in GLP,(RN). [ ]

5.2.2 Exploiting Tools for ALP

We now show how to exploit the CIFF tool [10, 1] for ALP to automate the
inference systems of Tables 5 and 6. To this end, we first need to introduce time
validity of CDCs in their translation to logic clauses; this can be achieved by
exploiting constraints, that have been introduced in ALP in [17] and that can
be handled by CIFF. Now, general logic clauses can have in their premises more
general predicates, like tests for equality or ordering relations among values and
variables of arbitrary data types, such as integers or reals. Moreover, to reduce
the space search, CIFF also uses some integrity constraints (not to be confused
with constraints over data types) of the form A;,---, Ay = a. Intuitively,
integrity constraints are used to select, among all the abducible explanations,
only those which satisfy all such implications. In our framework, we shall exploit
very simple integrity constraints, but more sophisticated scenarios could also be
considered.

To include timing information in the translation of sets of CDCs, from now
on we shall always work with ternary relations r(A4, B, (). Intuitively, r(A, B, ()
extends r(A, B) in that the constraints involving variable ¢ in the definition
of the predicate r define the validity of the atom. For example, the CDC
if tt then A.r + B in [r, +00) is translated into the clause r(A, B,() :— { > T,
meaning that B belongs to A.r at any time ¢ not less than 7. We denote with
(R] the translation derived from that presented in Definition 4.1 with this ex-
tra feature, that allows us to ignore the evaluation time in defining the logic
program associated to N.

Two further technical devices are needed for CIFF to work properly.
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1. Firstly, the clauses must be given as so-called iff-definitions. Intuitively,
given a general logic program P, the iff-definition associated with it is
obtained by grouping all the clauses for the same atom r(-,-,-) in P

1"(-’-’-) :— Dl 5 “ e 5 1"(-’-’-) :— Dk
into the iff-definition
r(-,++) :—: Dy V.-V Dy

where D; denotes a conjunction of literals and constraints. The resulting
set of iff-definitions is denoted as IFF(P). Clearly, to do so, we first need
to remove any constant from the left-hand side of a general logic clause;
this can be easily done by using a (new) variable in the definition and
adding an equality constraint stating that the new variable must be equal
to the old constant. For example,

T(A;B;C) = CZT

becomes

r(fl:f?:() = fl = A:f? = B;C > T

This task can be easily carried out automatically.

2. The second technical point required by the CIFF proof procedure is to
clearly distinguish predicates that are abducible from those defined by
the given logic program. This is needed to ensure that all the results re-
turned by the procedure are minimal. To this aim, we exploit the integrity
constraints and add to them (that are initially empty) the implication

67‘(617627() = T(fl;f?a()

where 4, is a new relation symbol. We denote by IC(P) the resulting set
of integrity constraints and let d,, be an abducible predicate.

As a consequence, we need to translate the given goal A.r < B accordingly,
i.e. as 6, (A, B, ) where here ( is meant to be existentially quantified. We denote
with G(A.r < B) such a translation. Intuitively, an abducible explanation for
G(A.r + B) induces a time validity (derived from the constraints over ¢) and
some knowledge that must be provided by the environment (derived from the
abducible predicates) under which the goal can be inferred.

The input of CIFF is derived from a given set of CDCs and a goal A.r < B
and takes the form

(IFF((RD); IC({R); G(A.r + B))

as described above. The CIFF proof procedure essentially manipulates sets of
formulas that are either atoms or implications. It calculates a tree of such sets
(thus called nodes) with the property that each node is obtained from its father

31



by applying one rule to the formulas occurring in the father. There are several
rules; for a precise discussion of them, see [10]. The procedure terminates when
all nodes are final, i.e. they contain sets of formulas to which no more rule
can be applied. A final node is successful if it does not contain contradictions;
otherwise, it is called failed.

The root of the tree is formed by the goal and by all the integrity constraints.
The output of CIFF is a set of pairs of the form (P;T'), one for each successful
node of the computed tree; P contains the abducible atoms in the node and
T its constraints. It has been proved in [10] that, for every returned (P;T"),
there exists an abducible explanation of the goal ,(A4, B,({) in {X); such an
explanation is P, where P’ is obtained from P by removing §,.(4, B, () and o
is any substitution of values for variables satisfying I'. Vice versa, in [10] it is
also proved that, if all the derivations in CIFF are finite and failing, then no
abducible explanation for the given input exists.

Example 7 (Example 2, by means of CIFF) To conclude, let us show in
some detail how Example 2 is handled by CIFF; this should also informally
illustrate the rules underlying CIFF. The original setting provides the set of
CDCs {(13), (14)} and the goal (15), with v = [0,10] in (14), for example. This
is translated to the following input for CIFF:3

(P;IC;6-(4, B, ())

where P is the following general logic program in iff-form, associated to

{(13), (14)}

p & { r(&,£,0) 1 —: & = A, s(E,&,(),na(E, A, Q) }
a(§3a£4a<):_: 53:Ea£4:‘4’<205<§10

and IC is the following set of integrity constraints.

Ic & { 6r(&1.62,0) = r(&,&,0) }
6&(63)54;() = a(flaf?:()

CIFF now builds the following tree. The root node is
N(]: 6T(A5Ba<) 3 IC.

It then uses 6, (4, B, () and the first integrity constraint from IC (by means of
unification and modus ponens) to derive

Ny : 46.(A,B,(), r(A,B,(), IC.
It then replaces (A4, B, ) with the body of its iff-definition in P and derives

N2 : 6T(A7B7C)’A:A’S(E’B’C)’_‘G(E7A’<)7IC

3To save space, we have shortened Alice as A, Bob as B, Ent as E, active as a, readMail
as r and secr as s.
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that can be simplified to
NS: (ST(A,B,C),S(E,B,C),"G(E,A,C),IC.
Then, it replaces a(E, A, () with the body of its iff-definition in P and derives

N4 : 6T(A:B:<)7S(E7B7C)’IC’
~(E=E,A=A,(>0,(<10).

This node has four children; two of them are failure nodes

N51: (S/,-(A,B,C),S(E,B,C),E#E,IC
N2: 6,.(A,B,(),s(E,B,(),A# A,IC

while the other two ones are successful

Ng: (S/,-(A,B,C),S(E,B,C),C<O,IC
Ng: (S,.(A,B,C),S(E,B,C),C>IO,IC.

From N2 and NZ, we infer that an abducible explanation for A.read < B is the
context ({ Ent.secr < B}; 1), for 7 € (—00,0) U (10, +00); this exactly coincides
with (16). O

6 Conclusions and Related Work

The main contribution of our work is the extensions we have proposed for in-
troducing dynamic considerations into RTp. The availability of CDCs is inter-
mittent, either because their time validity can (temporarily or permanently)
expire or because formerly available CDCs, required to satisfy their guards,
can become (temporarily or permanently) not available. This feature reflects
timed privileges [27, 22, 25] and consequently makes mechanisms to explicitly
introduce/remove credentials redundant.

An important source of expressiveness of an access control model is the tem-
poral dimension that permissions have in many real-world situations: permis-
sions are often limited in time or may hold only for specific periods of time.
Moreover, permissions can also be issued/revoked according to the context
where they are calculated. Context-dependent credentials, presented in this
paper, are a simple but powerful way to model both these features.

It has to be said that the temporal dimension is present in the RT family
from its birth (see the language RT} in [19]). However, every form of negation
has been always intentionally omitted, to keep the semantical development of
the language simple. As shown in the examples throughout this paper, we be-
lieve that some policy specifications intrinsically rely on negative requirements;
thus, we believe that the use of negation will have to be confronted if the goal
is a highly flexible model capable of supporting the specification of complex
protection requirements.

Unfortunately, the presence of negation creates problems when defining the
semantics of a language. Usually, there are legal terms that either have no
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semantics or whose semantics is not uniquely definable. The stable model ap-
proach assigns a semantics to all those terms whose derivability does not depend
on themselves as assumptions. As an example, in our framework every set of
CDCs containing if B ¢ A.r then A.r + B in v will have no (stable model) se-
mantics. However, this is acceptable, since the previous CDC must not be read
as “if B is still not a member of A.r, then include B in A.r” (that could be mean-
ingful, in some cases) but it must be read as “B is a member of A.r whenever
B is not a member of A.r” that sounds contradictory. Similarly, sets of CDCs
containing if B ¢ A.r then C.s + D in v and if D ¢ C.s then A.r + B in v
have similar problems. However, we believe that policy specifications relying
on these kinds of CDCs are ‘ill-formed’ and should not be considered in the
implementation of actual security systems.

Finally, we want to stress the usefulness of the inference systems in Sec-
tion 5.1: it is really desirable to have automatic tools that assist in the def-
inition of security specifications. The inference systems we have presented in
this paper are simple, but theoretically well-founded, aids to the definition of
the proper validity of certificates, or the contextual information required for the
proper functioning of a set of certificates. This turns out to be fundamental
mainly in large-scale distributed systems where users only have partial views of
their execution context.

Related work A different approach that makes the policies defined by RTy-
credentials dynamic is given in [28]; this contains a security-typed imperative
language whose main feature is the possibility of programming policy modifi-
cations. The main focus of the paper is on controlling information flow, but
security levels are expressed by means of roles, whose membership is made dy-
namic by the possibility of modifying role-definitions during execution. This
approach embeds policy modifications for RTy into a full-fledged programming
language and exploits the resulting framework for purposes different from ours;
for this reason, they take an orthogonal approach and exploit type systems to
rule out unwanted information flow.

Default logic [24] is one of the pioneering work in the field of non-monotonic
reasoning (an example of which is also logic programming with negation). In de-
fault logic, there are ordinary inference rules and default rules, that are triples of
the form “(pre-requisites, justifications, conclusion)” stating that the conclusion
can be derived from the pre-requisites, provided that there is no evidence that
the justifications might be false. To increase expressiveness, both pre-requisites
and justifications can contain negative judgements; hence, also in default logic
there are problems in giving semantics to a set of default rules: there can be
zero, one or more than one possible semantics for a given set of rules. Again,
like in logic programming, several choices could be taken to solve this problem,
one of which strongly resembles the stable model approach. Default rules are
quite similar to the rule (CDCy), where the positive premises correspond to
pre-requisites and negative premises to justifications.

A somewhat related work is [5] where an access control model with periodic
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temporal intervals associated to authorisations is given. An authorisation is
automatically granted in the specified intervals and revoked when such inter-
vals expire. Deductive temporal rules with periodicity are provided to derive
new authorisations based on the presence or absence of other authorisations in
specific periods of time. Like in our approach, possible inconsistencies deriving
from negative requirements are handled by the stable models approach; how-
ever, [5] does not consider the powerful form of delegation put forward by linked
roles, such as A.r.s in RTj.

RT, is the most basic language of the RT family. In [19], all the members
of the family are presented: RT; adds to RTp parameterised roles, which can
express attribute fields; RT> adds to RT; logical objects, which can group log-
ically related objects together so that permissions about them can be assigned
together; RTT provides manifold réles and réle-product operators, which can
express threshold and separation-of-duty policies; RT'P provides delegation of
role activations, which can express selective use of capacities and delegation of
these capacities. The semantics of all these languages is given via a translation
from credentials to negation-free logic programs; thus, we do not foresee any
problem in applying our enhancements of RTj to the other members of the RT
family.

To conclude, notice that in this paper we have only considered what in
[20] is called ‘membership queries’, that is, our guards only test whether a
given entity belongs to a given role or not. More sophisticated queries are
considered in that paper and could be integrated in our framework; for example,
two other reasonable guards could be A.r C {By,...,B;} and A.r C B.s, or
their negations. We leave such an integration for future work.
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