
Journal of Logic and Algebraic Programming, 78:665 – 689. c©Elsevier, 2009.

Dynamic management of capabilities in a network
aware coordination languageI

Daniele Gorlaa,, Rosario Puglieseb,∗

aDipartimento di Informatica, Università di Roma “La Sapienza”
bDipartimento di Sistemi e Informatica, Università di Firenze

Abstract
We introduce a capability-based access control model integrated into a linguis-
tic formalism for modeling network aware systems and applications. Our access
control model enables specification and dynamic modification of policies for con-
trolling process activities (mobility of code and access to resources). We exploit a
combination of static and dynamic checking and of in-lined reference monitoring
to guarantee absence of run-time errors due to lack of capabilities. We illustrate
the usefulness of our framework by using it for implementing a simplified but
realistic scenario. Finally, we show how the model can be easily tailored for deal-
ing with different forms of capability acquisition and loss, thus enabling different
possible variations of access control policies.

Key words: Capability-based Access Control, Process Distribution and Mobility,
Resource Usage, Mobility Control.

1. Introduction

In recent years, highly distributed networks have become a common infras-
tructure for many applications that exploit network facilities to access remote re-
sources and services. These systems (e.g., the Internet) are highly open: their
overall structure can change dynamically in unpredictable ways because the en-
tities involved can join and leave the system at any time and need not be defined

IThis work is partially based on a preliminary paper appearing in [35] and has been partially
supported by the EU project SENSORIA, IST-2005-016004.

∗Corresponding author
Email addresses: gorla@di.uniroma1.it (Daniele Gorla), pugliese@dsi.unifi.it

(Rosario Pugliese)

prior to starting the infrastructure. In developing applications for such comput-
ing environments, network awareness has emerged as a key design principle to
deal with dynamic changes of network environments (e.g., variable guarantees for
communication, cooperation, mobility, resource usage, security, etc.). Open net-
work systems are then fostering the development of new paradigms and program-
ming languages with mechanisms for handling process distribution and mobility,
for coordinating process execution and interaction, and for managing resources
and security. To improve the understanding of such complex mechanisms, sev-
eral foundational process calculi (e.g. Distributed Join-calculus [29], Distributed
π-calculus [41], Ambient calculus [14], and Seal calculus [15]) and process-based
prototype languages (e.g. K [24], Lime [50] and Nomadic Pict [61]) have
been devised.

Our study stems from the language K (Kernel Language for Agents In-
teraction and Mobility), an experimental language designed for network aware
programming and implemented in Java [8]. In K, a system is a network of ad-
dressable nodes that contain running processes and data repositories. The nodes
of a K net do not necessarily correspond to physically distributed machines;
rather, they are units of abstraction for groups of processes and data, that belong to
the same logical partition of a machine or to the same class of users. K com-
munication model builds over, and extends, L’s notion of generative commu-
nication through tuple spaces [31]: processes may communicate asynchronously
by exchanging tuples (i.e. sequences) of information items through tuple spaces
(i.e. multisets of tuples); tuples are anonymous and retrieved from a tuple space
by associative selection through a pattern-matching mechanism. The Lmodel,
originally proposed for parallel programming on isolated machines, has later been
extended with multiple, possibly distributed, tuple spaces [32] to improve modu-
larity, scalability and performance. Indeed, the tuple space paradigm has become
a popular alternative to (more conventional) point-to-point communication ap-
proaches; this is witnessed by the many tuple space based run-time systems, both
from industries (e.g. SUN JavaSpaces [56, 5] and IBM T Spaces [63]) and from
universities (e.g. PageSpace [21], WCL [52], K [24], Lime [50] and TuCSoN
[49]).

Coordination, distribution and mobility of programs are important aspects for
programming in open environments, but ensuring correct use of resources and data
is crucial as well. Indeed, a host receiving mobile processes for execution needs
tools to control access to its resources and to protect them from misuse by the
incoming processes. Therefore, to prevent accidental or malicious manipulation
of nodes’ content, K has been equipped with a capability-based type system

2

[25]. Generally speaking, a capability is an unforgeable and tamper proof token
given to a subject that specifies which kind of operations on a certain object are
permitted to the holder of the capability. Subjects can be, e.g., mobile processes
or network nodes; objects are resources like shared data, files, nodes, the network
and so forth; access then means what kind of operations can be done on these re-
sources (e.g., producing a datum, writing or reading a file, changing the network
topology, moving about the network). In K, capabilities are used to specify
the access control policies stating what operations (read, write, execute, ...) pro-
cesses are allowed to perform while running at a given node; type checking then
determines if processes comply with the policy of their hosting node. Hence, ac-
cess requests are (mostly) checked statically, which is an advantage with respect
to more traditional approaches to system security. The latters usually exploit a
component called reference monitor that dynamically intercepts each attempted
access to a resource; every acces is then processed by a combination of authen-
tication (i.e., the identification of subject’s identity) and authorization (i.e., the
decision on whether the access should be allowed or denied).

Defining policies in terms of capabilities makes our approach well-suited for
open systems, where capability-based approaches offer more flexibility than other
protection mechanisms like, e.g., access control lists [60, 62, 20, 54, 45]. How-
ever, access policies in K [25] are fixed prior to starting system execution and
cannot be flexibly modified according to its dynamic evolution; moreover, the type
system presupposes a static knowledge of the entire system. These assumptions
are unrealistic in open network systems. On one hand, access control information
could be statically partial, inaccurate or missing: for example, a component may
not initially have all the information it needs to authorize an access, or a requestor
may not initially have all the necessary rights to access a resource. On the other
hand, access control policies are likely to change once programs begin their exe-
cution, for example whenever new objects are created, or existing subjects leave
the system or change duties.

To avoid illegal accesses to resources, dynamic modifications of access con-
trol information must be suitably managed. In this paper, we show that capabili-
ties and interprocess communication can serve this purpose. In fact, mechanisms
based on capabilities supplement the dinamicity inherent in open systems as they
support introduction of user-defined rights and let subjects freely join and leave
the system. Moreover, capabilities can be distributed and transferred by exploiting
disciplined communication operations. In this way, we can increase the flexibility
of the original K capability-based access control model with the possibility
of dynamically changing policies.

3

To draw attention on the key aspects, we leave out from K some linguis-
tic features that would complicate the technical treatment of the protection model
more than necessary; we call the resulting language µK (micro K), since
it can be thought of as the process calculus on which K is based. In the result-
ing framework, subjects and objects are both network nodes; this corresponds to
the fact that the initiator of one operation can be the target of another. Moreover,
instead of directly performing an action, a process can use a capability to dele-
gate another node the ability to perform that action. In our setting, this passing
of access rights is implemented by exploiting interprocess communication primi-
tives, thus providing means for controlling exchange of rights. In practice, when a
node address is exchanged in a communication, a capability on that node is passed
in order to grant the receiver a set of access rights on that node. Access control
policies are then susceptible of dynamic modifications due to, e.g., capability ac-
quisition or consumption. Of course, capabilities are protected from forgery: the
only way for nodes and processes to obtain capabilities is to have them granted at
the outset or as result of some communication.

Execution monitoring together with mechanisms supporting modifications
at run-time of access control policies turn out to be essential for dealing with
network-aware applications such as, e.g., resource discovery and e-commerce.
However, like for the K type system, we maintain a static checking phase to
reduce run-time checks and improve system performance. In fact, we interpret
access control policies as process types and develop a sort of type checking pro-
cedure that statically checks process intentions against the local access control
policy. A similar procedure is then used at run-time to check compatibility of the
intentions of a migrating process with the access policy of the destination node:
only if this check succeeds, the migrating process is sent for execution. This en-
hances the performance of the security monitor, but at the cost of dynamically
checking the migrating process before entrance; a further optimization could be
obtained by exploiting forms of ‘proof carrying code’ [46]. Our checking mech-
anisms ensure a safety property that is preserved along system evolutions: every
checked node is ‘safe’ in the sense that no process, while running at it, will ever
attempt to perform an operation which is not authorized by the local policy. This
result fits well with the key features of open systems, where ‘good’ components
usually run in hostile environments.

This paper does not cover many issues in the area. We only consider authoriza-
tion mechanisms based on capabilities and discretionary access control policies
(i.e. policies based on the identity of the subject attempting the access). However,
we do not commit ourself to any specific policy; we model the mechanisms needed

4

to enforce them, not their initial setting up. Of the underlying distributed comput-
ing base, we assume that shared-key encryption and/or public-key encryption are
available where needed, e.g. to support scalable authentication and authorization
protocols. For example, an identity and some credentials, which represent state-
ments certified by given entities (e.g., certification authorities), can be associated
with every component in a system; credentials are then used to prove the compo-
nent’s identity to all other components (e.g., [23]) or can also be directly bound
to authorizations (see, e.g., PolicyMaker [10], Keynote [9], REFEREE [19], DL
[43]). Cryptographic mechanisms (e.g., one-way functions like in Amoeba [58]
and in ICAP [33]) can also be exploited to prevent processes from forging new
capabilities or tampering with existing ones. Finally, we also assume that node’s
run-time is reliable; in particular, its reference monitor is a tamper-proof, non-
bypassable, trusted component intercepting each and every attempted access to a
system and its resources.

The rest of the paper is organized as follows. Section 2 formally describes
the syntax of µK and presents an example application inspired by a realistic
publisher/subscriber scenario. The static semantics of the language is in Section 3
and its dynamic semantics is in Section 4. Section 5 proves the correctness of our
framework. Section 6 gives a full account of the example described in Section 2.
Section 7 presents some variations of the access control model where, e.g., capa-
bilities can be revoked, expire or whose distribution can be controlled. Section 8
contains comparisons with related work, and Section 9 concludes the paper by
also arguing on a few language design issues. Appendix A reports the proofs of
some technical results, while Appendix B reports the formal definitions for the
variations of Section 7.

Our presentation is incremental: the basic framework presented and discussed
until Section 6 is intentionally simplistic, since it misses several desirable and
expectable features. The framework is then enhanced in Section 7, where more
complex features are added. We find it useful to present our approach step-by-
step, to clarify its main issues without hiding them behind heavy notations: we
start from a collaborative framework, well-suited for intranets, and then gradually
move to a more complex and realistic framework, closer to open nets.

2. The Language µK

µK (micro K), is a minimal variation of K that still retains all
K’s distinctive features: explicit distribution of processes and data, remote
operations, process mobility and asynchronous communication through multiple

5

N:
N ::= l ::δ C

∣∣∣ N1 ‖ N2

N C:
C ::= 〈t〉

∣∣∣ P
∣∣∣ C1 | C2

P:
P ::= nil

∣∣∣ a.P
∣∣∣ a.P

∣∣∣ P1 | P2

∣∣∣ ∗ P

P A:
a ::= in(T)@u

∣∣∣ read(T)@u
∣∣∣ out(t)@u

∣∣∣ eval(P)@u
∣∣∣ newloc(l : δ)

T:
T ::= u

∣∣∣ ! x : π
∣∣∣ T1,T2

T:
t ::= u : µ

∣∣∣ t1, t2

Table 1: µK syntax

distributed data repositories. With respect to K, µK has a simpler syntax
and operational semantics without higher-order communication, without alloca-
tion environments for translating one kind of addresses into the other (in fact,
µK has only one kind of node addresses) and with replication in place of
parameterized process definitions.

The syntax of µK is reported in Table 1. The use of information
enabling access control (i.e. sets of access rights π, capability lists δ, and
grantings µ) and of the highlighted constructs (which do not occur in source
terms) will be explained in Section 3. We assume a countable set N of names
l, l′, . . . , u, . . . , x, y, . . . , that can be used as localities or variables. Notationally,
we prefer letters l, l′, . . . when we want to stress the use of a name as a locality and
x, y, . . . when we want to stress the use of a name as a variable. We will use u for
a generic name.

Tuples are sequences of names, each associated to a granting. Templates are
patterns used to select tuples in tuple spaces. They are sequences of names and
formal fields; the latter ones are written ! x : π and are used to bind names. Pro-
cesses are the µK active computational units. They are built up from the inert
process nil and from five basic operations, called actions, by using action prefix-

6

ing, parallel composition and replication. Actions can be marked (i.e. underlined)
to charge the reference monitor with the run-time check for availability of the
needed capabilities. The informal semantics of process actions is as follows. Ac-
tion in(T)@u looks for a matching tuple t in the tuple space (TS, for short) located
at u. Intuitively, a template matches against a tuple if both have the same number
of fields and corresponding fields match; this happens if both fields are the same
name or one is a formal and the other one is a name. If a matching t is found, it
is removed from the TS, the formal fields of T are replaced in the continuation
process with the corresponding names of t and the operation terminates; other-
wise, the operation is suspended until a matching tuple becomes available. Action
read(T)@u is similar but it does not remove the selected tuple from the TS. Action
out(t)@u adds the tuple t to the TS located at u. Action eval(P)@u sends process
P for execution at u. Action newloc(l : δ) dynamically creates a new network
node with address l and capability list δ. Notice that newloc is the only action
not indexed with an address because it always acts locally; all the other actions
explicitly indicate the (possibly remote) locality where they will take place.

Nets are finite collections of nodes where processes and tuple spaces can be
allocated. A node is a triple l ::δ C, where locality l is the address of the node,
C is the (parallel) component located at l and δ is the policy of the node. Com-
ponents can be processes or (located) tuples. Located tuples (ranged over by 〈t〉)
are inactive components representing tuples in a TS that have been inserted along
a computation by executing an action out1. The TS located at l results from the
parallel composition of all tuples residing at l.

Names occurring in process terms can be bound by action prefixes. More
precisely, in processes in(T)@u.P and read(T)@u.P the prefixes bind the names
in the formal fields of T , while in process newloc(l : δ).P the prefix binds l. In
all these cases, P is the scope of the bindings. A name that is not bound is called
free. The sets (P) and (P) (of bound and free names, resp., of P) are defined
accordingly, and so is alpha-conversion, denoted =α. With abouse of notation, we
shall extend (·) and (·) to nets, with the expected meaning.

We will identify nets which intuitively represent the same net. We therefore
define structural congruence, ≡, to be the smallest congruence relation over nets
that satisfies the laws in Table 2. The laws say that ‖ is commutative and asso-
ciative, that alpha-convertible processes are interchangeable and that process nil

1Like in [24], here we are assuming that at the outset no tuple is present in the existing TSs.
Section 3 will clarify why this simplifying assumption is useful.

7

(C) N1 ‖ N2 ≡ N2 ‖ N1 (A) (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(A)
P =α P′

l ::δ P ≡ l ::δ P′
(A) l ::δ C ≡ l ::δ (C|nil)

Table 2: Nets structural congruence

can be absorbed/spawned. Notice that ≡ identifies only nets whose equality is
immediately obvious from their syntactical structure and has nothing to do with
the semantics of nets (which has still to be introduced and shall rely on structural
congruence).

To sketch the access control model integrated in the language, we now present
a simplified but realistic publisher/subscriber scenario where our framework turns
out to be expressive and elegant; this informal presentation will be refined in Sec-
tion 6.

Example 2.1 Let lU be the address of a node representing the server of a given
department and let lP be the address of a node representing the publisher of some
on-line publications that are stored at address lS . We want to implement a proto-
col through which the head of department subscribes a ‘license’ enabling all the
department members to access the publications at lS . In terms of access control,
this means that the protocol must extend the policy of node lU (expressing the op-
erations that processes hosted at lU are allowed to perform over the net) with the
capability of reading papers from lS . Hence, if the department server starts with
policy δ, upon completion of the protocol lU’s policy should become δ[lS 7→ {r}];
this notation means that processes at lU can read tuples from lS ’s tuple space,
while still being enabled to perform those actions enabled by δ. Then, a depart-
ment member located at lM can spawn code over lU and retrieve lP’s papers by
simply using the process

eval(read(paperT itle, !x)@lS .out(paperT itle, x)@lM)@lU

Action eval(P)@lU spawns code P for execution at lU . Then, action
read(paperT itle, !x)@lS looks for a tuple matching the template paperT itle, !x
(i.e. a paper whose title is paperT itle and whose body is a text B); if such a
paper is found, x is replaced by B in the continuation process. Finally, action
out(paperT itle, B)@lM inserts in lM’s tuple space a tuple containing the paper

8

required by the department member whose address is lM. In a more realistic sce-
nario, the capability ‘read’ over lS will not be delivered forever to lU . This scenario
could be modeled by exploiting some of the variations described in Section 7.

3. Static Semantics

Informally, for each node of a net, say l ::δ C, the task of the access control
system is to determine if the actions that C intends to perform when running at l
are enabled by the access policy δ. When asking about authorization of a partic-
ular action, there are typically three possible outcomes: ‘yes’, the action may be
executed because sufficient access rights exist in δ for the action to be approved;
‘no’, the action may not be executed because sufficient access rights in δ do not
exist and cannot be acquired; ‘unknown’, sufficient access rights to approve the
action do not exist in δ, but they could be dynamically acquired and the decision
about authorization is delayed at run-time. In the latter case, run-time checks are
unavoidable and are charged to the reference monitor (see rule (M) in Sec-
tion 4). In our opinion, the crucial novelty of our approach is the integration of
the ‘unknown’ possibility in the static checking. Indeed, all the static analysis
techniques we are aware of either accept or reject a system/process; instead, the
combination of static checking and of in-lined monitoring we propose allows us
to deal with dynamic policy modifications without compromising system perfor-
mance too much.

3.1. Access Rights, Capabilities, Capability Lists and Grantings
In the previous Section, we have seen that access control information occurs in

the syntax. Below, we briefly outline how these information are exploited. First,
each name x occurring in a formal field of the template specified as argument of
an action read/in is explicitly associated2 to a set of access rights π; these are the
rights necessary to the continuation process to perform its operations on x while
running locally. Second, in actions out each name in the spawned tuple is associ-
ated to a (possibly empty) granting µ that specifies the capabilities passed through
along with that name. Third, each node l ::δ C is equipped with a capability list
δ describing its access policy. Similarly, when nodes are dynamically created by
actions newloc, a capability list is used to specify their access policy.

2Such a set is not strictly necessary: it could be inferred by examining how the continuation
process uses x. However, its presence enables a simpler static checking.

9

Definition 3.1. The set of access rights, C, is {r, i, o, e} and is ranged over by c.
We let Π be the powerset of C and use π to range over Π. Capabilities are pairs
made by a locality l and a set of access rights π, written l 7→ π. Capability lists,
ranged over by δ, and grantings, ranged over by µ, are finite partial functions
mapping N to Π.

We use r, i, o and e to indicate the operation whose name begins with it. For
example, e is used to control process mobility; thus, the capability l′ 7→ {e} in the
policy of locality l enables processes running at l to perform actions eval over l′.
Differently from previous presentations, we do not use any capability to control
actions newloc: to simplify notation, here we assume that they are always enabled.

Notationally, a capability list mapping li to a non-empty πi, for i = 1, . . . , k,
will be written as [li 7→ πi]i=1,...,k; a similar notation is exploited also for grantings
but with a different meaning. Indeed, grantings are used in actions out to specify
the capabilities to be passed through along with a node address. For example, if a
process running at l retrieves a tuple 〈l′ : µ〉, then the policy of l in enriched with
the capability l′ 7→ µ(l); the latter allows processes running at l to perform at l′

those actions whose rights are in µ(l).
We now introduce an ordering relation over capability lists that formalizes the

property that a policy is more restrictive than another one. To this aim, we start
with defining an ordering over sets of access rights that will induce the desired
ordering on capability lists.

Definition 3.2. π1 vΠ
π2 if and only if π1 ⊆ π2.

Thus, if π1 vΠ
π2 then π2 enables at least the actions enabled by π1. However, the

model we develop is completely parametric with respect to the used ordering over
access rights and other alternatives are possible (see, e.g., [25] or Section 7).

By taking advantage of the fact that capability lists are partial functions, we
exploit the standard pointwise union of partial functions to extend δ1 with δ2,
written δ1[δ2]; this is the capability list δ with domain dom(δ1) ∪ dom(δ2) such
that

δ(u) ,


δ1(u) if u ∈ dom(δ1) − dom(δ2)
δ2(u) if u ∈ dom(δ2) − dom(δ1)
δ1(u) ∪ δ2(u) if u ∈ dom(δ1) ∩ dom(δ2)

Similarly, we exploit the standard pointwise inclusion of partial functions to order
capability lists.

10

Definition 3.3 (Ordering). We say that δ1 is less than δ2 (or that δ2 is greater than
δ1), written δ1 � δ2, if δ1(l) v

Π
δ2(l) for every l ∈ dom(δ1).

The ordering � formalizes the idea that, if δ1 � δ2, then δ1 is a less permissive
policy than δ2. Clearly, � is decidable because we work with finite partial func-
tions.

3.2. A Capability-based Access Control System
The task of the static phase is to lighten the need of run-time checks as much

as possible; this will be done by exploiting all the security information occurring
in the syntax of a µK net. There are however checks that must be deferred
at run-time. First of all, compliance between the access control information in a
tuple and that in the argument of an in/read can only be checked when executing
the action. As explained in Section 2, an action in/read succeeds only if the
template it specifies, T , matches against the accessed tuple, t. Thus, we charge the
matching function (that is naturally present in any communication based on tuple
spaces) with the burden of verifying access control compliance between T and t.
Notice that this is the only technical commonality between our approach and the
type system in [25].

Furthermore, capabilities are dynamically acquired as a result of executing a
read/in and they are used to enrich the policy of the node where the action was
fired. These capabilities are exploitable by all co-located processes, and not only
by the process that performed the action. This choice has been driven by the prin-
ciples underlying the notion of capabilities, where rights are assigned to subjects
that, in our framework, are network nodes. Unluckily, to make dynamic acquisi-
tion meaningful, we need to introduce further run-time checks, because an action
that is statically illegal could become legal upon acquisition of the capability en-
abling it. In such cases, the static access control mechanism simply marks (i.e.
underlines) the action to require its checking at run-time by the reference mon-
itor. This explains the use of the construct a.P in Table 1, where action a that
prefixes process P is underlined. Notationally, we will write P (C and N, resp.)
to emphasise that process P (component C and net N, resp.) may contain marked
actions.

The marking mechanism never applies to actions whose targets are names
bound by in/read, because such actions can be statically checked. For example,
our system has to reject node

l1 ::[l′ 7→{r}] read(!x : {o})@l′.read(!y)@x

11

because r does not belong to the annotation of x, while it has to accept node

l2 ::[l′ 7→{r}] read(!x : {o})@l′.out(t)@l′

because action out(t)@l′ can be marked and checked at run-time. In fact, if x
is dynamically replaced with l′, l2 will acquire the access right o over l′ and the
process running at l2 can proceed; otherwise, the process will be suspended. In our
system, the dynamic acquisition of capabilities is exploited exactly for relaxing
the static checking and admitting nodes like l2 while requiring on (part of) them a
run-time checking.

Finally, when performing actions out, the grantings occurring within the argu-
ment must be checked. This is necessary to avoid capability forging like in

l ::δ out(l′ : [l 7→ π])@l.in(!x : π)@l

where [l′ 7→ π] 6� δ. If the first action was legal, the second action would add new
capabilities to δ and l would enlarge its policy autonomously. To avoid this access
control breach, we must ensure that action out is executed only if π v

Π
δ(l′). If

this check was performed statically, then dynamically acquired capabilities could
not be passed any longer and would be dealt with differently from those statically
owned; this somehow collides with discretionary access control policies, where
a dynamically received capability becomes a first-class capability (that must be
handled like statically assigned ones).

We now formally define the static checking. It is defined in terms of judgments
for components of the form Γ `L

l C . C. Here, L is a finite set of names and it
is used to keep track of bound names that have been freed during the inference as
the result of removing a binding operator, i.e. in/read/newloc; this information
will be used by the inference to determine if a given action must be marked. The
context Γ is a capability list that collects together the capabilities contained in the
policy of l and the annotations for the names that have been freed in C. Intuitively,
the judgment Γ `L

l C . C states that, when C is located at l, the unmarked
actions in C are admissible w.r.t. Γ. Instead, the marked actions in C cannot
be deemed legal at compile time but could become permissible at run-time, after
dynamic acquisition of the necessary capabilities (via execution of actions in/read
performed at l). When L is empty, we shall simply write Γ `l C . C.

To update a context with the sets of access rights specified within a template,
we use the auxiliary function upd that behaves like the identity function for all
fields but for template formal fields. Formally, it is defined by:

12

upd(Γ,T) ,


upd(upd(Γ,T1),T2) if T = T1,T2

Γ] [x 7→ π] if T = ! x : π,
Γ otherwise

Here, notation δ1] δ2 denotes pointwise union of partial functions with disjoint
domains.

Notation 3.4 Given an action a different from newloc, we use arg(a) to denote its
argument, tgt(a) its target location and ar(a) the access right corresponding to a.
For example, if a is out(t)@l, then we have arg(a) , t, tgt(a) , l and ar(a) , o.

Judgments are inferred by using the rules in Table 3. The function markL
Γ
(·)

for marking process actions is defined as follows

markL
Γ
(a) ,

 a if {ar(a)} v
Π
Γ(tgt(a))

a if {ar(a)}@
Π
Γ(tgt(a)) and tgt(a) < L

where @
Π

denotes the negation of v
Π
. Condition tgt(a) < L distinguishes actions

using localities as target from those using freed names, marking the former ones
and rejecting the latter ones (as previously explained).

The rules in Table 3 should be quite explicative; we only remark a few points.
Rule (T-) says that located tuples always successfully pass the static checking,
regardless their contents. This choice simplifies the technical development; how-
ever, to check grantings therein, we require that no tuple be present in the net at the
outset (data must all be produced via actions out, that are dynamically checked).
Rule (T-) deals both with process composition and with component composi-
tion, while rule (T-) deals with replication. Rule (T-) deals with out and
eval; notice that checking the arguments of these actions is deferred at run-time.
Rule (T-) deals with in and read; the annotations in the formal fields of the
template are used to enrich the current context in order to check the continuation
process. Rules (T-) and (T-) are similar to rules (T-) and (T-), re-
spectively, but allow a process to already contain marked actions. Action newloc
is dealt with differently from the other actions by rule (T-). Recall that it is al-
ways performed locally and that, for the sake of simplicity, we assume it is always
enabled. However, to actually enable the creation, the specified access policy δ
must be in agreement with the access policy of the node executing the operation
extended with the ability of performing over l′ all the operations allowed locally.
This is needed to prevent a malicious node from forging capabilities by creating a

13

(T-) (T-)
Γ `L

l nil . nil Γ `L
l 〈t〉 . 〈t〉

(T-)
Γ `L

l C1 . C1 Γ `L
l C2 . C2

Γ `L
l C1 | C2 . C1 | C2

(T-)
Γ `L

l P . P

Γ `L
l ∗ P . ∗ P

(T-)
ar(a) ∈ {o, e} Γ `L

l P . P

Γ `L
l a.P . markL

Γ(a).P

(T-)
ar(a) ∈ {o, e} Γ `L

l P . P

Γ `L
l a.P . a.P

(T-)

ar(a) ∈ {i, r} upd(Γ, arg(a)) `L∪(arg(a))
l P . P

Γ `L
l a.P . markL

Γ(a).P

(T-)

ar(a) ∈ {i, r} upd(Γ, arg(a)) `L∪(arg(a))
l P . P

Γ `L
l a.P . a.P

(T-)

δ � Γ] [l′ 7→ Γ(l)] Γ] [l′ 7→ Γ(l)] `L∪{l′}
l P . P

Γ `l newloc(l′ : δ).P . newloc(l′ : δ).P

Table 3: Static access control mechanism

new node with more powerful capabilities where sending a process that takes ad-
vantage of the capabilities not owned by the creator. Notice also that the creating
node is assumed to have over the created one all the capabilities it owns on itself.

We now state an important property of the inference system of Table 3, namely
that it is decidable. Its proof is given in Appendix A.

Proposition 3.5 (Decidability). For any Γ, L, l, C and C′ it is decidable to deter-
mine whether the judgment Γ `L

l C . C′ holds true or not.

The proof of Proposition 3.5 is constructive because it also gives an algorithm

14

µ = [li 7→ πi]i=1,...,k ∀ i = 1, . . . , k . πi vΠ
δ(l)

[[l : µ]]δ

[[t1]]δ [[t2]]δ

[[t1, t2]]δ

Table 4: Rules to check grantings

that, for any Γ, L, l and C determines the C′ with the smallest number of marked
actions such that the judgment Γ `L

l C . C′ holds. The complexity of the algorithm
is linear in the number of operators in C.

We will deem admissible those nets for which the static inference mechanism
successfully terminate, as defined below.

Definition 3.6. A net is admissible if, for each node l ::δ C, there exists a compo-
nent C such that δ `l C . C.

4. Dynamic Semantics

The first ingredient we need for defining the operational semantics is a mecha-
nism to control the capabilities passed through while executing an action out from
node l′. This check is defined as the predicate [[·]]δ, that can be inferred by using
the rules in Table 4. [[·]]δ is parameterized with respect to δ, the policy of the
node l′ where the action out takes place. Intuitively, whenever a tuple passes the
access rights πi over l to li (thus, the tuple is of the form 〈l : [li 7→ πi]〉), we need
to verify that l′ owns πi.

Another ingredient we need is a formal way to say that a template and a tu-
ple do match. The pattern-matching function, matchδl , is defined by the rules in
Table 5; it is parameterized with the locality l and the access control policy δ of
the node where it is invoked. A successful matching returns a capability list, used
to extend the policy δ of the node l with the capabilities delivered by the tuple,
and a substitution, used to assign names to variables in the process invoking the
matching. We use σ to range over substitutions (with finite domain) of names for
names, ε to denote the ‘empty’ substitution and ◦ to denote substitutions compo-
sition. As usual, substitution application may require alpha-conversion to avoid
capturing of free names.

Notice that the node where the read/in is executed must be authorized to ac-
cess all the names occurring in the selected tuple; this is explicitly required in the

15

(M1)
l ∈ dom(µ)

matchδl (l′, l′ : µ) = 〈[], ε〉
(M2)

π v
Π
δ(l′) ∪ µ(l)

matchδl (! x : π, l′ : µ) = 〈[l′ 7→ π], [l′/x]〉

(M3)
matchδl (T1, t1) = 〈δ1, σ1〉 matchδl (T2, t2) = 〈δ2, σ2〉

matchδl ((T1,T2) , (t1, t2)) = 〈δ1[δ2], σ1 ◦ σ2〉

Table 5: Matching rules

premise of rule (M1) and implicitly required by the fact that the µ(l) in the premise
of rule (M2) must be defined. This feature constraints the nodes from where tuples
can be accessed (see Section 6). Moreover, rule (M2) ensures that a formal field
can be replaced by a locality l′ only if π is enabled by the union of the access
rights over l′ owned by l and of the access rights over l′ delivered to l by the tuple.
The capabilities delivered by the tuple are then used to enrich the capabilities of l
over l′.

Function matchδl satisfies the following property, whose proof can be easily
done by induction on the number of fields of the first argument of the function.

Proposition 4.1. If matchδl (T, t) = 〈δ′, σ〉 with dom(σ) = {xi}i∈I , then δ′ = [li 7→

πi]i∈I where, for every i ∈ I, ! xi : πi is a field of T , li : µi is the corresponding field
of t and σ(xi) = li.

As we already said, the operational semantics relates µK nets that may
contain evaluated tuples and marked actions. It is given by a reduction relation,
�−→ , which is the least relation induced by the rules in Table 6. Net reductions

are defined over configurations of the form L . N, where L is such that (N) ⊆
L ⊂fin N . In a configuration L . N, L keeps track of the names occurring in N and
is needed to ensure global freshness of new addresses. For the sake of readability,
when a reduction does not generate any fresh address we write N �−→ N′ instead
of L . N �−→ L . N′.

Let us comment on the rules in Table 6. Rule (O) says that, before adding
a tuple to a TS, the grantings within the tuple must be checked according to the
policy δ of the node where the action is performed. Rule (E) says that a pro-
cess is allowed to migrate only if it complies with the access policy of the target
node. During this preliminary check, some process actions could be marked to be
effectively checked before execution. Rules (I) and (R) say that the process

16

(O)
[[t]]δ

l ::δ out(t)@l′.P ‖ l′ ::δ
′

C′ �−→ l ::δ P ‖ l′ ::δ
′

C′|〈t〉

(E)
δ′ `l′ Q . Q

l ::δ eval(Q)@l′.P ‖ l′ ::δ
′

C′ �−→ l ::δ P ‖ l′ ::δ
′

C′|Q

(I)
matchδl (T, t) = 〈δ′′, σ〉

l ::δ in(T)@l′.P ‖ l′ ::δ
′

〈t〉 �−→ l ::δ[δ
′′] Pσ ‖ l′ ::δ

′

nil

(R)
matchδl (T, t) = 〈δ′′, σ〉

l ::δ read(T)@l′.P ‖ l′ ::δ
′

〈t〉 �−→ l ::δ[δ
′′] Pσ ‖ l′ ::δ

′

〈t〉

(N)
l′ < L

L . l ::δ newloc(l′ : δ′).P �−→ L ∪ {l′} . l ::δ[l
′ 7→δ(l)] P ‖ l′ ::δ

′

nil

(R) l ::δ ∗P �−→ l ::δ P | ∗ P

(M)
l′ = tgt(a) {ar(a)} v

Π
δ(l′) l ::δ a.P ‖ l′ ::δ

′

C′ �−→ N

l ::δ a.P ‖ l′ ::δ
′

C′ �−→ N

(S)
L . l ::δ C1 ‖ l ::δ C2 ‖ N �−→ L′ . l ::δ

′

C′1 ‖ l ::δ C′2 ‖ N′

L . l ::δ C1|C2 ‖ N �−→ L′ . l ::δ
′

C′1|C
′
2 ‖ N′

(P)
L . N1 �−→ L′ . N′1

L . N1 ‖ N2 �−→ L′ . N′1 ‖ N2

(S)
N ≡ N1 L . N1 �−→ L′ . N2 N2 ≡ N′

L . N �−→ L′ . N′

Table 6: µK operational semantics

performing the operation can proceed only if pattern-matching succeeds. In this
case, the access policy of the receiving node is enriched with the capability list
returned by the matching mechanism and the substitution returned along with the
capability list is applied to the continuation of the process performing the opera-
tion (and in the annotations therein). In rule (N), the set L of localities already

17

in use is exploited to verify that l′ is a fresh address. Notice that the policy of
the creator is properly updated and the address of the new node is not initially
known to any other node in the net; thus, l′ can be used by the creating process
as a sort of private resource (that, of course, can be later communicated to other
processes). Rule (R) says that copies of a replicated process can be freely
spawned. Rule (M) says that the in-lined reference monitor stops execution
whenever the capability for executing a is missing. Rule (S) transforms a par-
allel over components into a parallel over net nodes3. Rules (P) and (S)
are standard: the former says that, if part of a composed net evolves, the whole
net evolves accordingly and the latter says that structural congruent nets have the
same reductions.

Notice that the operational semantics presented so far is not intended to be
the specification of how an actual implementation of the language should work.
For example, repeatedly checking marked actions is useless and would degrade
system performance. This problem can be avoided by exploiting an event-driven
programming style: an event is associated to the acquisition of a given access right
and marked actions are inserted in the associated event-listeners list.

We end this section by presenting two properties of the operational semantics,
whose proofs can be found in Appendix A; as usual, we shall write �−→

∗ to
denote the reflexive and transitive closure of �−→. The first result relates the set L
in a configuration L.N to the names occurring in the net obtained after a reduction
step. The second result states that, if we start with a net where pairwise distinct
nodes have different addresses, such a property is preserved along reductions.
Nets of this kind will be called well-formed and guarantee that each network node
has a single access control policy, a very reasonable assumption in our setting. If
not differently specified, in the sequel we shall only consider well-formed nets.

Proposition 4.2. If L . N �−→ L′ . N′ and (N) ⊆ L then (N′) ⊆ L′.

Proposition 4.3. If N is well-formed, (N) ⊆ L and L . N �−→
∗ L′ . N′, then N′

is well-formed.

3This permits splitting the parallel components running at a node and thus enables the appli-
cation of the main reduction rules that, in fact, can only be used when there is a single process
running at l. Moreover, by possibly using axiom (A) in Table 2, (S) enables the use of ax-
ioms (O), (E), (I) and (R) also for execution of local operations. In conclusion, (S)
permits a compact and general formulation of the reduction rules without the need of explicitly
considering all the parallel components running at a node and of having different rules for local
and remote operations.

18

5. Correctness

We start by introducing the notion of executable nets; these are nets already
containing all necessary marks, as if they have already passed a static checking
phase.

Definition 5.1. A net is executable if, for each node l ::δ C, it holds that δ `l C . C
(that, for the sake of readability, will be written as δ `l C).

Notice that executable nets are admissible. Our main results will be stated in terms
of executable nets; indeed, due to the dynamic acquisition of capabilities, well-
formed nets that are statically deemed admissible can still give rise to run-time
errors. However, by marking those actions that should be checked at run-time,
admissible (and well-formed) nets can be transformed into executable nets that,
instead, cannot give rise to run-time errors (see Theorem 5.7).

We first prove some results, i.e. weakening and substitutivity, which are stan-
dard for the theory of type systems.

Lemma 5.2 (Weakening). If Γ `L
l C then Γ[Γ′] `L

l C.

Proof: The proof consists in mimicking for Γ[Γ′] `L
l C the derivation of Γ `L

l C.
The process actions enabled by Γ or those not enabled by Γ′ will have the same
judgments w.r.t. both Γ and Γ[Γ′]; on the contrary, actions enabled by Γ′ but not
by Γ will be checked w.r.t. Γ[Γ′] using rules (T-)/(T-) in place of rules
(T-)/(T-). �

Lemma 5.3 (Substitutivity). If Γ `L
l C then, for any substitution σ, Γσ `L′

l Cσ,
where L′ = L − dom(σ).

Proof: The proof is by induction on length of the inference of the judgment. The
base cases (i.e., rules (T-) and (T-)) are trivial. Let us examine the case
in which the last rule used is (T-) (the cases for (T-), (T-), (T-),
(T-), (T-) and (T-) are similar or easier). By hypothesis, we have
that C = a.Q and Γ `L

l a.Q, for some process Q and action a such that
ar(a) ∈ {i, r}, {ar(a)} v

Π
Γ(tgt(a)) and upd(Γ, arg(a)) `L∪(arg(a))

l Q. With-
out loss of generality, we can assume that dom(σ) ∩ (arg(a)) = ∅ (other-
wise, if this is not the case, we could rename the bound names); thus we have
(a.Q)σ = aσ.Qσ. Now, by induction, we have that (upd(Γ, arg(a)))σ `L′′

l Qσ,
where L′′ = (L ∪ (arg(a))) − dom(σ) = (L − dom(σ)) ∪ (arg(a)) =

19

L′ ∪ (arg(a)). Now, upd(Γσ, arg(aσ)) `L′′
l Qσ (indeed, it is easy to prove

that (Γ1[Γ2])σ = (Γ1σ)[Γ2σ]) and, by applying rule (T-), we conclude that
Γσ `L′

l aσ .Qσ, i.e. Γσ `L′
l Cσ. �

Differently from [25] and from most type systems for calculi for network pro-
gramming, the access control model we define in this paper permits a local for-
mulation of correctness. To this aim, we define the restriction of a net N to a set of
localities S , written N|S , as the subnet obtained from N by deleting all those nodes
whose addresses are not in S . Now we prove that the property of a net of being
executable is an invariant both of the structural congruence and of the reduction
relation.

Lemma 5.4. If N|S is executable and N ≡ N′ then N′|S is executable.

Proof: By mutual induction on the length of the inferences for N ≡ N′ and N′ ≡
N. The base case covers the axioms in Table 2. The cases of (C) and (A)
trivially follow by definition, the case for (A) follows from the fact that the
static checking is not affected if we consistently rename bound names within a
net, and the case for (A) is simple. Reflexivity is trivial, while the inductive
steps, i.e. symmetry, transitivity and context closure, are easy. �

Theorem 5.5 (Subject Reduction). If N |S is executable and L . N �−→ L′ . N′

for (N) ⊆ L, then N′|S ′ is executable, where S ′ = S ∪ (L′ \ L).

Proof: The proof proceeds by induction on the length of the inference of L .
N �−→ L′ . N′.

Base Step: We reason by case analysis on the axioms (i.e. the first six rules) of
Table 6.

(O). In this case, S ′ = S because L′ = L. Then, we have three possible sub-
cases:

• Both l and l′ belong to S . In this case, N|S = N; since by hypothesis
N|S is executable, we have that δ `l out(t)@l′.P and δ′ `l′ C′. By rule
(T-), we have that δ `l P. Moreover, by applying (T-) to δ′ `l′ C′

and to δ′ `l′ 〈t〉 (axiom (T-)), we get that δ′ `l′ C′ | 〈t〉. This suffices
to conclude that N′|S (= N′) is executable.

• Neither l nor l′ belong to S . In this case, N′|S does not contain any
node and, hence, is trivially executable.

20

• One between l and l′ belongs to S . This case can be obtained by
combining the previous two ones.

(E). This case is similar to the previous one. Just notice that, if l′ ∈ S , we can
prove δ′ `l′ P′ | Q′ by applying (T-) to δ′ `l′ P′, that holds by hypothesis,
and to δ′ `l′ Q . Q′, that is the premise of rule (E).

(I). In this case, the proof is non-trivial only if l ∈ S ; so, let us assume that l ∈ S
and prove that δ[δ′′] `l Pσ. By hypothesis, we have that δ `l in(T)@l′.P,
where rule (T-) has been the last one applied to infer the judgment;
hence, we also have that upd(δ,T) `(T)

l P. By definition, if {xi : πi}i∈I

are the formal fields of T , we have that upd(δ,T) = δ] [xi 7→ πi]i∈I .
Moreover, by the premise of rule (I) and by Proposition 4.1, we have that
matchδl (T, t) = 〈δ′′, σ〉, where δ′′ = [li 7→ πi]i∈I and σ = [li/xi]i∈I . Now,
upd(δ,T) = δ] [xi 7→ πi]i∈I implies that upd(δ,T)σ = δ[li 7→ πi]i∈I = δ[δ′′].
Thus, by applying Lemma 5.3 to upd(δ,T) `(T)

l P, we conclude that
δ[δ′′] `l Pσ.

(R). Similar to the previous case.

(N). In this case, S ′ = S ∪ {l′}. If l < S , we trivially conclude, since δ′ `l′ nil.
Otherwise, by hypothesis we have that δ `l newloc(l′ : δ′).P, where rule
(T-) has been the last one applied to infer the judgment. Hence we also
have that δ] [l′ 7→ δ(l)] `{l

′}

l P. The thesis follows by using Lemma 5.3 with
substitution σ = [l′/l′].

(R). If l < S , the case is trivial. Otherwise, δ `l ∗ P, that holds by hypothesis,
implies that δ `l P; the thesis follows by applying rule (T-).

Inductive Step: We reason by case analysis on the last applied operational rule
of Table 6.

(M). If l < S , then trivially (l ::δ a.P ‖ l′ ::δ
′

C′)|S is executable and the
thesis follows by induction. Otherwise, we have that δ `l a.P; we explicitly
consider only the case where a is a in or read (the case for out or eval is
slightly easier). Due to the form of the process involved in the judgment,
rule (T-) has been the last one applied to deduce the judgment; hence
we also have that upd(δ, arg(a)) `(arg(a))

l P. By the premise of (M), we
have that, when the reduction takes place, {ar(a)} v

Π
δ(tgt(a)). Hence, by

21

applying (T-), we can derive δ `l a.P; this implies that (l ::δ a.P ‖ l′ ::δ
′

C′)|S is executable. The thesis now follows by induction.

(S). Like in the previous case, the proof is non-trivial only if l ∈ S . In this
case, we have that δ `l C1|C2. Due to the form of the process involved
in the judgment, rule (T-) has been the last one applied to deduce the
judgment; hence we also have that δ `l C1 and δ `l C2. Thus, we have
that (l ::δ C1 ‖ l ::δ C2 ‖ N)|S is executable and, by induction, we get that
(l ::δ

′

C′1 ‖ l ::δ C′2 ‖ N′)|S ′ is executable. It is easy to prove that δ � δ′;
thus, δ′ = δ[δ′′] for some δ′′. Now, the thesis directly follows by using
Lemma 5.2.

(P). The fact that (N1 ‖ N2)|S is executable (that holds by hypothesis) implies
that both N1|S and N2|S are executable. By induction, N′1|S ′ is executable.
Moreover, we can prove that N2|S ′ = N2|S . Indeed, if S ′ = S the claim is
straightforward; if S ′ , S , we have that S ′ = S ∪ {l′}, for some l′ < L,
and we can conclude by the fact that (N2) ⊆ L. Thus, (N′1 ‖ N2)|S ′ is
executable.

(S). From the hypothesis, N |S is executable and N ≡ N1; by Lemma 5.4,
it follows that N1|S is executable too. Now, by induction, we get that N2|S ′

is executable. From this fact and from the hypothesis N2 ≡ N′, again by
Lemma 5.4, it follows that N′|S ′ is executable. �

Now, we introduce the notion of run-time error and prove safety, i.e. that
executable nets do not give rise to run-time errors. Run-time errors are defined by
the rules in Table 7 in terms of predicate N ↑ l that holds true when a process
P located at a node in N with address l attempts to perform an action a that is
not allowed by the policy δ of the node. The rules are straightforward. Notice
that, since marked actions are checked at run-time, they cannot give rise to run-
time errors. At most, when their execution is not permitted, the process that is
trying to execute them is blocked, waiting for the acquisition of the corresponding
capabilities by a parallel process running at the same node.

Theorem 5.6 (Safety). If N|S is executable then N ↑ l for no l ∈ S .

Proof: We prove the contrapositive, i.e. that if N ↑ l for some l ∈ S then N |S is
not executable. The proof is by induction on the length of the inference of N ↑ l .

22

(EA)
{ar(a)} @

Π
δ(tgt(a))

l ::δ a.P ↑ l

(EP)
N ↑ l

N ‖ N′ ↑ l

(ES)
N ≡ N′ N′ ↑ l

N ↑ l

Table 7: Run-time error

Base Step: In this case, the error is generated by using axiom (EA).
This means that N is a node of the form l ::δ a.P, for l ∈ S , and
{ar(a)} @

Π
δ(tgt(a)). Therefore, node l ::δ a.P, and hence N|S , is not exe-

cutable otherwise action a would have been marked (see rules (T-) and
(T-) in Table 3, and the definition of function mark).

Inductive Step: By case analysis on the last error rule used.

(EP). By induction on the premise N ↑ l of the rule, we have that N|S is not
executable. Hence, by definition, (N ‖ N′)|S is not executable.

(ES). By induction on the premise N′ ↑ l of the rule, we have that N′|S is
not executable. Then the thesis follows from the premise N ≡ N′ by using
Lemma 5.4. �

Therefore, executable nets cannot immediately give rise to run-time errors.
Now, by combining together the results shown so far, we get that executable nets
never generate run-time errors along sequences of reductions.

Theorem 5.7 (Correctness). If N |S is executable and L . N �−→
∗ L′ . N′ for

(N) ⊆ L, then for no l ∈ S ∪ (L′ \ L) it holds that N′ ↑ l .

Proof: The proof proceeds by induction on the length of L . N �−→
∗ L′ . N′.

The base step is Theorem 5.6, while the inductive step follows from Theorems 5.5
and 5.6. �

To conclude, notice that a more traditional correctness result that involves the
static checking of the whole net can be obtained simply by taking S = (N).
However, we insist that our formulation of correctness better fits the key features
of open systems, where ‘good’ components usually run in hostile environments.

23

6. Example: Subscribing On-line Publications

In this section, we take up the publisher/subscriber scenario of Example 2.1 to
show the µK’s programming style and to illustrate a way to exploit its access
control mechanism for enforcing access policies. For programming convenience,
we shall assume integers and strings to be basic values of the language and omit
trailing occurrences of process nil. Moreover, to suitably identify and refer to
processes, we shall use notation A , P to assign the name A to the process P.

Suppose that a user U wants to subscribe a ‘license’ to enable accessing on-
line publications of a given publisher P. To model this scenario we use three
localities, lU , lP and lS , respectively associated to U, P and to the repository con-
taining P’s on-line accessible publications. First of all, U sends a subscription
request to P including its address (together with the access right o) and credit card
number; then, U waits for a tuple that will deliver it the access right r needed to
access P’s publications and proceeds with the rest of its activity. The behaviour
described so far is implemented by the process

AU , out(“S ubscr”, lU : [lP 7→ {o}],CrCrd)@lP.in(“Acc”, !x : {r})@lU .R

where process R may contain operations like read(. . .)@lS . Once P has received
the subscription request and checked (by possibly using a third party authority)
the validity of the payment information, it gives U an access right r over lS . P’s
behaviour is modeled by the following process.

AP , ∗ in(“S ubscr”, !x : {o}, !y)@lP.
check credit card y of x and require the payment .
out(“Acc”, lS : [x 7→ {r}])@x

Concretely, the access right r will be delivered to U for a limited period of time
(for example, annual subscriptions would obtain access rights valid for one year)
or for a limited number of accesses. In Section 7.2 we shall present some simple
ways to implement these features in our setting.

For processes AU and AP to behave in the expected way, the underlying net
architecture, namely distribution of processes and access control policies, must be
appropriately configured. A suitable net is:

lU ::[lU 7→C, lP 7→{o}] AU ‖ lP ::[lP 7→C,lS 7→{o,i,r}] AP

‖ lS ::[] 〈paper1〉 | 〈paper2〉 | . . .
(1)

where we have intentionally used AU to emphasize the fact that the static checking
might have marked some actions occurring in AU , e.g. actions read(. . .)@lS in R.

24

Upon completion of the protocol, the net will be

lU ::[lU 7→C,lP 7→{o},lS 7→{r}] R ‖ lP ::[lP 7→C,lS 7→{o,i,r},lU 7→{o}] AP

‖ lS ::[] 〈paper1〉 | 〈paper2〉 | . . .

Now consider the net

lU ::δ Q ‖ lP ::[lP 7→C,lS 7→{o,i,r}] AP ‖ lS ::[] 〈paper1〉 | 〈paper2〉 | . . . (2)

If we can make assumptions on the policy δ, we can exploit our framework to state
and guarantee some security properties.

• If e < δ(lP) and i < δ(ls), availability of P’s papers is guaranteed in that only
P can remove data from lS , whatever process Q is. Indeed, Q could remove
papers from lS either by inputting them or by migrating at a node where this
is allowed (viz., lP). In the first case, Q , in(paper)@lS .Q′, for some Q′,
where the action is marked because i < δ(lS) and the net in (2) is executable.
At run-time, the reference monitor will block Q for ever, since i < δ(lS) and
nobody in (2) is willing to pass the capability lS 7→ {i} around. In the second
case, Q , eval(in(paper)@lS)@lP .Q′, for some Q′, and we can reason in a
similar way.

• Similarly, if e < δ(lP) and o < δ(ls), integrity of P’s papers is ensured, in that
only P can add data to lS .

To conclude this section, we want to remark some features of this example
that shed light on some peculiarities of our framework.

1. P’s papers cannot be safely put in lP’s TS because otherwise the integrity
of P’s publications could be compromised by the execution at lU of the le-
gal process out(not−a−P−paper)@lP. Indeed, our capability lists are not
so refined to restrict the kind of tuples over which actions can operate: if
out(“S ubscr”, lU : [lP 7→ {o}],CrCrd)@lP has to be enabled, then also
out(not−a−P−paper)@lP will be enabled: the executable net

lU ::δ out(not−a−P−paper)@lP ‖ lP ::[lP 7→C] 〈paper1〉 | 〈paper2〉 | . . .

evolves into

lU ::δ nil ‖ lP ::[lP 7→C] 〈paper1〉 | 〈paper2〉 | . . . | 〈not−a−P−paper〉

where U has placed in lP a paper not published by P. This problem can be
avoided by exploiting the more refined policies we have introduced in [34].

25

2. Knowledge of address lS is not enough for reading papers, the access right
r is needed: access control in µK does not rely on name knowledge but
on access control policies. Indeed, a process Q , read(paper)@lS .Q′, for
some Q′, placed at lU in (2) never reads papers, assuming that r < δ(lS).

3. Once the access right r over lS has been acquired, all processes eventually
spawned at lU can access P’s on-line publications. In other terms, U obtains
a sort of ‘site license’ valid for all processes running at lU . This fact should
not be considered as an access control breach: indeed, in order to enter lU , a
mobile process could be required to exhibit some credential (e.g. a password
[44]), that however we do not model in our framework. Moreover, notice
that this way of handling privileges is different from [25], where, by using
the same protocol, U would have obtained a sort of ‘individual license’ for
process R. In the next section we will present variations of our framework
that permit delivering different capabilities to processes running at the same
node.

4. The license delivered by P to U can be used only at lU since the granting
associated to lS only delivers to lU the access right r over lS . Moreover, no
intruder can remotely interfere with the protocol between the user and the
publisher because the tuple 〈“Acc”, lS : [lU 7→ {r}]〉 located at lU can only
be retrieved by processes running at lU (see rules (M1) and (M2) in Table 5).
Indeed, if we add to (1) the node l′ ::δ

′ in(“Acc”, lS)@lU aiming at mounting
a denial of service attack against lU , such a node will not achieve its goal even
if i ∈ δ′(lU). A similar argument holds for the tuple 〈“S ubscr”, . . .〉 inserted
by AU at lP.

7. Variations on Capabilities Management

Up to now, capabilities are always acquired by the node hosting the process
performing actions in/read, and not by the process itself. This may be adequate
in some scenarios, e.g. when a department subscribes a ‘site license’ (i.e. valid
for all its members), and unrealistic in others, e.g. when a mobile process has to
buy a good on behalf of its owner. Moreover, capabilities can only increase; this
is unsuitable to control wastable resources where one usually wants to count the
number of times a given resource is used or to deliver accesses for a limited period
of time.

In the next two subsections, we will show that our framework can be smoothly
tailored for taking into account these different scenarios. For each variation, we
shall first describe the scenario we want to model from an operational point of

26

view and present a concrete motivating example. Then, we shall discuss how the
access control model can be tailored to preserve the results of Section 5.

Finally, in the last subsection we consider an orthogonal but realistic variation
where some capabilities cannot be passed through. As it also happens in actual
systems (see, e.g., [9, 27]), some capabilities can be passed while other, more
critical, ones cannot.

7.1. Variations on Capabilities Acquisition
In this section, we show an adaption of our framework that allows processes

to acquire capabilities for themselves. We start by presenting a scenario where all
the dynamically acquired capabilities are assigned to single processes; then, we
shall combine together the possibility of granting capabilities to processes and to
nodes.

7.1.1. Acquisition by Processes
We start by modifying our framework to associate capabilities, in particular

those dynamically acquired, to processes. To this aim, we annotate located pro-
cesses with a capability list that specifies the capabilities they own. Thus, a pro-
cess can also use its own private capabilities, in addition to the capabilities of the
executing node that are shared by all co-located processes. Now, a µK node
is of the form l ::δ AC, whereAC is an annotated component generated from the
following syntactic productions

AC ::= 〈t〉
∣∣∣ {{ P }}δ ∣∣∣ AC1|AC2

Notice that only process components can be annotated.
The operational semantics is changed to manage the acquisition of capabilities

that now increases process annotations while leaves policies of nodes unchanged.
In the initial configuration, all processes could have assigned the same empty ca-
pability list or not, reflecting different capabilities for the processes. The adaptions
are not surprising; they are in Table 8 and are reported in Appendix B. Notice that
marked actions are now checked only against the capability list associated to the
process performing them (see rule (M′)); indeed, the capability list of the node
does never change and has already been used in the static checking phase.

Let us now briefly revise the subscription example. If in the initial configura-
tion all processes have assigned the empty capability list, the evolution of the net
(1) according to the modified semantics leads to

lU ::[lU 7→C,lP 7→{o}] {{R }}[lS 7→{r}] ‖ lP ::[lP 7→C,lS 7→{o,i,r}] AP

‖ lS ::[] 〈paper1〉 | 〈paper2〉 | . . .

27

where now R is the only process having the capability to access the papers stored
at lS . Moreover, notice that the access right o over lU delivered by AU to AP disap-
pears upon completion of the parallel component running at lP that handles AU’s
request. Indeed, at the end of its task such a component becomes {{ nil }}[lU 7→{o}] and
can be removed.

7.1.2. Acquisition by Nodes and Processes
In practice, a (mobile) process could acquire some capabilities and, from time

to time, decide whether it wants to keep them for itself or to share them with other
processes running at the same node. A simple way to model both cases is to use
different acquisition actions depending on whether the acquisition should be made
on behalf of the node or of the process. Hence, we could leave the operational
semantics of actions in/read unchanged (i.e. as given in Section 4) apart for the
replacement of processes with annotated processes, add actions inpr(T)@u and
readpr(T)@u to the syntax, and model their operational semantics by using rules
akin to (I′) and (R′) in Table 8. In such a way, actions in/read would increase
the capability list of the node where they are executed while actions inpr/readpr
would increase the private capability list of the executing process.

Of course, to control the new actions, we also need to introduce the corre-
sponding access rights and to extend the ordering relation over access rights. Fur-
thermore, notice that, since node capability lists can dynamically change (like in
the original semantics), in rule (M′) the hypothesis {ar(a)} v

Π
δ1(l′) must be

replaced by {ar(a)} v
Π
δ1(l′) ∪ δ(l′). Indeed, a marked action can be enabled both

by the capabilities accumulated by the process and by the capabilities offered by
the hosting node.

Correctness. We now sketch how the results of Section 5 can be adapted to the
variation we have just presented (notice that the setting of Section 7.1.1 is clearly
an instance of the model we develop here). The static checking mechanism needs
smooth extensions: it should consider annotated processes and it should let rule
(T-) deal with actions inpr/readpr too. The first task can be carried out by
adding the following inference rule

(T-)
Γ[δ] `L

l P . P

Γ `L
l {{ P }}δ . {{ P }}δ

A marked annotated componentAC is an annotated component that may contain
annotated marked processes of the form {{ P }}δ. Then, the notions of admissible

28

nets and executable nets are defined like before, but take into account annotated
components.

Definition 7.1. A net is admissible if, for each node l ::δ AC, there exists a com-
ponentAC such that δ `l AC . AC. A net is executable if, for each node l ::δ AC,
it holds that δ `l AC . AC (abbreviated as δ `l AC).

Finally, run-time errors are defined accordingly, by letting rule (EA) be-
come

(EA′)
{ar(a)} @

Π
δ(tgt(a)) ∪ δ′(tgt(a))

l ::δ {{ a.P }}δ′ ↑ l
Thus, correctness of the revised framework can be formulated and proved like in
Theorem 5.7.

7.2. Managing Loss of Capabilities
In this subsection, we deal with some scenarios where capabilities can be lost.

The three settings we shall present mainly differ in the formal definition of capa-
bilities and in the way in which capabilities are lost. The main common feature
is that the static checking mechanism is weakened since there are a lot of ingre-
dients that can dynamically change. As it could be expected, more flexibility
requires more run-time checks.

Since in this subsection we need to express capabilities removal, we introduce
notation δ = δ1, δ2 to denote that δ can be bipartitioned in δ1 and δ2. Formally,
δ = δ1, δ2 means that δ = δ1[δ2] and, for each u ∈ dom(δ1) ∩ dom(δ2), we have
that δ1(u) = δ(u) − δ2(u) and δ2(u) = δ(u) − δ1(u). A similar notation is exploited
also for grantings.

7.2.1. Consumption
If we interpret the ‘acquisition of capabilities’ as the ‘purchase of ser-

vices/goods’, it is natural that a process will lose the acquired capability once
it used the service. For example, by paying the price of a book a user purchases
one copy of the book; if he wants another copy, he has to pay again. To en-
able multiple acquisitions and consumptions of capabilities, we should be able
to count the number of capabilities that nodes/processes have over each resource
(this is somehow similar to ‘affine’ types of [13]). To this aim, we modify our
model by working with multisets of access rights, instead of sets; in particular, Π

now denotes the set of the multisets built upon C (the set of access rights). All

29

the operations over and relations between sets used in this paper (i.e., union, sub-
set inclusion, ...) must be considered as operations over and relations between
multisets.

We start considering the case of dynamic acquisition and consumption of ca-
pabilities only by processes from Section 7.1.1. This means that node policies are
statically known and left unchanged by the operational semantics. The operational
rules are modified as reported in Table 9 (see Appendix B). The main change is
that process capabilities must be deleted whenever used; this happens for actions
out and eval, and when checking marked actions (see rules (O′′), (E′′) and
(M′′)). Also pattern matching needs to be modified; now, when it is invoked
by l on T and t, it returns a triple 〈δ′′, σ, t′〉. The difference is in the tuple t′ ob-
tained by removing from the grantings within t all the capabilities granted to l (i.e.,
the capabilities collected in δ′′). This is necessary otherwise repeated accesses to
a tuple via actions read would lead to a form of ‘capability forging’. Indeed, each
time a process at l reads t, the capabilities in δ′′ would be delivered to the process.
Since the read can be repeated several times (until 〈t〉 is available), it would be
possible to acquire several times the capabilities δ′′.

Taking up the example of Section 6, we can now program the acquisition (and
the consumption) of a fixed number of access rights r over the on-line repository.
The user explicitly requires a number k of access rights r and the publisher will
charge on U’s credit card the cost of k accesses to its publications. The processes
implementing these behaviours are

AU , out(“S ubscr”, lU : [lP 7→ {o}],CrCrd, k)@lP.
in(“Acc”, !x : {k × r})@lU .R

AP , ∗ in(“S ubscr”, !x : {o}, !y, !z)@lP.
check credit card y of x and charge the cost for z accesses .
out(“Acc”, lS : [x 7→ {z × r}])@x

where {k × r} stands for the multiset with k occurrences of capability r.

Correctness. Differently from Section 7.1, process capabilities do not play any
role in the static checking (thus, rule (T-) is missing): indeed, since they can
also decrease, it is statically impossible to rely on them to determine whether a
given action will be legal at run-time or not. As an example, consider the net
l ::[] {{ P|Q }}[l′ 7→{o}], where P , out(t)@l′ and Q , out(t′)@l′. In this case, exactly
one between P and Q will be able to perform action out while the other one will be
blocked, depending on the execution order. However, it is impossible to statically

30

tell which one will evolve and which one will get stuck (and hence both of them
have to be marked).

Furthermore, the static semantics now has to mark all the actions, except
those directly enabled by the access policy of the node where the inference
takes place. This is necessary to properly handle nodes like l ::[l′ 7→{i}] in(!u :
{o})@l′.out(·)@l′.out(·)@u, where action in should be the only unmarked one
after static checking. Indeed, if we use the checking of Section 3.2, the second ac-
tion out would not be marked. This could generate a run-time error if u is replaced
by l′ upon execution of the in: the acquired capability o, that enables execution of
the second action out, would be consumed to perform the first action out.

Admissible and executable nets are formally defined like in Definition 7.1;
run-time errors are defined like in Section 7.1.2, i.e. by exploiting rule (EA′).
Correctness can be still stated and proved similarly to Theorem 5.7.

A more general framework. Finally, let us now briefly consider the general setting
where both processes and nodes can dynamically acquire and consume capabil-
ities (see Section 7.1.2). This scenario is the most expensive because the static
checking phase cannot be exploited at all and all actions must be checked at run-
time. In fact, since also node capability lists can dynamically change, it is impos-
sible to statically determine if a given action will have the necessary capabilities
at run-time. Moreover, both the capability list associated to a process and the ca-
pability list of the node where the process is running can provide the process with
the capability necessary to perform a given action. In this case, the capability can
be removed from the capability list of the node or from the capability list of the
process, and a strategy must be implemented. The operational rules can be easily
modified to control capabilities and remove the used ones; to save space, we do
not show the details.

7.2.2. Validity Duration
Another possible way of modeling capability lost is by introducing duration,

as we already mentioned in the example of Section 6. Each capability can be as-
signed a validity duration by indexing it with a natural number or with the symbol
∞ representing the period of time during which the capability can be used: a ca-
pability is available until its validity has not been expired. Thus, capability lists
(and grantings) mapN to Π′, where Π′ is the powerset of C× (Nat∪{∞}) and it is
ranged over by ρ. For example, [l 7→ {i10, o5, e∞}] expresses the fact that it is still
possible to perform over l actions in for 10 time units, actions out for 5 time units
and actions eval forever. Access rights like e∞ will be called ‘persistent’ (notice

31

that all the access rights considered so far were indeed persistent).
The operational semantics of the basic framework needs to be modified to

model time passing and the effect of time passing on validity durations. Because
of the intrinsic asynchronous nature of our nets, we assume that time can pass dif-
ferently in different parts of the net but, at each node, time passes uniformly for all
the processes running there (this modeling is similar to web-π’s one [42]). More-
over, we assume that time progresses in discrete time steps and label reductions
with τ to indicate the passing of τ time units.

Technically, all the rules in Table 6, except (P) and (S), represent com-
putational steps and are assumed to be instantaneous; thus, the reductions oc-
curring therein are labeled with ‘0’. The reductions contained in rules (P) and
(S) are instead labeled with a generic label τ because they can stand for com-
putational steps or time steps. The following additional rule models time steps

(T) l ::δ C �
τ
−→ l ::(δ)−τ (C)−τ

Function (·)−τ is defined inductively as

(C1| C2)−τ , (C1)−τ | (C2)−τ

(〈t〉)−τ , 〈t′〉 with t′ obtained from t by replacing each µ with (µ)−τ

[]−τ , []

([l 7→ ρ])−τ , [l 7→ ρ′]
where ρ′ is obtained from ρ by:
• subtracting τ to all the durations, and
• deleting the access rights with a non-positive duration

(δ[δ′])−τ , (δ)−τ[(δ′)−τ]

(µ[µ′])−τ , (µ)−τ[(µ′)−τ]

and it is the identity function in all the other cases. Thus, it can be easily seen that
when τ1 time units pass in l1 and τ2 time units pass in l2, the net l1 ::δ1 C1 ‖ l2 ::δ2

C2 evolves as follows:

l1 ::δ1 C1 ‖ l2 ::δ2 C2 �
τ1
−→ l1 ::(δ1)−τ1 (C1)−τ1 ‖ l2 ::δ2 C2

�
τ2
−→ l1 ::(δ1)−τ1 (C1)−τ1 ‖ l2 ::(δ2)−τ2 (C2)−τ2

32

Correctness. We can statically control only the operations that are enabled by
persistent access rights; all the other operations have to be marked, since it is
not possible to exactly know when they will be performed. In particular, all the
actions having a variable as target must be marked. Moreover, to avoid forging
capability durations, we also need to ensure that a process delivers a capability
with duration τ only if the capability is persistent or has a duration at least τ in the
capability list of the node where the process runs.

These tasks can be achieved by defining an ordering on Π′, written v
Π′

, as
follows

τ′ ≤ τ

{cτ′} vΠ′
{cτ}

ρ1 ⊆ ρ2

ρ1 vΠ′
ρ2

ρ1 vΠ′
ρ′1 ρ2 vΠ′

ρ′2

(ρ1 ∪ ρ2) v
Π′

(ρ′1 ∪ ρ
′
2)

Clearly �, [[·]]δ, matchδl (·, ·) and markL
Γ
(·) now exploit this ordering. In particular,

this fact implies that, since ar(a) returns an access right that is not annotated,
action a is marked whenever a corresponding persistent capability is missing in the
current checking context. On the other hand, rule (M) still invokes v

Π
, that can

be straightforwardly extended to annotated access rights by ignoring durations.
The notions of admissible nets and executable nets are still defined like in

Definitions 3.6 and 5.1. Correctness is then formulated and proved like in Theo-
rem 5.7: it relies on the run-time errors defined in Table 7, that are still defined in
terms of @

Π
(properly extended to ignore validity durations). The only difference

is that, in stating and proving subject reduction (Theorem 5.5), we also need to
consider time passing, i.e. reductions of the form �

τ
−→ .

7.2.3. Revocation
We shall now touch upon a scenario where capabilities can be revoked, i.e. a

node can delete capabilities of other nodes. To rule out obvious nasty attacks, we
allow l to remove a capability list δ from l′ only if l has previously passed a list
greater than δ to l′ (notice that this complies with standard trends in discretionary
access control models). In doing so, we have also to take into account the fact that
several nodes could have passed δ to l′.

We let S to be the set of the finite subsets of N and we let s, s′, . . . to range
over S. We now annotate access rights with the identity of the deliverers, thus
obtaining the set of annotated access rights Π′, ranged over by ρ. Formally, Π′

contains the subsets of C × S such that, if (c, s1) ∈ ρ and (c, s2) ∈ ρ, then s1 = s2.
Statically assigned access rights take the form (c, ∅). We let the preorder v

Π′
on

annotated access rights to be defined by the following rules:

33

s1 ⊆ s2 ∨ s2 = ∅

{(c, s1)} v
Π′
{(c, s2)}

ρ1 ⊆ ρ2

ρ1 vΠ′
ρ2

ρ1 vΠ′
ρ′1 ρ2 vΠ′

ρ′2

(ρ1 ∪ ρ2) v
Π′

(ρ′1 ∪ ρ
′
2)

Grantings are left unchanged, i.e. they are finite partial functions from N to
Π, while capability lists now use annotated access rights. We use γ to range over
these annotated capability lists that, formally, are finite partial functions mapping
N to Π′. For example, the capability list [l 7→ { (i, {l1}) , (o, {l2, l3}) }] used as ac-
cess control policy of node l′ enables actions in/out from l′ over l, and records that
the capability i has been delivered by l1 while the capability o has been delivered
by both l2 and l3. The ordering relation between annotated capability lists, �′, is
defined like � but relies on v

Π′
instead of v

Π
. If γ1 and γ2 are annotated capability

lists, the extension γ1[γ2] is the annotated capability list γ′ such that

γ′(u) ,


γ1(u) if u ∈ dom(γ1) − dom(γ2)
γ2(u) if u ∈ dom(γ2) − dom(γ1)
γ1(u) + γ2(u) if u ∈ dom(γ1) ∩ dom(γ2)

where ρ1 + ρ2 is inductively defined as follows

∅ + ρ , ρ

{(c, s)} + ρ ,

{
{(c, s] s′)} ∪ ρ′ if (c, s′) ∈ ρ and ρ′ = ρ − {(c, s′)}
{(c, s)} ∪ ρ if (c,) < ρ

({(c, s)} ∪ ρ) + ρ′ , {(c, s)} + (ρ + ρ′)

We let s1] s2 be s1 ∪ s2 if both si , ∅, and ∅ otherwise. Underlying the definition
of] there is the assumption that, if a capability has been statically assigned to a
given node (and hence one of the si is the empty set), then no other node will ever
be allowed to revoke it; a similar motivation inspired us the definition of v

Π′
.

To enable capability revocations, we add action revoke(δ)@u to the syntax of
µK actions. The operational rules are in Table 10 in Appendix B. Mainly,
we have to deal with revocations: to this aim, we have to verify that the revoked
capabilities, δ, are present in the capability list γ ′ of l′ and that l was one of the
grantors of δ in γ ′. To enforce this requirement we ‘sign’ a tuple with the identity
of the producer; in this way, when capabilities contained in the tuple are acquired,
the identity of the granter is properly recorded to enable future revocations. This
can be obtained by letting located tuples take the form 〈t〉l, where l is the producer
of the tuple. Then, when a policy is updated after a read/in by exploiting capabil-
ities passed by a node l′′ (see rules (I′′′) and (R′′′)), the received capabilities
are annotated with l′′.

34

We now show two possible uses of revoke in the example of Section 6. The
first use consists in an alternative way of implementing the subscription for a fixed
period of time d. Indeed, if we do not introduce validity durations as previously
shown, we can let P to manage timing information: once U’s capability r has
expired, P can revoke it. A simplified process AP implementing this behaviour is

AP , ∗ in(“S ubscr”, !x : {o}, !y, !d)@lP.
check c.c. y of x and require the payment for duration d.
out(“Acc”, lS : [x 7→ {r}])@x.out(x,Today() + d)@l′P.B

B , ∗ in(x, !s)@l′P.
out(“check”, x,Today(),Today()≤ s)@l′P.
(in(“check”, x,Today(), false)@l′P.revoke([lS 7→ {r}])@x
| in(“check”, x,Today(), true)@l′P.out(x, s)@l′P)

where l′P is a reserved locality where P stores timing information (we have silently
used basic values representing dates and booleans, together with some obvious op-
erations over them). Intuitively, process AP handles timing expirations by record-
ing in l′P the expiration date of U’s subscription, given by Today() + d. Then,
process B repeatedly verifies the validity of the subscription by checking whether
the current date, given by function Today(), is antecedent to the expiration date of
U’s subscription. When expired, the capability enabling the access to P’s papers
is revoked.

Another possible use of revoke in our example consists in revoking the access
capability to a misbehaved user, e.g. a user that sold the acquired capability r to a
third part at a lower price. Notice, however, that evidence of U’s crime cannot be
implemented in our calculus; also in practice there would be an external authority
entitled to discover the crime and inform the publisher.

Correctness. We now adapt the static checking mechanism of Section 3.2 to the
new scenario. First, notice that we do not need a specific capability to enable
revoke: the operation is enabled only if l has previously delivered δ to l′, and
this is checked at run-time. Hence, the static checking mechanism is modified by
using �′ in rule (T-) and by adding the following rule

(T-)
Γ `L

l P . P

Γ `L
l revoke(δ)@l′.P . revoke(δ)@l′.P

Like for the previous variations, the checking can only rely on statically assigned
capabilities; indeed, annotated capabilities can be revoked in unpredictable ways.

35

Again, this forces us to also mark all those actions whose target is a variable
because we cannot know if the action will be enabled by a revocable capability or
not.

Admissible and executable nets are defined by relying only on statically as-
signed rights. To this aim, we use function pol(γ), that yields a simple capability
list δ by deleting from γ all capability annotations, and static(γ), that is the anno-
tated capability list obtained from γ by removing all the capabilities that have not
been statically assigned.

Definition 7.2. A net is admissible if, for each node l ::γ C, there exists a compo-
nent C such that

pol(static(γ)) `l C . C

A net is executable if, for each node l ::γ C, it holds that

pol(static(γ)) `l C . C

The definition of run-time errors now relies on the following variant of rule
(EA)

{ar(a)} @
Π

pol(γ)(tgt(a))

l ::γ a.P ↑ l
and correctness of the revised framework can be formulated and proved like in
Theorem 5.7.

Notice that, here and in the other variations on capability loosing, the correct-
ness theorems can be essentially proved like in Section 5. This is due to the fact
that, for the static checking mechanism, we only consider the capabilities that are
always available, i.e. those capabilities that cannot be consumed, that never expire
and that cannot be revoked. The marking mechanism, that does never give rise to
run-time errors, is exploited whenever capabilities that can become unavailable
are required.

Possible extensions. The scenario we have just presented is perhaps the simplest
way to model revocation of capabilities. We conclude by touching upon more
elaborated scenarios.

• According to rule (R), the process revoke(δ)@l′.P is stuck if only a
list of capabilities less than δ is present in γ ′. If we want to avoid this, we
can adapt the operational rule for revoke to remove from γ ′ the greatest
sublist of δ delivered by l.

36

• The proposed formulation rules out direct attacks aimed at revoking as many
capabilities as possible to reduce the functionality of a system. These at-
tacks can be mounted by executing actions revoke(δ)@l′ by a process run-
ning at l, where l did not delivered δ to l′. However, one can easily imagine
a scenario in which l spawns such a malicious process over an l′′ that deliv-
ered δ to l′. A simple way to avoid this is to define two checking systems:
the first one is `l, the other one, denoted by
l, is defined as the first one
but without rule (T-). We still use `l in the definitions of admissible nets
and of executable nets, while we use
l in rule (E): in this way we block
incoming agents containing actions revoke. This solution can however be
over-restricting: a better (but more complex) solution is to define
l in such
a way that revoke(δ)@l′ is deemed legal only if it is syntactically preceded
by an action out delivering l′ some capability list greater than δ.

• The last scenario we consider is when l1 delivers δ to l2 and then l2 delivers
δ to l. Should it be legal for l1 to perform an action revoke over l? In
the current framework it is not. However, we could model this scenario by
annotating access rights with subsets ofS; each such subset would represent
an unordered path leading to the acquisition of the capability. E.g., if c is
annotated with the set { {l1, l2} , {l′1, l

′
2, l
′
3} } in the annotated capability list of

l, then c has been delivered to l through l1 and l2 and, independently, through
l′1, l′2 and l′3. Clearly, the semantics has to be modified to enable all the lis
and l′js to perform actions revoke over l.

7.3. Managing Distribution of Capabilities
We conclude by dealing with an orthogonal feature of capability-based access

control systems, namely the ability of controlling capability distribution. Usually,
in discretionary access control models or in delegation-based trust models (see,
e.g., KeyNote [9] and SPKI [27]), some capabilities can be granted while some
other ones cannot. Moreover, the ‘grantable’ capabilities can be passed with an
explicit indication that they cannot be further granted. We show how distribution
of access rights can be integrated in our basic model (Sections 3 and 4); integration
in the more sophisticated scenarios presented in this Section can be carried out
similarly.

We start by defining the set of labeled access rights to be C × {◦, •}, ranged
over by λ; for notational convenience, we put the labels ◦ and • as superscripts to
access rights. Sets of labeled access rights are grouped in Ξ that is ranged over by
ξ. Capabilities, capability lists and grantings are now defined w.r.t. Ξ instead of

37

Π. Intuitively, an access right labeled with ‘◦’ is grantable, while an access right
labeled with ‘•’ is not. Thus, the capability l 7→ {i◦, o•} denotes the possibility of
further granting the access right i but not the access right o.

Resting on the idea that a grantable access right might also not be granted,
while the converse must be avoided, we now define the ordering on sets of labeled
access rights, vΞ, as the least transitive relation closed under the following rules:

{c◦} vΞ {c◦} {c•} vΞ {c◦} ξ vΞ ξ ∪ ξ
′

ξ1 vΞ ξ
′
1 ξ2 vΞ ξ

′
2

ξ1 ∪ ξ2 vΞ ξ
′
1 ∪ ξ

′
2

Notice that vΞ is not reflexive, because {c•} vΞ {c•} does not hold. This is due
to the fact that vΞ is used to govern capability passing and that a non-grantable
access right cannot be passed. Indeed, the checking of grantings in Table 4 and
the ordering on capability lists given in Definition 3.3 now exploit vΞ instead of
v

Π
. However, the run-time check of rule (M) and the rules for run-time error

in Table 7 still rely on v
Π
. Also the pattern matching in Table 5 relies on vΞ; in

particular, rule (M2) now becomes

ξ vΞ δ(l′) ∪ µ(l) ar(ξ) = π

matchδl (! x : π, l′ : µ) = 〈[l′ 7→ ξ], [l′/x]〉

where, with abuse of notation, we use function ar(·) to also remove all labels from
a set of labelled access rights.

Finally, we are left with the definition of extension of capability lists. To this
aim, we let sup(·, ·) be the least reflexive and symmetric function over labeled
access rights such that sup(c◦, c•) = c◦. Function sup(·, ·) is then extended to sets
of labeled access rights as follows

sup(ξ1, ξ2) ,



{λ} ∪ sup(ξ′1, ξ2) if λ ∈ ξ1 and ξ′1 = ξ1 − {λ}
and ∀λ′ ∈ ξ2 . ar(λ) , ar(λ′)

sup(λ1, λ2) ∪ sup(ξ′1, ξ
′
2) if λ1 ∈ ξ1 and ξ′1 = ξ1 − {λ1}

and λ2 ∈ ξ2 and ξ′2 = ξ2 − {λ2}

and ar(λ1) = ar(λ2)

ξ2 if ξ1 = ∅

Now, we let δ1[δ2] be the capability list δ such that

δ(u) ,


δ1(u) if u ∈ dom(δ1) − dom(δ2)
δ2(u) if u ∈ dom(δ2) − dom(δ1)
sup(δ1(u), δ2(u)) if u ∈ dom(δ1) ∩ dom(δ2)

38

The rationale underlying this definition is that a non-grantable access right can be
upgraded because of extension with the corresponding grantable access right.

To test the impact that this variation has on the expressiveness of our model,
we reconsider the example of Section 6. In that scenario, every user could pass
through the capability lS 7→ {r} received by the publisher, thus acting as a tricky
contender of P. By exploiting labeled access rights, we can model P’s behaviour
in a safer way by letting

AP , ∗ in(“S ubscr”, !x : {o}, !y)@lP.
check credit card y of x and require the payment .
out(“Acc”, lS : [x 7→ {r•}])@x

Now, consider the net

N , lU ::δ Q ‖ lP ::[lP 7→C×{•},lS 7→{o•,i•,r◦}] AP ‖ lS ::[] 〈paper1〉 | 〈paper2〉 | . . .

If we assume that

{e◦, e•} ∩ δ(lP) = ∅ and {e◦, e•, i◦, i•, r◦, r•} ∩ δ(ls) = ∅ (3)

then we can prove that, whatever process Q is, data at lS can only be accessed by
lU in read-mode and after the payment has been checked. Thanks to non-grantable
access rights, this property also holds in N ‖ M, for every M whose node policies
respect the assumptions made in (3) for the policy δ of lU .

The correctness of the resulting model can be easily established by following
the steps presented in Section 5. To save space, we omit the details.

8. Related Work

Protection mechanisms for shared data-spaces coordination languages. Several
protection mechanisms have been proposed for shared data-space coordination
languages that, like µK, are based on L. Here, we describe the approaches
closer to ours and refer the interested reader to [28] for a survey of other ap-
proaches.

Some works use cryptographic mechanisms for protecting data items, tuples
and tuple spaces. For example, SecSpaces [36] associates a label to any pro-
tected tuple specifying the key needed to unlock the tuple and the modality (i.e.,
via ‘read’ or ‘in’ operations) in which it can be accessed. Labels can be inserted
within data fields, thus privileges can be dynamically acquired trough communi-
cation. In [38], Lime (a framework for programming ad hoc networks via mobile

39

processes transiently sharing tuple spaces) is enriched with a password-based ac-
cess control mechanism that permits the access to tuples and tuple spaces only to
the processes that know the appropriate passwords. The initial password distri-
bution is possibly accomplished outside of the application itself, while password
exchanges are managed by the application. These programming choices are very
similar to the ones for µK the we adopted in this paper.

Cryptographic keys, labels and passwords are similar approaches to protect
single tuples, that overcome the impossibility for capabilities to refer anonymous
objects. An alternative approach is put forward in [60] with the introduction of
Lindacap, a L-like capability-based system with multicapabilities. Multica-
pabilities provide a partitioning of a tuple-space and enable certain operations to
be performed on tuples of a specific group, but not on those of another group, even
though both groups have the same template. A multicapability may be copied to
be passed to other processes; moreover, some operations on capabilities are in-
troduced (e.g., set-like union, intersection and difference). Similar finer-grained
capabilities for µK have been introduced in [34], where capabilities also spec-
ify a template for tuples, i.e. the argument of an operation in addition to its type.
The partitioning of the tuple spaces provided by multicapabilities can somehow
be mimicked by exploiting µK dynamically created tuple spaces, although
µK lacks the combination calculus of multicapabilities. Moreover, Lindacap
only uses dynamic checking whereas µK relies on both static and dynamic
checking.

Distributed process calculi with protection mechanisms. A number of process cal-
culi with distribution and mobility have been equipped in the last decade with pro-
tection mechanisms based on, e.g., type systems [25, 13, 41, 11, 15], control/data
flow analysis [47, 48, 26, 40] and flow logic [39].

The approach closest to ours is the one based on type systems. However,
among the large amount of work on type systems for resource protection in calculi
with process distribution and mobility, only [51, 22, 12] handle dynamic modifi-
cation of security policies. In [51] dynamic modifications of local knowledge of
nodes are allowed, but must always respect a global policy for the net. Thus,
the global policy is fixed at the beginning and does never change. The work in
[22] somehow adapts our approach to the Ambient Calculus, where local poli-
cies are modified as an effect of ambient mobility. However, the way in which an
ambient movement modifies a local policy is hardcoded within the moving ambi-
ent; this fact reduces the flexibility of the approach. In [12] the authors develop
a secure implementation of a typed π–calculus, in which capability-based types

40

are employed to regulate the access to communication channels and dynamically
exchange access rights between processes. High-level π–calculus processes are
translated into low-level principals of a cryptographic process calculus which is
a variant of the ‘applied’ π–calculus [2]. The high-level type capabilities are im-
plemented as term capabilities protected by encryption keys only known to the
intended receivers. As such, the implementation is effective even when the com-
piled, low-level principals are deployed in open contexts for which no assumption
on trust and behavior may be made. This approach is refined even further in
[4, 30] by implementing high-level functionalities directly using computational
cryptography.

Other related approaches. Software capabilities have also been used to build a
protection scheme for the Java environment [37]. As in our framework, access
rights can be dynamically exchanged via communications by mutually suspicious
processes. However, in our model capabilities are made available at the program-
ming level (e.g. through grantings that are used explicitly for exchanging access
rights), while in loc. cit. access control is handled as a non-functional aspect
defined at the level of application interface and is completely separated from the
functional code of applications.

In [3], the access rights of a piece of code are determined by examining the
attributes (e.g. accessed data, site of origin, and so on) of the pieces of code
that have run before and any explicit requests to augment rights. In other words,
the access rights of a process depend on the history of its execution and of con-
trol transfers among processes. Instead, we consider a very simple and abstract
process language and most of the ideas put forward by [3] do not apply. Some
features, however, can be easily integrated in our setting. For example, as we
show in [34], we can set node policies to grant capabilities to incoming processes
according to the nodes spawning them, thus taking into account their execution
history (i.e. the nodes they have already passed through).

In the last few years, several security frameworks for open systems appeared
in the literature [59, 16, 17, 55, 6] that, similarly to ours, combine static and
dynamic checks for efficiency and flexibility matters. We linger on the most
related approaches. In [59], run-time principals are introduced for specifying
information-flow security policies also in terms of information available at run-
time (e.g., which principals will interact with the system). Dynamic checks are
used to inspect run-time principals to determine policy information not available at
compile time. Similarly, in our setting, processes can exploit capabilities dynam-
ically acquired by weakening the static checking and by delaying some checks at

41

run-time. In [17], secrecy properties are guaranteed for a variant of the π-calculus
with filesystem constructs. The calculus supports both access control checks and
a form of static scoping that limits the knowledge of terms, including file names
and contents, to groups of clients. As in our approach, while the typing is static, it
applies to a program subject to dynamic access-control checks. In [55] the static
and the dynamic approach to information flow are compared, to better understand
their strengths and weaknesses. In general, since concrete values are known at
run-time, run-time analyses can achieve greater precision and are more suitable
to support security policies that are defined dynamically. On the contrary, static
analyses must reject entire programs as insecure, where a run-time system needs
only reject insecure executions of a program, but are more efficient. Our proposal
aims at taking advantage of both approaches by merging them.

Another related research line concerns the definition of languages for dynam-
ically evolving security policies [18, 57, 7]. In particular, [57] studies dynamic
policies as channels that carry sensible information and develops a static type sys-
tem that ensures a form of non-interference. A similar research line is followed in
[7]. In [18], a framework is presented where, when analyzing a system statically,
there may be available only partial knowledge of the structure of security policies.
Similarly to ours, the framework permits static reasoning even when only partial
knowledge of the run-time security policy structure is available.

To conclude, it has to be said that we have used a very simple policy language.
A challenging issue for future research is the extension of our framework for deal-
ing with policies written in a more complex policy language as, e.g., one of the
languages surveyed in [1].

9. Conclusions

We presented µK, a foundational calculus for network aware program-
ming, and its capability-based access control model. The latter permits controlling
process mobility and enforcing protection of resources against misuse; moreover,
it enables access control management by governing the use of resources and selec-
tively distributing capabilities to processes. According to the terminology used in
[53], our framework exploits a combination of static and dynamic checking, and of
in-lined reference monitoring implemented by marking those process actions that
need run-time verification. We have also presented some variations of the basic
framework that enable processes to acquire capabilities for themselves, take into
account capabilities loss and permit to constraint capabilities distribution. With
respect to more traditional approaches exploiting capability-based access control,

42

preliminary static checks are introduced and performed everywhere possible to in-
crease efficiency. However, due to process migration and dynamic modifications
of access control policies, run-time checks are still largely used.

Our model is largely independent from the underlying language and from the
definition of access rights. More specifically, it is possible to define a model sim-
ilar to the one for µK we have presented in this paper, whenever we have:
(i) a language with a set of process operations and a set of corresponding access
rights, (ii) an ordering relation over sets of access rights, and (iii) some linguis-
tic primitives for exchanging capabilities. For example, it is conceptually easy to
adapt the current framework to the access rights used in [34], where finer-grained
capabilities are exploited (by taking into account also the argument of an opera-
tion) and where a host can assign different privileges to processes coming from
different nodes. Clearly, these are orthogonal features that can be integrated in our
framework; however, to keep the notations in this paper simple, we have preferred
to omit them.

A. Proofs of Technical Results

In this section we shall prove some technical results stated in the paper, namely
Propositions 3.5, 4.2 and 4.3.

Proposition 3.5. For any Γ, l, L, C and C′ it is decidable to determine whether
the judgment Γ `L

l C . C′ holds true or not.

Proof: We firstly introduce the function #(C) that gives an upper bound to the
number of checking rules that must be applied to establish the validity of a judg-
ment Γ `L

l C . C′.

#(C) ,


1 if C = 〈t〉 or C = nil
1 + #(P) if C = a.P or C = a.P or C = ∗ P
1 + #(P1) + #(P2) if C = P1|P2

Notice that #(C) is always linear in the number of operators occurring in C, hence
it is finite and does not depend on Γ or L. We then prove the following lemma that
trivially implies the thesis.

Lemma A.1. For any Γ, l, L, C and C′ the validity of judgment
Γ `L

l C . C′ can be established in at most #(C) inference steps.
In particular, exactly #(C) rules are needed to validate the judgment,
while a smaller number is needed to disprove it.

43

Proof: The proof is by induction on #(C). The key observation is
that the inference of the judgment Γ `L

l C . C′ is driven by the syntax
of C itself; hence, at any step at most one rule can be applied.

Base case: #(C) = 1. We reason on the syntax of C.

C = 〈t〉. In this case, the only applicable static checking rule
is (T-) that permits deducing Γ `l 〈t〉 . 〈t〉. Thus, the
judgement Γ `l C . C′ is valid if, and only if, C′ = 〈t〉 and
this can be established in one step.

C = nil. The proof proceeds similarly, once we replace 〈t〉with
nil and (T-) with (T-).

Inductive case: #(C) > 1. We reason on the syntax of C.

C = a.P. We further distinguish the case where a is an action
newloc from the case where a is another action.
a = newloc(l′ : δ). Due to the syntax of C, the only

static checking rule that could be applied is (T-).
For (T-) to be applicable it must hold that δ � Γ]

[l′ 7→ Γ(l)]; otherwise, Γ `L
l C . C′ would not hold.

Moreover, it must hold that C′ = newloc(l′ : δ).P′ for
some P′ such that Γ[l′ 7→ Γ(l)] `L∪{l′}

l P . P′. Since, by
definition, #(C) = 1 + #(P), by induction we conclude
that:
• if such P′ does not exist, then this can be determined

by using less than #(P) steps, and hence we can con-
fute Γ `L

l C . C′ by using less than #(C) steps;
• otherwise, #(P) steps are needed for P and one step

is needed to apply (T-). Thus, we can validate
Γ `L

l C . C′ by using #(C) steps.
a , newloc(· · ·). We can only apply rules (T-) or

(T-). They both require C′ = markL
Γ
(a).P′ for some

P′ such that Γ `L
l P . P′ or upd(Γ, arg(a)) `L∪(arg(a))

l
P . P′, respectively. The thesis then follows by induc-
tion.

C = a.P. This case proceeds like the case for a , newloc(· · ·)
but uses (T-)/(T-) in place of (T-)/(T-).

44

C = C1| C2. The only checking rule that can be used in this
case is (T-). To this aim, C′ must be of the form C′1| C

′
2

for some C′1 and C′2 such that Γ `L
l Ci . C′i for i = 1, 2. By

using a straightforward induction on the latter judgments,
the thesis follows.

C = ∗ P. The only checking rule that can be used in this case is
(T-). To this aim, C′ must be of the form ∗ P′ for some
P′ such that Γ `l P . P′. The thesis follows by induction.
�

Proposition 4.2. If L . N �−→ L′ . N′ and (N) ⊆ L then (N′) ⊆ L′.

Proof: We firstly prove a technical lemma.

Lemma A.2. If L . N �−→ L′ . N′ and (N) ⊆ L, then L ⊆ L′ and
(N′) − (N) = L′ − L.

Proof: That L ⊆ L′ immediately follows from the definition of the
reduction rules because the set of localities in a configuration never
decreases along reductions. To show that (N′) − (N) = L′ − L,
we reason by induction on the length of the proof of L . N �−→ L′ .
N′. The only significant base case is when rule (N) is used: in
such case, L′ is obtained by adding to L the newly created locality
l′, which is the only locality in (N′) − (N). The inductive step is
straightforward; when considering rule (S), notice that, if N ≡
N′, then (N) = (N′).

Now, (N′) ∩ (N) ⊆ (N). Moreover, notice that (N) − (N′) might be
not empty because some localities occurring in N but not as addresses of network
nodes may disappear in N′ due to inter-process communication. Hence, from
Lemma A.2 we get (N′) = ((N′)−(N))∪((N′)∩(N)) ⊆ (L′−L)∪(N) ⊆
(L′ − L) ∪ L′ = L′. �

Proposition 4.3. If N is well-formed and L . N �−→
∗ L′ . N′ for (N) ⊆ L, then

N′ is well-formed.

Proof: It is easy to prove, by induction on the rules, that the structural congruence
≡ preserves well-formedness of nets. Thus, we are only left to prove that the

45

reduction relation does never transform a well-formed net into a net where two
distinct nodes have the same address (indeed, the reduction rules could also be
applied to nets that do not satisfy this property). To this aim, we first prove a
Lemma stating that a single reduction step from a net N preserves the number of
nodes having the same address. This property is expressed by using clone(N) to
denote the least number of nodes that should be removed from N to yield a well-
formed net. To formally define function clone(·), we exploit the auxiliary function
mnl(·) (mnl stands for ‘multiset of node localities’), that, when applied to a net,
returns the multiset of localities naming the nodes of the net. It is inductively
defined over the syntax of nets as follows:

mnl(l ::δ C) , {|l|} mnl(N1 ‖ N2) , mnl(N1) q mnl(N2)

where {|l0, . . . , ln|} denotes the multiset with elements l0, . . . , ln and q denotes mul-
tiset union. Now, for any µK net N, we can define clone(N) as the cardinality
of the multiset obtained by removing from mnl(N) one occurrence of each differ-
ent locality occurring in it.

Lemma A.3. If L . N �−→ L′ . N′ then clone(N) = clone(N′).

Proof: We reason by induction on the length of the proof of the
reduction L . N �−→ L′ . N′. The base case is with axioms (O),
(E), (I), (R), (N) or (R), and it is trivial. In the inductive
case, we reason by case analysis on the last rule applied. The cases of
rules (M), (P) and (S) easily follow by induction: it can
be easily seen that ≡ preserves clone(·). Suppose now that the last
applied rule is (S) and let L.N1 �−→ L′ .N2 be its premise. Then,
due to the form of the nets involved in the rule, we have clone(N1) =

clone(N) + 1 and clone(N2) = clone(N′) + 1. Since the proof of L .
N1 �−→ L′ . N2 is shorter than that of L . N �−→ L′ . N′, we can
apply induction and deduce that clone(N1) = clone(N2), from which
it follows that clone(N) = clone(N′) that proves the thesis.

To conclude, note that a net N is well-formed if and only if clone(N) = 0. Hence,
by using Lemma A.3 and by a straightforward induction on the length of reduction
sequences, the thesis easily follows. �

46

B. Formal Definitions for the Variations of Section 7

Definitions for Section 7.1.1. The structural congruence is modified by replacing
rules (A) and (A) in Table 2 with rules

(A′)
P =α P′

l ::δ {{ P }}δ′ ≡ l ::δ {{ P′ }}δ′

(A′)

l ::δ AC ≡ l ::δ AC | {{ nil }}δ′

The rules for the reduction relation are in Table 8.

Definitions for Section 7.2.1. The checking of grantings now deletes the capa-
bilities passed in the tuple and returns the capabilities left. Its formal definition
updates Table 4 as follows:

µ = [li 7→ πi]i=1,...,k

δ1 = δ′1, [l 7→
⋃k

i=1(πi − δ(l))]
∀ i = 1, . . . , k . πi vΠ

(δ(l) ∪ δ1(l))

[[l : µ]]δδ1 = δ′1

[[t1]]δδ1 = δ2

[[t2]]δδ2 = δ3

[[t1, t2]]δδ1 = δ3

Also the definition of function match must be updated; its new formulation
relies on the following modification of rule (M2):

π v
Π
δ(l′) ∪ µ(l) µ = µ′, [l 7→ (π − δ(l′))]

matchδl (! x : π, l′ : µ) = 〈[l′ 7→ (π − δ(l′))], [l′/x], l′ : µ′〉

where only the capabilities delivered by the tuple that are not already owned by
the executing node are used to enrich the policy of the executing process (this
is needed to avoid delivering the process capabilities already in δ). As concerns
(M1), it is modified to additionally return the tuple passed as second argument to
function matchδl , while (M3) is modified to additionally return the tuple resulting
from the concatenation of the two tuples returned by its premises.

The rules for the reduction relation are in Table 9.

Definitions for Section 7.2.3. The rules for the reduction relation are in Table 10,
where, for any u ∈ dom(δ), we let δ{l

′′}(u) = {(c, {l′′}) : c ∈ δ(u)}. Function
pol(γ) yields a simple capability list δ by deleting from γ all capability annota-
tions; moreover, static(γ) denotes the annotated capability list obtained from γ by
removing all the capabilities that have not been statically assigned.

47

(O′)
[[t]]δ[δ1]

l ::δ {{ out(t)@l′.P }}δ1 ‖ l′ ::δ
′

AC′ �−→ l ::δ {{ P }}δ1 ‖ l′ ::δ
′

AC′|〈t〉

(E′)
δ′[δ1] `l′ Q . Q

l ::δ {{ eval(Q)@l′.P }}δ1 ‖ l′ ::δ
′

AC′ �−→ l ::δ {{ P }}δ1 ‖ l′ ::δ
′

AC′|{{Q }}δ1

(I′)
matchδ[δ1]

l (T, t) = 〈δ′′, σ〉

l ::δ {{ in(T)@l′.P }}δ1 ‖ l′ ::δ
′

〈t〉 �−→ l ::δ {{ Pσ }}δ1[δ′′] ‖ l′ ::δ
′

nil

(R′)
matchδ[δ1]

l (T, t) = 〈δ′′, σ〉

l ::δ {{ read(T)@l′.P }}δ1 ‖ l′ ::δ
′

〈t〉 �−→ l ::δ {{ Pσ }}δ1[δ′′] ‖ l′ ::δ
′

〈t〉

(N′)
l′ < L

L . l ::δ {{ newloc(l′ : δ′).P }}δ1 �−→ L ∪ {l′} . l ::δ {{ P }}δ1[l′ 7→δ1(l)] ‖ l′ ::δ
′

nil

(R′) l ::δ {{ ∗ P }}δ1 �−→ l ::δ {{ P | ∗ P }}δ1

(M′)
l′ = tgt(a) {ar(a)} v

Π
δ1(l′) l ::δ {{ a.P }}δ1 ‖ l′ ::δ

′

AC′ �−→ N

l ::δ {{ a.P }}δ1 ‖ l′ ::δ
′

AC′ �−→ N

(S′1)
L . l ::δ AC1 ‖ l ::δ AC2 ‖ N �−→ L′ . l ::δ AC′1 ‖ l ::δ AC′2 ‖ N′

L . l ::δ AC1|AC2 ‖ N �−→ L′ . l ::δ AC′1|AC
′
2 ‖ N′

(S′2)
L . l ::δ {{ P }}δ1 ‖ l ::δ {{Q }}δ1 ‖ N �−→ L′ . l ::δ {{ P′ }}δ2 ‖ l ::δ {{Q }}δ1 ‖ N′

L . l ::δ {{ P|Q }}δ1 ‖ N �−→ L′ . l ::δ {{ P′ }}δ2 | {{Q }}δ1 ‖ N

plus rules (P) and (S) from Table 6.
[[·]] is defined in Table 4 and matchl(·, ·) is defined in Table 5

Table 8: Acquisition by processes: operational semantics

Acknowledgements. We thank the anonymous reviewers for fruitful comments
that helped in improving the paper.

48

(O′′)
[[t]]δδ1 = δ′1

l ::δ {{ out(t)@l′.P }}δ1 ‖ l′ ::δ
′

AC′ �−→ l ::δ {{ P }}δ′1 ‖ l′ ::δ
′

AC′|〈t〉

(E′′)
δ1 = δ′1, δ

′′
1 δ′ `l′ Q . Q

l ::δ {{ eval(Q)@l′.P }}δ1 ‖ l′ ::δ
′

AC′ �−→ l ::δ {{ P }}δ′1 ‖ l′ ::δ
′

AC′|{{Q }}δ′′1

(I′′)
matchδ[δ1]

l (T, t) = 〈δ′′, σ, t′〉

l ::δ {{ in(T)@l′.P }}δ1 ‖ l′ ::δ
′

〈t〉 �−→ l ::δ {{ Pσ }}δ1[δ′′] ‖ l′ ::δ
′

nil

(R′′)
matchδ[δ1]

l (T, t) = 〈δ′′, σ, t′〉

l ::δ {{ read(T)@l′.P }}δ1 ‖ l′ ::δ
′

〈t〉 �−→ l ::δ {{ Pσ }}δ1[δ′′] ‖ l′ ::δ
′

〈t′〉

(M′′)
l′ = tgt(a) δ1 = δ′1, [l

′ 7→{ar(a)}] l ::δ{{ a.P }}δ′1 ‖ l′ ::δ
′

AC′ �−→ N

l ::δ {{ a.P }}δ1 ‖ l′ ::δ
′

AC′ �−→ N

plus rules (N′), (R′), (S′1) and (S′2) from Table 8
and rules (P) and (S) from Table 6

Table 9: Consumption of capabilities: operational semantics

References

[1] M. Abadi. Logic in access control. In 18th IEEE Symposium on Logic in
Computer Science (LICS 2003), pages 228–233. IEEE Computer Society,
2003.

[2] M. Abadi and C. Fournet. Mobile values, new names, and secure communi-
cation. In POPL, pages 104–115, 2001.

[3] M. Abadi and C. Fournet. Access control based on execution history. In 10th
Annual Network and Distributed System Security Symposium (NDSS’03).
The Internet Society, 2003.

[4] P. Adão and C. Fournet. Cryptographically sound implementations for com-
municating processes. In M. Bugliesi, B. Preneel, V. Sassone, and I. We-
gener, editors, ICALP (2), volume 4052 of Lecture Notes in Computer Sci-
ence, pages 83–94. Springer, 2006.

49

(O′′′)
[[t]]pol(γ)

l ::γ out(t)@l′.P ‖ l′ ::γ
′

C′ �−→ l ::γ P ‖ l′ ::γ
′

C′|〈t〉l

(E′′′)
pol(static(γ ′)) `l′ Q . Q

l ::γ eval(Q)@l′.P ‖ l′ ::γ
′

C′ �−→ l ::γ P ‖ l′ ::γ
′

C′|Q

(I′′′)
matchpol(γ)

l (T, t) = 〈δ, σ〉

l ::δ in(T)@l′.P ‖ l′ ::δ
′

〈t〉l
′′

�−→ l ::γ[δ{l
′′}] Pσ ‖ l′ ::δ

′

nil

(R′′′)
matchpol(γ)

l (T, t) = 〈δ, σ〉

l ::δ read(T)@l′.P ‖ l′ ::δ
′

〈t〉l
′′

�−→ l ::γ[δ{l
′′}] Pσ ‖ l′ ::δ

′

〈t〉l
′′

(R)
γ ′ = γ ′′, δ{l}

l ::γ revoke(δ)@l′.P ‖ l′ ::γ
′

C′ �−→ l ::γ P ‖ l′ ::γ
′′

C′

plus rules (N), (R), (S), (P) and (S) from Table 6,
with γ in place of δ everywhere.
[[·]] is defined in Table 4 and matchl(·, ·) is defined in Table 5

Table 10: Revocation of capabilities: operational semantics

[5] K. Arnold, E. Freeman, and S. Hupfer. JavaSpaces Principles, Patterns and
Practice. Addison-Wesley, 1999.

[6] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Saner: Composing static and dynamic analysis to validate san-
itization in web applications. In IEEE Symposium on Security and Privacy,
pages 387–401, 2008.

[7] S. Bandhakavi, W. Winsborough, and M. Winslett. A trust management
approach for flexible policy management in security-typed languages. In To
appear in the Proc. of CSF. IEEE Computer Society, 2008.

[8] L. Bettini, R. De Nicola, and R. Pugliese. K: a Java Package for Dis-
tributed and Mobile Applications. Software — Practice and Experience,
32:1365–1394, 2002.

[9] M. Blaze, J. Feigenbaum, and A. D. Keromytis. The role of trust man-

50

agement in distributed systems security. In Secure Internet Programming:
Issues in Distributed and Mobile Object Systems, number 1603 in LNCS,
pages 185–210. Springer-Verlag, 1999.

[10] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In
IEEE Symposium on Security and Privacy, pages 164–173, 1996.

[11] M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents:
The calculus of boxed ambients. ACM Trans. Program. Lang. Syst.,
26(1):57–124, 2004.

[12] M. Bugliesi and M. Giunti. Secure implementations of typed channel ab-
stractions. In M. Hofmann and M. Felleisen, editors, POPL, pages 251–262.
ACM, 2007.

[13] L. Cardelli, G. Ghelli, and A. D. Gordon. Types for the ambient calculus.
Journal of Information and Computation, 177(2):160–194, 2002.

[14] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Sci-
ence, 240(1):177–213, 2000. An extended abstract appeared in Proceedings
of FoSSaCS ’98, number 1378 of Lecture Notes in Computer Science, pages
140-155, Springer, 1998.

[15] G. Castagna, J. Vitek, and F. Z. Nardelli. The seal calculus. Inf. Comput.,
201(1):1–54, 2005.

[16] A. Chaudhuri. Dynamic access control in a concurrent object calculus. In
Proc. of CONCUR, volume 4137 of LNCS, pages 263–278. Springer, 2006.

[17] A. Chaudhuri and M. Abadi. Secrecy by typing and file-access control. In
CSFW ’06: Proceedings of the 19th IEEE workshop on Computer Security
Foundations, pages 112–123. IEEE Computer Society, 2006.

[18] H. Chen and S. Chong. Owned policies for information security. In Proc. of
CSFW, pages 126–138. IEEE Computer Society, 2004.

[19] Y.-H. Chu, J. Feigenbaum, B. A. LaMacchia, P. Resnick, and M. Strauss.
Referee: Trust management for web applications. Computer Networks, 29(8-
13):953–964, 1997.

51

[20] V.-L. Chung and C. S. MacDonald. The development of a distributed ca-
pability system for VLOS. In F. Lai and J. Morris, editors, Seventh Asia-
Pacific Computer Systems Architectures Conference (ACSAC2002), Mel-
bourne, Australia, 2002.

[21] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and A. Knoche. Coordinat-
ing multiagent applications on the WWW: A reference architecture. IEEE
Transactions on Software Engineering, 24(5):362–366, 1998.

[22] M. Coppo, M. Dezani, E. Giovannetti, and R. Pugliese. Dynamic and Local
Typing for Mobile Ambients. In Proc. of IFIP-TCS’04, pages 577–590.
Kluwer, 2004.

[23] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz. An
architecture for a secure service discovery service. In MobiCom ’99: Pro-
ceedings of the 5th annual ACM/IEEE international conference on Mobile
computing and networking, pages 24–35. ACM Press, 1999.

[24] R. De Nicola, G. Ferrari, and R. Pugliese. K: a Kernel Language for
Agents Interaction and Mobility. IEEE Transactions on Software Engineer-
ing, 24(5):315–330, 1998.

[25] R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for Access
Control. Theoretical Computer Science, 240(1):215–254, 2000.

[26] P. Degano, F. Levi, and C. Bodei. Safe ambients: Control flow analysis and
security. In ASIAN Computing Sciece Conference - ASIAN’00, volume 1961
of LNCS, pages 199–214. Springer, 2000.

[27] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
SPKI certificate theory. IETF RFC 2693, Sept. 1999.

[28] R. Focardi, R. Lucchi, and G. Zavattaro. Secure shared data-space coor-
dination languages: a process algebraic surveys. Sci. Comput. Program.,
63(1):3–15, 2006.

[29] C. Fournet, G. Gonthier, J. J. Levy, L. Maranget, and D. Remy. A Calculus
of Mobile Agents. In U. Montanari and V. Sassone, editors, Proc. of 7th Int.
Conf. on Concurrency Theory (CONCUR’96), volume 1119 of LNCS, pages
406–421. Springer-Verlag, 1996.

52

[30] C. Fournet and T. Rezk. Cryptographically sound implementations for typed
information-flow security. In G. C. Necula and P. Wadler, editors, 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 323–335, 2008.

[31] D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[32] D. Gelernter. Multiple Tuple Spaces in Linda. In J. G. Goos, editor, Pro-
ceedings, PARLE ’89, volume 365 of LNCS, pages 20–27, 1989.

[33] L. Gong. A secure identity-based capability system. In IEEE Symposium on
Security and Privacy, pages 56–65, 1989.

[34] D. Gorla and R. Pugliese. Enforcing Security Policies via Types. In Proc.
of Security in Pervasive Computing (SPC’03), volume 2802 of LNCS, pages
88–103. Springer-Verlag, 2003.

[35] D. Gorla and R. Pugliese. Resource Acces and Mobility Control with Dy-
namic Privileges Acquisition. In Proc. of ICALP’03, volume 2719 of LNCS,
pages 119–132. Springer-Verlag, 2003.

[36] R. Gorrieri, R. Lucchi, and G. Zavattaro. Supporting secure coordination in
secspaces. Fundam. Inf., 73(4):479–506, 2006.

[37] D. Hagimont and N. D. Palma. Non-functional capability-based access con-
trol in the java environment. In 8th Int. Conf. on Object-Oriented Informa-
tion Systems, volume 2425 of LNCS, pages 323–335. Springer, 2002.

[38] R. Handorean and G.-C. Roman. Secure sharing of tuple spaces in ad hoc
settings. Electr. Notes Theor. Comput. Sci., 85(3), 2003.

[39] R. R. Hansen, C. W. Probst, and F. Nielson. Sandboxing in myklaim. In First
International Conference on Availability, Reliability and Security (ARES),
pages 174–181. IEEE Computer Society, 2006.

[40] M. Hennessy and J. Riely. Information flow vs. resource access in the asyn-
chronous pi-calculus. ACM Trans. Program. Lang. Syst., 24(5):566–591,
2002.

[41] M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile
Agents. Information and Computation, 173:82–120, 2002.

53

[42] C. Laneve and G. Zavattaro. Foundations of web transactions. In Proc. of
FoSSaCS’05, volume 3441 of LNCS, pages 282–298. Springer, 2005.

[43] N. Li, B. N. Grosof, and J. Feigenbaum. A practically implementable and
tractable delegation logic. In IEEE Symposium on Security and Privacy,
pages 27–42, 2000.

[44] M. Merro and M. Hennessy. A bisimulation-based semantic theory of safe
ambients. ACM Trans. Program. Lang. Syst., 28(2):290–330, 2006.

[45] M. Miller, K. Yee, and J. Shapiro. Capability myths demolished. Technical
Report SRL2003-02, Systems Research Laboratory, 2003.

[46] G. Necula. Proof-Carrying Code. In Proceedings of POPL ’97, pages 106–
119. ACM, 1997.

[47] F. Nielson, H. R. Nielson, and R. R. Hansen. Validating firewalls using flow
logics. Theor. Comput. Sci., 283(2):381–418, 2002.

[48] H. R. Nielson and F. Nielson. Shape analysis for mobile ambients. Nord. J.
Comput., 8(2):233–275, 2001.

[49] A. Omicini and F. Zambonelli. Coordination for internet application devel-
opment. Autonomous Agents and Multi-agent Systems, 2(3):251–269, 1999.
Special Issue on Coordination Mechanisms and Patterns for Web Agents.

[50] G. Picco, A. Murphy, and G.-C. Roman. L: Linda Meets Mobility. In
D. Garlan, editor, Proc. of the 21st Int. Conference on Software Engineering
(ICSE’99), pages 368–377. ACM Press, 1999.

[51] J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile
agents. J. Autom. Reasoning, 31(3-4):335–370, 2003.

[52] A. Rowstron. WCL: A web co-ordination language. World Wide Web Jour-
nal, 1(3):167–179, 1998.

[53] F. B. Schneider, G. Morrisett, and R. Harper. A language-based approach
to security. In Informatics: 10 Years Ahead, 10 Years Back. Conference on
the Occasion of Dagstuhl’s 10th Anniversary, number 2000 in LNCS, pages
86–101. Springer, 2000.

54

[54] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast capability system.
In Symposium on Operating Systems Principles, pages 170–185, 1999.

[55] P. Shroff, S. F. Smith, and M. Thober. Dynamic dependency monitoring to
secure information flow. In Proc. of CSF, pages 203–217. IEEE Computer
Society, 2007.

[56] Sun Microsystems. Javaspace specification. http://java.sun.com/,
1999.

[57] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic. Managing policy updates
in security-typed languages. In Proc. of CSFW, pages 202–216. IEEE Com-
puter Society, 2006.

[58] A. S. Tanenbaum, S. J. Mullender, and R. van Renesse. Using sparse ca-
pabilities in a distributed operating system. In Proceedings of the 6th In-
ternational Conference on Distributed Computing Systems (ICDCS), pages
558–563. IEEE Computer Society, 1986.

[59] S. Tse and S. Zdancewic. Run-time principals in information-flow type sys-
tems. In IEEE Symposium on Security and Privacy, pages 179–193, 2004.

[60] N. I. Udzir, A. M. Wood, and J. L. Jacob. Coordination with multicapabili-
ties. Sci. Comput. Program., 64(2):205–222, 2007.

[61] M. Wand and I. Siveroni. Constraint systems for useless variable elimina-
tion. In In proceedings of the ACM Symposium on Principles of Program-
ming Languages (POPL), pages 291–302, 1999.

[62] A. Wood. Coordination with attributes. In COORDINATION ’99: Proceed-
ings of the Third International Conference on Coordination Languages and
Models, pages 21–36. Springer-Verlag, 1999.

[63] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. TSpaces. IBM Systems
Journal, 37(3):454–474, 1998.

55

